共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hee Chung Young-Min Jeong Jeong-Hwan Mun Soo-Seong Lee Won-Hyong Chung Hee-Ju Yu 《Molecular genetics and genomics : MGG》2014,289(2):149-160
Brassica rapa is a member of the Brassicaceae family and includes vegetables and oil crops that are cultivated worldwide. The introduction of durable resistance against turnip mosaic virus (TuMV) into agronomically important cultivars has been a significant challenge for genetic and horticultural breeding studies of B. rapa. Based on our previous genome-wide analysis of DNA polymorphisms between the TuMV-resistant doubled haploid (DH) line VC40 and the TuMV-susceptible DH line SR5, we constructed a core genetic map of the VCS-13M DH population, which is composed of 83 individuals derived from microspore cultures of a F1 cross between VC40 and SR5, by analyzing the segregation of 314 sequence-characterized genetic markers. The genetic markers correspond to 221 SNPs and 31 InDels of genes as well as 62 SSRs, covering 1,115.9 cM with an average distance of 3.6 cM between the adjacent marker loci. The alignment and orientation of the constructed map showed good agreement with the draft genome sequence of Chiifu, thus providing an efficient strategy to map genic sequences. Using the genetic map, a novel dominant TuMV resistance locus (TuMV-R) in the VCS-13M DH population was identified as a 0.34 Mb region in the short arm of chromosome A6 in which four CC–NBS–LRR resistance genes and two pathogenesis-related-1 genes reside. The genetic map developed in this study can play an important role in the genetic study of TuMV resistance and the molecular breeding of B. rapa. 相似文献
3.
Jian-Yong Zhang Wei-Ji Wang Jie Kong Qing-Yin Wang 《Russian Journal of Marine Biology》2013,39(2):136-142
Genetic linkage maps of Fenneropenaeus chinensis were constructed using a “double pseudo-testcross” strategy with 200 single nucleotide polymorphisms (SNPs) markers. This study represents the first SNP genetic linkage map for F. chinensis. The parents and F 1 progeny of 100 individuals were used as mapping populations. 21 genetic linkage groups in the male and female maps were identified. The male linkage map was composed of 115 loci and spanned 879.7 cM, with an average intermarker spacing of 9.4 cM, while the female map was composed of 119 loci and spanned 876.2 cM, with an average intermarker spacing of 8.9 cM. The estimated coverage of the linkage maps was 51.94% for the male and 53.77% for the female, based on two estimates of genome length. The integrated map contains 180 markers distributed in 16 linkage groups, and spans 899.3 cM with an average marker interval of 5.2 cM. This SNP genetic map lays the foundation for future shrimp genomics and genetic breeding studies, especially the discovery of gene or regions for economically important traits in Chinese shrimp. 相似文献
4.
Bin Li Ling Tian Jingying Zhang Long Huang Fenxia Han Shurong Yan Lianzheng Wang Hongkun Zheng Junming Sun 《BMC genomics》2014,15(1)
Background
Quantitative trait locus (QTL) mapping is an efficient approach to discover the genetic architecture underlying complex quantitative traits. However, the low density of molecular markers in genetic maps has limited the efficiency and accuracy of QTL mapping. In this study, specific length amplified fragment sequencing (SLAF-seq), a new high-throughput strategy for large-scale SNP discovery and genotyping based on next generation sequencing (NGS), was employed to construct a high-density soybean genetic map using recombinant inbred lines (RILs, Luheidou2 × Nanhuizao, F5:8). With this map, the consistent QTLs for isoflavone content across various environments were identified.Results
In total, 23 Gb of data containing 87,604,858 pair-end reads were obtained. The average coverage for each SLAF marker was 11.20-fold for the female parent, 12.51-fold for the male parent, and an average of 3.98-fold for individual RILs. Among the 116,216 high-quality SLAFs obtained, 9,948 were polymorphic. The final map consisted of 5,785 SLAFs on 20 linkage groups (LGs) and spanned 2,255.18 cM in genome size with an average distance of 0.43 cM between adjacent markers. Comparative genomic analysis revealed a relatively high collinearity of 20 LGs with the soybean reference genome. Based on this map, 41 QTLs were identified that contributed to the isoflavone content. The high efficiency and accuracy of this map were evidenced by the discovery of genes encoding isoflavone biosynthetic enzymes within these loci. Moreover, 11 of these 41 QTLs (including six novel loci) were associated with isoflavone content across multiple environments. One of them, qIF20-2, contributed to a majority of isoflavone components across various environments and explained a high amount of phenotypic variance (8.7% - 35.3%). This represents a novel major QTL underlying isoflavone content across various environments in soybean.Conclusions
Herein, we reported a high-density genetic map for soybean. This map exhibited high resolution and accuracy. It will facilitate the identification of genes and QTLs underlying essential agronomic traits in soybean. The novel major QTL for isoflavone content is useful not only for further study on the genetic basis of isoflavone accumulation, but also for marker-assisted selection (MAS) in soybean breeding in the future.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-1086) contains supplementary material, which is available to authorized users. 相似文献5.
Yun Li Shikai Liu Zhenkui Qin Geoff Waldbieser Ruijia Wang Luyang Sun Lisui Bao Roy G. Danzmann Rex Dunham Zhanjiang Liu 《DNA research》2015,22(1):39-52
Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the present work, we constructed a high-density and high-resolution genetic map for channel catfish with three large resource families genotyped using the catfish 250K single-nucleotide polymorphism (SNP) array. A total of 54,342 SNPs were placed on the linkage map, which to our knowledge had the highest marker density among aquaculture species. The estimated genetic size was 3,505.4 cM with a resolution of 0.22 cM for sex-averaged genetic map. The sex-specific linkage maps spanned a total of 4,495.1 cM in females and 2,593.7 cM in males, presenting a ratio of 1.7 : 1 between female and male in recombination fraction. After integration with the previously established physical map, over 87% of physical map contigs were anchored to the linkage groups that covered a physical length of 867 Mb, accounting for ∼90% of the catfish genome. The integrated map provides a valuable tool for validating and improving the catfish whole-genome assembly and facilitates fine-scale QTL mapping and positional cloning of genes responsible for economically important traits. 相似文献
6.
ABSTRACT: BACKGROUND: Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. RESULTS: An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. CONCLUSIONS: The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison. KEYWORDS: Grape; Genetic map; Next generation sequencing (NGS); Restriction-site associated DNA (RAD). 相似文献
7.
Shinji Fukuda Keiichiro Ishimoto Shusei Sato Shingo Terakami Naofumi Hiehata Toshiya Yamamoto 《Tree Genetics & Genomes》2016,12(4):80
We constructed a high-density genetic linkage map of bronze loquat (Eriobotrya deflexa) by using a three-way cross of loquat (Eriobotrya japonica) × (loquat × bronze loquat) and simple sequence repeat (SSR) and random amplified polymorphic DNA (RAPD) markers. The positions of the SSR loci used in this study were previously identified on reference maps of pears (Pyrus spp.) and apples (Malus spp.). The map of bronze loquat (‘Taiwan loquat No. 1’) consisted of 308 loci including 167 SSRs (8 loquat, 57 pear, and 102 apple SSRs), 140 RAPDs, and the loquat canker resistance gene Pse-a on 19 linkage groups covering a genetic distance of 1036 cM. Almost all loquat linkage groups were aligned to the pear consensus map by using at least two pear or apple SSRs, suggesting that positions and linkages of SSR loci were well conserved between loquat and pear and between loquat and apple. The constructed map may be used to determine the location of genes and quantitative trait loci of interest and to analyze genome synteny in the tribe Pyreae, subfamily Spiraeoideae of the family Rosaceae. 相似文献
8.
Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in brassicales 总被引:2,自引:0,他引:2
下载免费PDF全文

Chen C Yu Q Hou S Li Y Eustice M Skelton RL Veatch O Herdes RE Diebold L Saw J Feng Y Qian W Bynum L Wang L Moore PH Paull RE Alam M Ming R 《Genetics》2007,177(4):2481-2491
A high-density genetic map of papaya (Carica papaya L.) was constructed using microsatellite markers derived from BAC end sequences and whole-genome shot gun sequences. Fifty-four F(2) plants derived from varieties AU9 and SunUp were used for linkage mapping. A total of 707 markers, including 706 microsatellite loci and the morphological marker fruit flesh color, were mapped into nine major and three minor linkage groups. The resulting map spanned 1069.9 cM with an average distance of 1.5 cM between adjacent markers. This sequence-based microsatellite map resolved the very large linkage group 2 (LG 2) of the previous high-density map using amplified fragment length polymorphism markers. The nine major LGs of our map represent papaya's haploid nine chromosomes with LG 1 of the sex chromosome being the largest. This map validates the suppression of recombination at the male-specific region of the Y chromosome (MSY) mapped on LG 1 and at potential centromeric regions of other LGs. Segregation distortion was detected in a large region on LG 1 surrounding the MSY region due to the abortion of the YY genotype and in a region of LG6 due to an unknown cause. This high-density sequence-tagged genetic map is being used to integrate genetic and physical maps and to assign genome sequence scaffolds to papaya chromosomes. It provides a framework for comparative structural and evolutional genomic research in the order Brassicales. 相似文献
9.
近年来随着遗传改良工作的实施,人工选择大大提高了肉牛的生产性能并使其遗传基础发生巨大改变。文章基于Illumina BovineSNP50(54K)和BovineHD(770K)两款芯片数据,采用FST检验方法分析牛群的遗传分化,并筛查人工选择在牛的基因组留下的印记。通过全基因组范围内的扫描,共发现47 104个离群位点和3064个群体特异的人工选择候选基因,如CLIC5、TG、CACNA2D1、FSHR等。通过基因注释对基因的生物学过程和分子功能进行富集分析。文章构建了我国肉牛的全基因组的选择信号图谱,为深入研究人工选择和理解生物进化提供线索,且研究结果也显示人工选择对基因组的影响在牛品种遗传改良中发挥了重要作用。 相似文献
10.
S. Lorenz S. Brenna-Hansen T. Moen A. Roseth W. S. Davidson S. W. Omholt S. Lien 《Animal genetics》2010,41(1):48-54
A better understanding of the genotype–phenotype correlation of Atlantic salmon is of key importance for a whole range of production, life history and conservation biology issues attached to this species. High-density linkage maps integrated with physical maps and covering the complete genome are needed to identify economically important genes and to study the genome architecture. Linkage maps of moderate density and a physical bacterial artificial chromosome (BAC) fingerprint map for the Atlantic salmon have already been generated. Here, we describe a strategy to combine the linkage mapping with the physical integration of newly identified single nucleotide polymorphisms (SNPs). We resequenced 284 BAC-ends by PCR in 14 individuals and detected 180 putative SNPs. After successful validation of 152 sequence variations, genotyping and genetic mapping were performed in eight salmon families comprising 376 individuals. Among these, 110 SNPs were positioned on a previously constructed linkage map containing SNPs derived from expressed sequence tag (EST) sequences. Tracing the SNP markers back to the BACs enabled the integration of the genetic and physical maps by assigning 73 BAC contigs to Atlantic salmon linkage groups. 相似文献
11.
12.
13.
14.
Five cultivars and the half diallel set of 10 F1 hybrids of flue-cured tobacco (Nicotiana tabacum L.) were grown in two seasons. Highly significant differences were assessed between genotypes as concerns flowering time, plant height, number of leaves, leaf length and width and yield per plot. High to moderate values for heritability in the broad sense were obtained in all cases. Hybrids, in general, flowered earlier, were taller, had fewer but shorter and wider leaves and slightly increased yield when compared with the mean value of all parents. The variance associated with general combining ability (GCA) was highly significant in all characters. The estimates of SCA were significant in most cases. High GCA/SCA ratios which largely exceeded the unity were obtained for most attributes. The negative and positive alleles were unequally distributed in the parents for all the studied traits. A small number of effective genes was obtained for all characters except plant height, where one to two groups of genes were distinguished 相似文献
15.
The results of cholera vibrio chromosomal mapping using Vibrio cholerae classica and V. cholerae eltor donor strains obtained with the help of various R. plasmids, are summarized in the paper. A genetic map of V. cholerae chromosome was established showing the order of 35 gene markers. The relationship between the genetic structures of cholera eltor and classical vibrio biotypes is discussed. 相似文献
16.
17.
Construction of a genetic map for arabica coffee 总被引:2,自引:0,他引:2
Pearl HM Nagai C Moore PH Steiger DL Osgood RV Ming R 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2004,108(5):829-835
We have used AFLPs to construct a genetic linkage map on a pseudo-F2 population of arabica coffee (Coffea arabica L.) derived from a cross between the cultivars Mokka hybrid and Catimor. Sixty trees from this population were selected on the basis of plant height distribution to construct a linkage map. A total of 456 dominant markers and eight co-dominant markers were generated from 288 AFLP primer combinations. Of the total number of markers generated, 68% were from cv. Catimor, 30% from cv. Mokka hybrid, and 2% were co-dominant. This distribution suggests that the heterozygosity within the cv. Catimor sub-genomes was twice that within the cv. Mokka hybrid sub-genomes. Linkage groups were constructed using MAPMAKER version 3.0, resulting in 16 major linkage groups containing 4–21 markers, and 15 small linkage groups consisting of 2–3 linked markers each. The total length of the map was 1,802.8 cM, with an average distance of 10.2 cM between adjacent markers. This genetic map will serve as the framework for mapping QTL controlling source-sink traits in the same population.Communicated by H.F. Linskens 相似文献
18.