首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Abstract

Tissue plasminogen activator (tPA) is a protein involved in the breakdown of blood clots. We have previously produced a human tPA (htPA)-overexpressing transgenic pig using a mammary gland-specific promoter. In this study, we have established a transgenic pig mammary gland cell line that produces recombinant htPA. The mammary gland cells grew well and retained their character over long periods of culture. There was no difference in the extent of apoptosis in transgenic cells compared to wild-type mammary gland cells. In addition, the transgenic mammary gland cells expressed and secreted htPA into the conditioned media at a concentration similar to that in milk. This transgenic cell line represents a simple and ethical method for recombinant htPA production.  相似文献   

2.
Thrombolytic therapy by plasminogen activators (PAs) has been a main goal in the treatment of acute myocardial infarction. Despite improved outcomes of currently available thrombolytic therapies, all these agents have different drawbacks that may result in less than optimal outcomes. In order to make tissue plasminogen activator (tPA) more potent, while being more resistant to plasminogen activator inhibitor-1 (PAI-1) and having a higher affinity to fibrin, a new chimeric-truncated form of tPA (CT tPA) was designed and expressed in Pichia pastoris. This novel variant consists of a finger domain of Desmoteplase, an epidermal growth factor (EGF) domain, a kringle 1 (K1) domain, a kringle 2 (K2) domain, in which the lysine binding site (LBS) was deleted, and a protease domain, where the four amino acids lysine 296, arginine 298, arginine 299, and arginine 304 were substituted by aspartic acid. The chimera CT tPA showed 14-fold increase in its activity in the presence of fibrin compared to the absence of fibrin. Furthermore, CT tPA showed about 10-fold more potency than commercially available full-length tPA (Actylase®) and provided 1.2-fold greater affinity to fibrin. A residual activity of only 68 % was observed after incubation of Actylase® with PAI-1, however, 91 % activity remained for CT tPA. These promising findings suggest that the novel CT tPA variant might be an acceptable PA with superior characteristics and properties.  相似文献   

3.
To increase half life and solubility of the wild-type human tPA in vivo, a variant containing only essential K2 and P domains of wild tPA was cloned and directed expression in transgenic mice milk by bovine αs1 casein regulatory sequences. In two of the three resulting transgenic female mice, this modified tPA was expressed with the anticipated molecular weight, and maintained strong proteolytic activity, simultaneously present as a dissoluble form in the whey. The highest level in milk was about 300 IU/ml, 1000-fold higher than that in blood. A transgene-specific increase of tPA expression was observed from the first to the second lactation. More interesting, high concentration of this tPA has no obvious side-effects on lactation, indicating that it might be of large scale produced by transgenic livestock milk.  相似文献   

4.
Zhang  Ting  Zhou  Minya  Cai  Heqing  Yan  Kunning  Zha  Yiwen  Zhuang  Wenwen  Liang  Jingyan  Cheng  Yong 《Transgenic research》2022,31(1):149-163

Desmodus rotundus plasminogen activator alpha 1(DSPAα1) is a thrombolytic protein with advantages, such as a long half-life, high accuracy and specificity for thrombolysis, wide therapeutic window, and no neurotoxicity. To date, DSPAα1 has only been expressed in the Chinese hamster ovary, insect cells, transgenic tobacco plants, and Pichia pastoris. To the best of our knowledge, we are the first to report the expression of DSPAα1 in transgenic rabbit mammary glands, extract the product, and analyze its pharmacology activity. An efficient mammary gland-specific expression vector pCL25/DSPAα1 was transferred to prokaryotic zygotes in rabbits by microinjection to generate six DSPAα1 transgenic rabbits. The recombinant DSPAα1 (rDSPAα1) expression in transgenic rabbit milk was 1.19?±?0.26 mg/mL. The rDSPAα1 purification protocol included pretreatment, ammonium sulfate precipitation, benzamidine affinity chromatography, cation exchange chromatography, and Cibacron blue affinity chromatography; approximately 98% purity was achieved using gel electrophoresis. According to sequencing results, the primary structure of rDSPAα1 was consistent with the theoretical design sequence, and its molecular weight was consistent with that of the natural protein. N-terminal sequencing results indicated rDSPAα1 to be a mature protein, as the goat signal peptide sequence of the expression vector was no longer detected. The fibrinolytic activity of rDSPAα1 was estimated to be 773,333 IU/mg. Fibrin-agarose plate assay and in vitro rat blood clot degradation assay showed that rDSPAα1 had strong thrombolytic activity. In conclusion, we report recombinant DSPAα1 with high thrombolytic activity expressed in transgenic rabbit mammary glands.

  相似文献   

5.
A one-chain recombinant tissue-type plasminogen activator (EC 2.4.31.-) (tPA) analogue was constructed in which Arg-275 of the activation site was changed to Gly by site-directed mutagenesis. This analogue, tPA-Gly275, was very resistant to plasmin (EC 2.4.21.5) cleavage. It has been used to gain information about the activity of the uncleaved one-chain tPA form, also when plasmin is generated as a result of a plasminogen activation reaction. The amidolytic activity of tPA-Gly275 with less than Glu-Gly-Arg-pNA was investigated and compared to that of one-chain and two-chain wild-type recombinant tPA. A small but significant intrinsic amidolytic activity was observed with the analogue as well as the wild-type one-chain tPA form. However, it was much lower than that of two-chain tPA. Polymerised fibrin enhanced the amidolytic activity of both one-chain tPA forms but not of two-chain tPA. Measurements of the plasminogen activation kinetics in the absence of fibrin revealed that tPA-Gly275 possessed a significant intrinsic activity. However, it was 30-fold lower than that of two-chain tPA. Addition of polymerised fibrin profoundly enhanced the plasminogen activation rate of both tPA-Gly275 and wild-type one- and two-chain tPA to approximately the same maximal level. The results were interpreted to mean that fibrin binding can induce an activated state of the intact tPA one-chain form.  相似文献   

6.
Sixty-four variants of human tissue-type plasminogen activator (tPA) were produced using recombinant DNA techniques. Charged residues were converted to alanine in clusters of from one to four changes per variant; these clusters spanned all the domains of the molecule. The variants were expressed by mammalian cells and were analyzed for a variety of properties. Variants of tPA were found that had reduced activity with respect to each tested property; in a few cases increased activity was observed. Analysis of these effects prompted the following conclusions: 1) charged residues in the nonprotease domains are less involved in fibrin stimulation of tPA activity than those in the protease domain, and it is possible to increase the fibrin specificity (i.e. the stimulation of tPA activity by fibrin compared to fibrinogen) by mutations at several sites in the protease domain; 2) the difference in enzymatic activity between the one- and two-chain forms of tPA can be increased by mutations at several sites on the protease domain; 3) binding of tPA to lysine-Sepharose was affected only by mutations to kringle-2, whereas binding to fibrin was affected most by mutations in the other domains; 4) clot lysis was influenced by mutations in all domains except kringle-2; 5) sensitivity to plasminogen activator inhibitor-1 seems to reside exclusively in the region surrounding residue 300. A model of the tPA protease domain has been used to map some of the critical residues and regions.  相似文献   

7.
The extracellular serine protease, plasmin, is activated from its precursor, plasminogen (Plg), by the urokinase-type and tissue-type Plg activators (uPA and tPA respectively). One of the main plasmin substrates, fibrin, is formed from fibrinogen via thrombin activity. We have previously shown that mice deficient for Plg are strikingly less able to support a litter during lactation compared to wild type mice. Here we suggest a mechanism responsible for this lactation defect. Reduced epithelial content and increased apoptosis are observed in Plg-deficient mammary glands at lactation day 7. Immunofluorescence analysis reveals the presence of fibrin(ogen) in the stroma surrounding mammary alveoli and adipocytes and identifies fibrin(ogen) as a component of breast milk in both wild type and Plg-deficient mice. Furthermore, a large accumulation of fibrin(ogen) together with apoptotic epithelial cells is observed in the lactating mammary alveoli and ducts of some Plg-deficient mice. This suggests that fibrin plays a key role in the malfunction of mammary glands in the absence of Plg, possibly through blockade of mammary ducts inducing milk stasis, inhibiting milk expulsion and thereby inducing premature apoptosis and involution.  相似文献   

8.
The influence of angiostatin K1-4.5--a fragment of the heavy chain of plasmin and a powerful inhibitor of angiogenesis--on kinetic parameters (k(Pg) and K(Pg)) of human Glu-plasminogen activation under the action of urokinase (uPA) not having affinity for fibrin and fibrin-specific tissue plasminogen activator (tPA) was investigated. Angiostatin does not affect the k(Pg) value, but increases the value K(Pg) urokinase plasminogen activation. A decrease in the k(Pg) value and an increase in the K(Pg) value were found for fibrin-stimulated plasminogen activation by tPA with increasing concentrations of angiostatin. The obtained results show that angiostatin is competitive inhibitor of the uPA activator activity, while it inhibits the activator activity of tPA by mixed type. Such an influence ofangiostatin on the kinetic constants ofthe urokinase plasminogen activation suggests that angiostatin dose dependent manner replaces plasminogen in the binary enzyme-substrate complex uPA-Pg. In case of fibrin-stimulated plasminogen activation by tPA, both zymogen and tPA are bound to fibrin with formation of the effective triple tPA-Pg-fibrin complex. Angiostatin replaces plasminogen both from the fibrin surface and from the enzyme-substrate tPA-Pg complex that leads to a decrease in k(Pg) and an increase in K(Pg) of plasminogen activation. Inhibition constants by angioststin (Ki) of plasminogen-activator activities of uPA and tPA determined by Dixon method were found to be 0.59 +/- 0.04 and 0.12 +/- 0.05 microM, respectively.  相似文献   

9.
We have shown that plasminogen activator inhibitor-1 (PAI-1) inhibits the fibrin binding of both the single chain and two chain forms of tissue-type plasminogen activator (tPA) through two different mechanisms. PAI-1 inhibits the finger domain-dependent fibrin binding of diisopropylfluorophosphate-inactivated single chain tPA and the kringle-2 domain-dependent fibrin binding of diisopropylfluorophosphate-inactivated two chain tPA. In accordance with the data, preformed complexes of single chain tPA/PAI-1 and of two chain tPA/PAI-1 lost the fibrin binding abilities mediated by the finger and kringle-2 domains, respectively. These effects of PAI-1 appear to be mediated by steric hindrance of the fibrin binding sites after PAI-1 binding to adjacent regions in the functional domains of tPA. We thus propose a model in which a PAI-1 binding site resides in the finger domain of a single chain, and plays a role in the reversible association of single chain tPA and PAI-1. Conformational changes may take place during the conversion of single chain tPA to two chain tPA, resulting in burying of the original PAI-1 binding site and exposure of an alternate PAI-1 binding site on the surface of the kringle-2 domain.  相似文献   

10.
A bispecific (Fab')2 molecule was constructed by linking the monovalent Fab' from an anti-fibrin monoclonal antibody to the Fab' from an anti tissue plasminogen activator (tPA, single chain) monoclonal antibody by means of inter-heavy-chain disulfide bonds. An immunochemical complex composed of the bispecific (Fab')2 molecule bound to tPA [tPA-bispecific (Fab')2 complex] was then generated and purified. Its molecular weight was 170 kDa [less than half the molecular weight of a previously described tPA-bispecific antibody complex containing the entire anti-fibrin and anti-tPA immunoglobulin molecules; Runge, M. S., et al. (1987) Trans. Assoc. Am. Phys. 100, 250-255]. The tPA-bispecific (Fab')2 complex was 8.6-fold more efficient in fibrinolysis than tPA alone and 94-fold more potent than urokinase. This enhancement in the fibrinolytic potency of tPA compares favorably with that observed for the bispecific whole-antibody complex. These results suggest that this smaller, less immunogenic molecule is capable of binding both fibrin and tPA with high affinity and of enhancing the thrombolytic efficiency of exogenous and, perhaps, endogenous tPA.  相似文献   

11.
An expression cassette containing kringle 2 and serine protease domains (K2S), tissue plasminogen activator (tPA), together with a signal sequence derived from Leishmania tarentolae and two fragments of the small subunit ribosomal RNA locus, was introduced into L. tarentolae. The transfected cells produced recombinant K2S (rK2S) protein extracellularly with serine protease activity. Expression and enzyme activity of rK2S in the supernatant was 930 i.u./ml. The specific activity of purified rK2S was 7.4 U/mg of protein. Replacement of the human signal sequence tPA with the signal sequence derived from Leishmania increased the secretion of recombinant protein up to 30 times.  相似文献   

12.
Fibrin interacts with tissue-type plasminogen activator (tPA) via the finger and the kringle 2 domains. Three monoclonal antibodies against tPA, designated MPW3VPA, MPW6VPA, and MPW7VPA, which react with epitopes in the tPA molecule involved in fibrin binding, were characterized. The IgM monoclonal antibody MPW6VPA, directed against an epitope close to the finger and epidermal growth factor domains, stimulated plasminogen activation only in the absence of CNBr-fibrinogen fragments by increasing kcat in a dose-dependent fashion, an effect which was not restricted to the intact molecule. These results suggest that MPW6VPA mimics the initial effect of fibrin bound to the tPA molecule, which results in a change of kcat values. The MPW6VPA effect was reversed by another antibody, MPW3VPA, also directed against epidermal growth factor and finger domains. The latter antibody also inhibited plasminogen activation by tPA in the presence of CNBr-fibrinogen fragments in a dose-dependent, apparently noncompetitive way. No effect of MPW3VPA was seen in the absence of CNBr-fibrinogen fragments. MPW7VPA directed against kringle 2 of tPA inhibited plasminogen activation by tPA only when CNBr-fibrinogen fragments were present. This inhibition was apparently competitive and dose-dependent. These data suggest that MPW3VPA interferes with the first phase of fibrin binding to tPA, whereas MPW7VPA interferes with the second phase of fibrin binding to the tPA molecule via kringle 2, resulting in Km changes.  相似文献   

13.
A recombinant chimeric plasminogen activator (GHRP-scu-PA-32K), consisting of the tetrapeptide Gly-His-Arg-Pro fused to the N-terminus of the low-molecular single-chain urokinase-type plasminogen activator (Leu144-Leu411), was produced by expression in CHO cells. The stable expression cell line was selected for large-scale expression. The product was purified by antibody-Sepharose affinity chromatography with a recovery of 67%. The apparent molecular weight of purified GHRP-scu-PA-32K was 33 kDa according to SDS-PAGE. Its specific activity was 150000 IU/mg protein according to fibrin plate determination. The conversion of single-chain to two-chain molecules mediated by plasmin was comparable for GHRP-scu-PA-32K (K(m)=4.9 microM, k(2)=0.35 s(-1)) and scu-PA-32K. The activation of plasminogen by GHRP-scu-PA-32K (K(m)=1.02 microM, k(2)=0.0028 s(-1)) was also similar to that of scu-PA-32K. The fibrin binding of GHRP-scu-PA-32K was 2.5 times higher than that of scu-PA-32K at a fibrin concentration of 3.2 mg/ml. In contrast to scu-PA-32K in vitro 125I-fibrin-labeled plasma clot lysis, GHRP-scu-PA had a higher thrombolytic potency, whereas it depleted less fibrinogen in plasma. These results show that GHRP-scu-PA-32K as expected is a potential thrombolytic agent.  相似文献   

14.
A number of cell types have previously been shown to bind tissue plasminogen activator (tPA), which in some cases can remain active on the cell surface resulting in enhanced plasminogen activation kinetics. We have investigated several cultured cell lines, U937, THP1, K562, Molt4, and Nalm6 and shown that they bind both tPA and plasminogen and are able to act as promoters of plasminogen activation in kinetic assays. To understand what structural features of tPA are involved in cell surface interactions, we performed kinetic assays with a range of tPA domain deletion mutants consisting of full-length glycosylated and nonglycosylated tPA (F-G-K1-K2-P), DeltaFtPA (G-K1-K2-P), K2-P tPA (BM 06.022 or Reteplase), and protease domain (P). Deletion variants were made in Escherichia coli and were nonglycosylated. Plasminogen activation rates were compared with and without cells, over a range of cell densities at physiological tPA concentrations, and produced maximum levels of stimulation up to 80-fold with full-length, glycosylated tPA. Stimulation for nonglycosylated full-length tPA dropped to 45-60% of this value. Loss of N-terminal domains as in DeltaFtPA and K2P resulted in a further loss of stimulation to 15-30% of the full-length glycosylated value. The protease domain alone was stimulated at very low levels of up to 2-fold. Thus, a number of different sites are involved in cell interactions especially within finger and kringle domains, which is similar to the regulation of tPA activity by fibrin. A model was developed to explain the mechanism of stimulation and compared with actual data collected with varying cell, plasminogen, or tPA concentrations and different tPA variants. Experimental data and model predictions were generally in good agreement and suggest that stimulation is well explained by the concentration of reactants by cells.  相似文献   

15.
Heparin has been shown recently to stimulate the activity of human tissue-type plasminogen activator (t-PA). To investigate this effect further, mutant proteins lacking various domains of t-PA were screened for the ability to be stimulated by heparin. Those mutants harboring either the finger domain or the 2nd kringle were found to have enhanced enzymatic activity in the presence of heparin. Only mutants containing these structures would bind to heparin-agarose beads; monoclonal antibodies directed against these domains blocked binding. The stimulatory effect of heparin was more pronounced in finger-containing mutants than kringle-2 proteins. Earlier results had localized the fibrin-binding domains to the same two structures. Unlike heparin, the 2nd kringle was shown to be more important than the finger for fibrin stimulation. Our results have implications for producing recombinant t-PA variants for use in thrombolytic therapy.  相似文献   

16.
17.
Thrombosis is a leading cause of death worldwide. Recombinant tissue-type plasminogen activator (tPA) is the Food and Drug Administration-approved thrombolytic drug. tPA is rapidly inactivated by endogenous plasminogen activator inhibitor-1 (PAI-1). Engineering on tPA to reduce its inhibition by PAI-1 without compromising its thrombolytic effect is a continuous effort. Precise details, with atomic resolution, of the molecular interactions between tPA and PAI-1 remain unknown despite previous extensive studies. Here, we report the crystal structure of the tPA·PAI-1 Michaelis complex, which shows significant differences from the structure of its urokinase-type plasminogen activator analogue, the uPA·PAI-1 Michaelis complex. The PAI-1 reactive center loop adopts a unique kinked conformation. The structure provides detailed interactions between tPA 37- and 60-loops with PAI-1. On the tPA side, the S2 and S1β pockets open up to accommodate PAI-1. This study provides structural basis to understand the specificity of PAI-1 and to design newer generation of thrombolytic agents with reduced PAI-1 inactivation.  相似文献   

18.
Tissue type plasminogen activator (tPA) is the physiological initiator of fibrinolysis, activating plasminogen via highly specific proteolysis; plasmin then degrades fibrin with relatively broad specificity. Unlike other chymotrypsin family serine proteinases, tPA is proteolytically active in a single-chain form. This form is also preferred for therapeutic administration of tPA in cases of acute myocardial infarction. The proteolytic cleavage which activates most other chymotrypsin family serine proteinases increases the catalytic efficiency of tPA only 5- to 10-fold. The X-ray crystal structure of the catalytic domain of recombinant human single-chain tPA shows that Lys156 forms a salt bridge with Asp194, promoting an active conformation in the single-chain form. Comparisons with the structures of other serine proteinases that also possess Lys156, such as trypsin, factor Xa and human urokinase plasminogen activator (uPA), identify a set of secondary interactions which are required for Lys156 to fulfil this activating role. These findings help explain the anomalous single-chain activity of tPA and may suggest strategies for design of new therapeutic plasminogen activators.  相似文献   

19.
Transgene expression for the mammary gland bioreactor aimed at producing recombinant proteins requires optimized expression vector construction. Previously we presented a hybrid gene locus strategy, which was originally tested with human lactoferrin (hLF) as target transgene, and an extremely high-level expression of rhLF ever been achieved as to 29.8 g/l in mice milk. Here to demonstrate the broad application of this strategy, another 38.4 kb mWAP-htPA hybrid gene locus was constructed, in which the 3-kb genomic coding sequence in the 24-kb mouse whey acidic protein (mWAP) gene locus was substituted by the 17.4-kb genomic coding sequence of human tissue plasminogen activator (htPA), exactly from the start codon to the end codon. Corresponding five transgenic mice lines were generated and the highest expression level of rhtPA in the milk attained as to 3.3 g/l. Our strategy will provide a universal way for the large-scale production of pharmaceutical proteins in the mammary gland of transgenic animals.  相似文献   

20.
The vampire bat salivary plasminogen activator (BatPA) is virtually inactive toward Glu-plasminogen in the absence of a fibrin-like cofactor, unlike human tissue-type plasminogen activator (tPA) (the kcat/Km values were 4 and 470 M-1 s-1, respectively). In the presence of fibrin II, tPA and BatPA activated Glu-plasminogen with comparable catalytic efficiencies (158,000 and 174,000 M-1 s-1, respectively). BatPA's cofactor requirement was partially satisfied by polymeric fibrin I (54,000 M-1 s-1), but monomeric fibrin I was virtually ineffective (970 M-1 s-1). By comparison, a variety of monomeric and polymeric fibrin-like species markedly enhanced tPA-mediated activation of Glu-plasminogen. Fragment X polymer was 2-fold better but 9-fold worse as cofactor for tPA and BatPA, respectively, relative to fibrin II. Fibrinogen, devoid of plasminogen, was a 10-fold better cofactor for tPA than fibrinogen rigorously depleted of plasminogen, Factor XIII, and fibronectin; the enhanced stimulatory effect of the less-purified fibrinogen was apparently due to the presence of Factor XIII. By contrast, the two fibrinogen preparations were equally poor cofactors of BatPA-mediated activation of Glu-plasminogen. BatPA possessed only 23 and 4% of the catalytic efficiencies of tPA and two-chain tPA, respectively, in hydrolyzing the chromogenic substrate Spectrozyme tPA. However in the presence of fibrin II, BatPA and tPA exhibited similar kcat/Km values for the hydrolysis of Spectrozyme tPA. Our data revealed that BatPA, unlike tPA, displayed a strict and fastidious requirement for polymeric fibrin I or II. Consequently, BatPA may preferentially promote plasmin generation during a narrow temporal window of fibrin formation and dissolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号