首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brassica napus seed composition traits (fibre, protein, oil and fatty acid profiles), seed colour and yield-associated traits are regulated by a complex network of genetic factors. Although previous studies have attempted to dissect the underlying genetic basis for these traits, a more complete picture of the available quantitative trait loci (QTL) variation and any interaction between the different traits is required. In this study, QTL mapping for eleven seed composition traits, seed colour and a yield-related trait (TSW) was conducted in a spring-type canola-quality B. napus doubled haploid (DH) population from a cross between black-seeded (DH12075) and yellow-seeded (YN01-429) lines across five environments. A major QTL associated with fibre traits (acid detergent fibre, acid detergent lignin and neutral detergent fibre) and seed colour (whiteness index) was mapped on chromosome N9 across the five environments. Multi-trait analysis identified QTL which had pleiotropic effect for seed colour and other composition traits. Multi-environment analysis revealed genetic (QTL) × environment effects on most QTL. These findings provide a more detailed insight into the complex QTL networks controlling seed composition and yield-associated traits in canola-quality B. napus.  相似文献   

2.
Clubroot caused by the obligate biotrophic protist Plasmodiophora brassicae is a major disease of Brassica species. Clubroot resistances introduced from B. oleracea var. ‘Böhmerwaldkohl’ and resistance from B. rapa ECD-04 were genetically mapped in oilseed rape (B. napus L.). A doubled haploid (DH) population of rape seed was developed by crossing a resistant DH-line derived from a resynthesized B. napus with the susceptible cultivar ‘Express’. The DH population was tested in the greenhouse against seven P. brassicae isolates showing low and high virulence toward B. oleracea or/and B. rapa. DH-lines with highest or lowest disease scores were used in a bulked segregant analysis (BSA), and 43 polymorphic AFLPs were identified. A genetic map of the whole genome was constructed using 338 AFLP and 156 anchored SSR markers. Nineteen QTL were detected on chromosomes N02, N03, N08, N13, N15, N16 and N19 giving resistance to seven different isolates. Race-specific effects were observed for all QTL, none of the QTL conferred resistance to all isolates. The phenotypic variance explained by the respective QTL ranged between 10.3 and 67.5%. All QTL could be assigned to both ancestral genomes of B. napus. In contrast to previous reports, a clear differentiation into major QTL from B. rapa and minor QTL from B. oleracea could not be found. Composite interval mapping confirmed the linkage relationships determined by BSA, thus demonstrating that markers for oligogenic traits can be selected by merely testing the distributional extremes of a segregating population.  相似文献   

3.

Key message

A repertoire of the genomic regions involved in quantitative resistance to Leptosphaeria maculans in winter oilseed rape was established from combined linkage-based QTL and genome-wide association (GWA) mapping.

Abstract

Linkage-based mapping of quantitative trait loci (QTL) and genome-wide association studies are complementary approaches for deciphering the genomic architecture of complex agronomical traits. In oilseed rape, quantitative resistance to blackleg disease, caused by L. maculans, is highly polygenic and is greatly influenced by the environment. In this study, we took advantage of multi-year data available on three segregating populations derived from the resistant cv Darmor and multi-year data available on oilseed rape panels to obtain a wide overview of the genomic regions involved in quantitative resistance to this pathogen in oilseed rape. Sixteen QTL regions were common to at least two biparental populations, of which nine were the same as previously detected regions in a multi-parental design derived from different resistant parents. Eight regions were significantly associated with quantitative resistance, of which five on A06, A08, A09, C01 and C04 were located within QTL support intervals. Homoeologous Brassica napus genes were found in eight homoeologous QTL regions, which corresponded to 657 pairs of homoeologous genes. Potential candidate genes underlying this quantitative resistance were identified. Genomic predictions and breeding are also discussed, taking into account the highly polygenic nature of this resistance.
  相似文献   

4.

Key message

Seed weight QTL identified in different populations were synthesized into consensus QTL which were shown to harbor candidate genes by in silico mapping. Allelic variation inferred would be useful in breeding B. juncea lines with high seed weight.

Abstract

Seed weight is an important yield influencing trait in oilseed Brassicas and is a multigenic trait. Among the oilseed Brassicas, Brassica juncea harbors the maximum phenotypic variation wherein thousand seed weight varies from around 2.0 g to more than 7.0 g. In this study, we have undertaken quantitative trait locus/quantitative trait loci (QTL) analysis of seed weight in B. juncea using four bi-parental doubled-haploid populations. These four populations were derived from six lines (three Indian and three east European lines) with parental phenotypic values for thousand seed weight ranging from 2.0 to 7.6 g in different environments. Multi-environment QTL analysis of the four populations identified a total of 65 QTL ranging from 10 to 25 in each population. Meta-analysis of these component QTL of the four populations identified six ‘consensus’ QTL (C-QTL) in A3, A7, A10 and B3 by merging 33 of the 65 component Tsw QTL from different bi-parental populations. Allelic diversity analysis of these six C-QTL showed that Indian lines, Pusajaikisan and Varuna, hold the most positive allele in all the six C-QTL. In silico mapping of candidate genes with the consensus QTL localized 11 genes known to influence seed weight in Arabidopsis thaliana and also showed conserved crucifer blocks harboring seed weight QTL between the A subgenomes of B. juncea and B. rapa. These findings pave the way for a better understanding of the genetics of seed weight in the oilseed crop B. juncea and reveal the scope available for improvement of seed weight through marker-assisted breeding.
  相似文献   

5.
Hybrid plants resistant to phosphinothricin (PPT) are obtained as a result of experiments with somatic hybridization between Brassica napus L. cv. Kalinins’kyy and Orychophragmus violaceus L. O.E. Shulz. The hybrids inherited PPT resistance from O. violaceus plants that had been previously transformed by a vector containing the maize transposon system Spm/dSPm with bar gene located within the nonautonomous transposon. The morphologically obtained plants occupy an intermediate position between the initial forms, which is in agreement with the results of isoenzyme analyses (analysis of multiple forms of amylase and esterase) and PCR analysis (presence of the genes bar, gus, and SpmTPase). Inheritance of the plastome occurs from oilseed rape, while that of the mitochondrion, from O. violaceus, which is proved by means of PCR-RFLP analysis. The plant hybrids may be utilized for further selection research with oilseed rape following determination of the edible quality of its oil as well as in experiments with chloroplast transformation, a topic which is of critical importance for oilseed rape.  相似文献   

6.

Key message

A major QTL for multi-inflorescence was mapped to a 27.18-kb region on A05 in Brassica napus by integrating QTL mapping, microarray analysis and whole-genome sequencing.

Abstract

Multi-inflorescence is a desirable trait for the genetic improvement of rapeseed (Brassica napus L.). However, the genetic mechanism underlying the multi-inflorescence trait is not well understood. In the present study, a doubled haploid (DH) population derived from a cross between single- and multi-inflorescence lines was investigated for the penetrance of multi-inflorescence across 3 years and genotyped with 257 simple sequence repeat and sequence-related amplified polymorphism loci. A major quantitative trait locus (QTL) for penetrance of multi-inflorescence was mapped to a 9.31-Mb region on chromosome A05, explaining 45.81% of phenotypic variance on average. Subsequently, 13 single-inflorescence and 15 multi-inflorescence DH lines were genotyped with the Brassica microarray, and the QTL interval of multi-inflorescence was narrowed to a 0.74-Mb region with 37 successive single nucleotide polymorphisms between single- and multi-inflorescence groups. A 27.18-kb QTL interval was detected by screening 420 recessive F2 individuals with genome-specific markers. These results will be valuable for gene cloning and molecular breeding of multi-inflorescence in rapeseed.
  相似文献   

7.

Background

Map-based cloning of quantitative trait loci (QTLs) in polyploidy crop species remains a challenge due to the complexity of their genome structures. QTLs for seed weight in B. napus have been identified, but information on candidate genes for identified QTLs of this important trait is still rare.

Results

In this study, a whole genome genetic linkage map for B. napus was constructed using simple sequence repeat (SSR) markers that covered a genetic distance of 2,126.4 cM with an average distance of 5.36 cM between markers. A procedure was developed to establish colinearity of SSR loci on B. napus with its two progenitor diploid species B. rapa and B. oleracea through extensive bioinformatics analysis. With the aid of B. rapa and B. oleracea genome sequences, the 421 homologous colinear loci deduced from the SSR loci of B. napus were shown to correspond to 398 homologous loci in Arabidopsis thaliana. Through comparative mapping of Arabidopsis and the three Brassica species, 227 homologous genes for seed size/weight were mapped on the B. napus genetic map, establishing the genetic bases for the important agronomic trait in this amphidiploid species. Furthermore, 12 candidate genes underlying 8 QTLs for seed weight were identified, and a gene-specific marker for BnAP2 was developed through molecular cloning using the seed weight/size gene distribution map in B. napus.

Conclusions

Our study showed that it is feasible to identify candidate genes of QTLs using a SSR-based B. napus genetic map through comparative mapping among Arabidopsis and B. napus and its two progenitor species B. rapa and B. oleracea. Identification of candidate genes for seed weight in amphidiploid B. napus will accelerate the process of isolating the mapped QTLs for this important trait, and this approach may be useful for QTL identification of other traits of agronomic significance.
  相似文献   

8.
Earliness of flowering and maturity and high seed yield are important objectives of breeding spring Brassica napus canola. Previously, we have introgressed earliness of flowering from Brassica oleracea into spring B. napus canola through interspecific crossing between these two species. In this paper, we report quantitative trait locus (QTL) mapping of days to flower and seed yield by use of publicly available markers and markers designed based on flowering time genes and a doubled haploid population, derived from crossing of the spring canola parent and an early flowering line developed from a B. napus × B. oleracea cross, tested in nine field trials for over 5 years. Five genomic regions associated with days to flower were identified on C1, C2, C3, and C6 of which the single QTL of C1 was detected in all trials; in all cases, the allele introgressed from B. oleracea reduced the number of days to flower. BLASTn search in the Brassica genomes located the physical position of the QTL markers and identified putative flowering time genes in these regions. In the case of seed yield, ten QTL from eight linkage groups were detected; however, none could be consistently detected in all trials. The QTL region of C1 associated with days to flower did not show significant association with seed yield in more than 80% of the field trials; however, in a single trial, the allele introgressed from B. oleracea exerted a negative effect on seed yield. Thus, the genomic regions and molecular markers identified in this research could potentially be used in breeding for the development of early flowering B. napus canola cultivars without affecting seed yield in a majority of the environments.  相似文献   

9.
10.
11.
12.

Key message

Nitrogen levels can modulate the effectiveness of clubroot resistance in an isolate- and host-specific manner. While the same QTL were detected under high and low nitrogen, their effects were altered.

Abstract

Clubroot, caused by Plasmodiophora brassicae, is one of the most damaging diseases of oilseed rape and is known to be affected by nitrogen fertilization. However, the genetic factors involved in clubroot resistance have not been characterized under nitrogen-limiting conditions. This study aimed to assess the variability of clubroot resistance under different nitrogen levels and to characterize the impact of nitrogen supply on genetic resistance factors. Linkage analyses and a genome-wide association study were conducted to detect QTL for clubroot resistance and evaluate their sensitivity to nitrogen. The clubroot response of a set of 92 diverse oilseed rape accessions and 108 lines derived from a cross between ‘Darmor-bzh’ (resistant) and ‘Yudal’ (susceptible) was studied in the greenhouse under high- and low-nitrogen conditions, following inoculation with the P. brassicae isolates eH and K92-16. Resistance to each isolate was controlled by a major QTL and a few small-effects QTL. While the same QTL were detected under both high and low nitrogen, their effects were altered. Clubroot resistance to isolate eH, but not K92-16, was greater under a low-N supply versus a high-N supply. New sources of resistance were found among the oilseed rape accessions under both low and high-N conditions. The results are discussed relative to the literature and from a crop improvement perspective.
  相似文献   

13.

Main conclusion

Small RNAs and microRNAs were found to vary extensively in synthetic Brassica napus and subsequent generations, accompanied by the activation of transposable elements in response to hybridization and polyploidization.

Abstract

Resynthesizing B. napus by hybridization and chromosome doubling provides an approach to create novel polyploids and increases the usable genetic variability in oilseed rape. Although many studies have shown that small RNAs (sRNAs) act as important factor during hybridization and polyploidization in plants, much less is known on how sRNAs change in synthetic B. napus, particularly in subsequent generations after formation. We performed high-throughput sequencing of sRNAs in S1–S4 generations of synthetic B. napus and in the homozygous B. oleracea and B. rapa parent lines. We found that the number of small RNAs (sRNAs) and microRNAs (miRNAs) doubled in synthetic B. napus relative to the parents. The proportions of common sRNAs detected varied from the S1 to S4 generations, suggesting sRNAs are unstable in synthetic B. napus. The majority of miRNAs (67.2 %) were non-additively expressed in the synthesized Brassica allotetraploid, and 33.3 % of miRNAs were novel in the resynthesized B. napus. The percentage of miRNAs derived from transposable elements (TEs) also increased, indicating transposon activation and increased transposon-associated miRNA production in response to hybridization and polyploidization. The number of target genes for each miRNA in the synthesized Brassica allotetraploid was doubled relative to the parents, enhancing the complexity of gene expression regulation. The potential roles of miRNAs and their targets are discussed. Our data demonstrate generational changes in sRNAs and miRNAs in synthesized B. napus.
  相似文献   

14.
15.
16.

Key message

A high-density SNP map was constructed and several novel QTL for branch angle across six environments in Brassica napus were identified.

Abstract

Branch angle is a major determinant for the ideotype of a plant, while the mechanisms underlying this trait in Brassica napus remain elusive. Herein, we developed one doubled haploid population from a cross involving one Capsella bursa-pastoris derived B. napus intertribal introgression line with the compressed branches and wooden stems, and constructed a high-density SNP map covering the genetic distance of 2242.14 cM, with an average marker interval of 0.73 cM. After phenotypic measurements across six environments, the inclusive composite interval mapping algorithm was conducted to analyze the QTL associated with branch angle. In single-environment analysis, a total of 17 QTL were detected and mainly distributed on chromosomes A01, A03, A09 and C03. Of these, three major QTL, qBA.A03-2, qBA.C03-3 and qBA.C03-4 were steadily expressed, each explaining more than 10% of the phenotypic variation in at least two environments. Compared with other results on rapeseed branch angle, these major QTL were newly detected. In QTL by environment interactions (QEI) mapping, 10 QTL were identified, and the QTL average effect and QEI effect were estimated. Of these, 7 QTL were detected in both single-environment analysis and QEI mapping. Based on the physical positions of SNPs and the functional annotation of the Arabidopsis thaliana genome, 27 genes within the QTL regions were selected as candidate genes, including early auxin-responsive genes, small auxin-up RNA, auxin/indoleacetic acid and gretchenhagen-3. These results may pave the way for deciphering the genetic control of branch angle in B. napus.
  相似文献   

17.
Abiotic stresses are the key factors which negatively influence plant development and productivity and are the main cause of extensive agricultural production losses worldwide. Brassica napus is an oilseed crop of global economic significance and major contributor to the total oilseed production, quite often encounters abiotic stresses, resulting in reduced agricultural productivity. Hence, there is an immediate need being felt to raise B. napus cultivars which would be more suitable for various abiotic stress conditions presently and in the years to come. Biotechnology and molecular plant breeding has emerged as an important tool for molecular understanding of plant response to various abiotic stresses. Currently, various stress-responsive genes and mechanisms have been identified and functionally characterized in model plant Arabidopsis and other major crop plants such as Oryza sativa and Zea mays. However, very inadequate success has been achieved in this direction in a major oilseed crop such as B. napus. In this review, we present the latest methods and approaches of studying abiotic stress in B. napus. In this review, we describe the genes functioning as markers for crop breeding and discuss the recent progress and advances in genome editing by break through CRISPR/Cas9 multigene–multiplex approaches for developing multiple abiotic stress tolerance with our on-going research as a scheme. We also throw some light on molecular genetics, plant breeding and abiotic stress biotechnology of B. napus which offer a new prospective on the research directions for the practical plant breeding and functional genomics of B. napus in response to different abiotic stress conditions.  相似文献   

18.
Waterlogging stress disturbs plant metabolism through increased ion (manganese and iron) toxicity resulting from the changes in the soil redox potential under hypoxic conditions. Our previous study found a significant correlation between the tolerance to Mn2+ toxicity and waterlogging stress tolerance in barley, suggesting that waterlogging tolerance could be increased by improving the tolerance to Mn2+ toxicity. In this study, a doubled-haploid (DH) population from the cross between barley varieties Yerong and Franklin (waterlogging-tolerant and -sensitive, respectively) was used to identify QTL controlling tolerance to Mn2+ toxicity based on chlorophyll content and plant survival as selection criteria. Four significant QTL for plant survival under Mn2+ stress (QSur.yf.1H, QSur.yf.3H, QSur.yf.4H, and QSur.yf.6H) were identified in this population at the seedling stage. Two significant QTL (QLC.yf.3H and QLC.yf.6H) controlling leaf chlorosis under Mn2+ stress were identified on chromosomes 3H and 6H close to QSur.yf.3H and QSur.yf.6H. The major QTL QSur.yf.3H, located near the marker Bmag0013, explained 21% of the phenotypic variation. The major QTL for plant survival on 3H was validated in a different DH population (TX9425/Naso Nijo). This major QTL could potentially be used in breeding programmes to enhance tolerance to both manganese toxicity and waterlogging.  相似文献   

19.
20.
Oilseed rape (Brassica napus L.) is among dicotyledonous plants, a model species for microspore embryogenesis. Tremendous differences exist among oilseed rape genotypes in their embryogenic response and direct embryo to plant conversion. Despite some attempts to identify relevant genes, the genetic basis of these traits remains largely unknown. The objective of this work was to develop and to provide to the scientific community a doubled haploid (DH) population derived from a cross of the reported highly embryogenic genotype DH4079 and the low embryogenic inbred line Express 617. A population of 198 DH-lines was generated and genotyped with the Brassica 60 K Illumina Infinium? SNP array. The parental and the F1 genotypes as well as between 81 and 107 DH-lines were characterized for their number of microspores, number of microspore-derived embryos, embryo survival rate, direct embryo to shoot conversion, and related traits. The results obtained for the F1 genotype were mostly in between the two parents. SNP markers in the DH population showed to 49% distorted segregation and of those 63% were in favor of DH4079. Significant genotypic differences were found for all traits and heritabilities ranged from 66 to 88%. Together, 13 quantitative trait loci (QTL) for the different traits were identified on linkage groups A01, A02, A05, A10, C04, and C06, and candidate genes were identified within their QTL confidence intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号