首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A set of 84 diverse rice genotypes were assessed for seedling stage salt tolerance and their genetic diversity using 41 polymorphic SSR markers comprising of 19 Saltol QTL linked and 22 random markers. Phenotypic screening under hydroponics identified three indica landraces (Badami, Shah Pasand and Pechi Badam), two Oryza rufipogon accessions (NKSWR2 and NKSWR17) and one each of Basmati rice (Seond Basmati) and japonica cultivars (Tompha Khau) as salt tolerant, having similar tolerance as of Pokkali and FL478. Among the salt tolerant genotypes, biomass showed positive correlation with shoot fresh weight and negative association with root and shoot Na+ content. The results indicated repression of Na+ loading within the tolerant plants. Linkage disequilibrium (LD) of the Saltol linked markers was weak, suggestive of high fragmentation of Pokkali haplotype, a result of evolutionary active recombination events. Poor haplotype structure of the Saltol region, may reduce its usefulness in marker assisted breeding programmes, if the target foreground markers chosen are wide apart. LD mapping identified eight robust marker-trait associations (QTLs), of which RM10927 was found linked to root and shoot Na+ content and RM10871 with shoot Na+/K+ ratio. RM271 on chromosome 10, an extra Saltol marker, was found associated to root Na+/K+ ratio. This marker showed a distinct allele among O. rufipogon accessions. There were also other novel loci detected on chromosomes 2, 5 and 10 influencing salt tolerance in the tested germplasm. Although Saltol remained as the key locus, the role of other genomic regions cannot be neglected in tailoring seedling stage salt tolerance in rice.  相似文献   

2.
An F2 and an equivalent F3 population derived from a cross between a high salt-tolerance indica variety, Nona Bokra, and a susceptible elite japonica variety, Koshihikari, were produced. We performed QTL mapping for physiological traits related to rice salt-tolerance. Three QTLs for survival days of seedlings (SDSs) under salt stress were detected on chromosomes 1, 6 and 7, respectively, and explained 13.9% to 18.0% of the total phenotypic variance. Based on the correlations between SDSs and other physiological traits, it was considered that damage of leaves was attributed to accumulation of Na+ in the shoot by transport of Na+ from the root to the shoot in external high concentration. We found eight QTLs including three for three traits of the shoots, and five for four traits of the roots at five chromosomal regions, controlled complex physiological traits related to rice salt-tolerance under salt stress. Of these QTLs, the two major QTLs with the very large effect, qSNC-7 for shoot Na+ concentration and qSKC-1 for shoot K+ concentration, explained 48.5% and 40.1% of the total phenotypic variance, respectively. The QTLs detected between the shoots and the roots almost did not share the same map locations, suggesting that the genes controlling the transport of Na+ and K+ between the shoots and the roots may be different.  相似文献   

3.
Ca++ fluxes in resealed synaptic plasma membrane vesicles   总被引:5,自引:0,他引:5  
The effect of the monovalent cations Na+, Li+, and K+ on Ca++ fluxes has been determined in resealed synaptic plasma membrane vesicle preparations from rat brain. Freshly isolated synaptic membranes, as well as synaptic membranes which were frozen (?80°C), rapidly thawed, and passively loaded with K2/succinate and 45CaCl2, rapidly released approximately 60% of the intravesicular Ca++ when exposed to NaCl or to the Ca++ ionophore A 23187. Incubation of these vesicles with LiCl caused a lesser release of Ca++. The EC50 for Na+ activation of Ca++ efflux from the vesicles was approximately 6.6mM. exposure of the Ca++-loaded vesicles to 150 mM KCl produced a very rapid (?1 sec) loss of Ca++ from the vesicles, but the Na+-induced efflux could still be detected above this K+ - sensitive effect. Vesicles pre-loaded with NaCl (150 mM) exhibited rapid 45Ca uptake with an estimated EC50 for Ca++ of 7–10 μM. This Ca++ uptake was blocked by dissipation of the Na+ gradient. These observations are suggestive of the preservation in these purified frozen synaptic membrane preparations of the basic properties of the Na+Ca++ exchange process and of a K+ - sensitive Ca++ flux across the membranes.  相似文献   

4.
Oryza sativa L. F2 population and F2:3 derived from a cross between salt tolerance cv. Tarommahali and salt sensitive cv. Khazar were used in this study. A linkage map based on F2 population was constructed (74 SSR markers on 192 individuals), which covered a total of 1231.50 cM with an average two locus interval of 19.83 cM. Two QTLs related to Na+/K+ ratio were found on chromosome 3 and 6. qDM-3 and qDM-8 (for dry mass of shoot) are major QTLs with very large effects explained 20.90 and 17.72 % of the total phenotypic variance, respectively. Major locus for DM (qDM-3) was bracketed by RM1022 — RM6283 spread over 13.6 cM on chromosome 3. Major part of the variability for standard tolerance ranking (STR) was explained by the qSTR-6 flanked by RM3727 — RM340 on chromosome 6, which exhibited phenotypic variance of 17.25 % and peak likelihood ratio (LR) of 17.51. The length of this QTL is 8.8 cM and identification of any tightly linked markers in this region will serve as a candidate gene for fine-mapping. qSTR-3 overlapped with qNA-3 and qNAK-3. The qSTR-3 may contain a new major gene for salt stress tolerance at seedling stage in rice. Major QTLs identified in this paper, after fine-mapping, could be used for marker assisted selection.  相似文献   

5.
Salinity tolerance in rice is critical at reproductive stage because it ultimately determines grain yield. An F2 mapping population derived from a Sadri/FL478 cross was exposed to saline field conditions (6–8 dS m???1) after the active tillering stage to identify reproductive stage specific QTLs for salinity tolerance. Genetic linkage map was constructed using 123 microsatellite markers on 232 F2 progenies. Totally 35 QTLs for 11 traits under salinity stress were detected with LOD > 3, out of which 28 QTLs that explained from 5.9 to 30.0% phenotypic variation were found to be significant based on permutation test. Three major QTL clusters were found on chromosomes 2 (RM423–RM174), 4 (RM551–RM518) and 6 (RM20224–RM528) for multiple traits under salinity stress. Both parental lines contributed additively for QTLs identified for the yield components. A majority of the QTLs detected in our study are reported for the first time for reproductive stage salinity stress. Fine-mapping of selected putative QTLs will be the next step to facilitate marker-assisted backcrossing and to detect useful genes for salinity tolerance at the reproductive stage in rice.  相似文献   

6.
Phytochemicals such as phenolics and flavonoids in rice grain are antioxidants that are associated with reduced risk of developing chronic diseases including cardiovascular disease, type-2 diabetes and some cancers. Understanding the genetic basis of these traits is necessary for the improvement of nutritional quality by breeding. Association mapping based on linkage disequilibrium has emerged as a powerful strategy for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, genome-wide association mapping using models controlling both population structure (Q) and relative kinship (K) were performed to identify the marker loci/QTLs underlying the naturally occurring variations of grain color and nutritional quality traits in 416 rice germplasm accessions including red and black rice. A total of 41 marker loci were identified for all the traits, and it was confirmed that Ra (i.e., Prp-b for purple pericarp) and Rc (brown pericarp and seed coat) genes were main-effect loci for rice grain color and nutritional quality traits. RM228, RM339, fgr (fragrance gene) and RM316 were important markers associated with most of the traits. Association mapping for the traits of the 361 white or non-pigmented rice accessions (i.e., excluding the red and black rice) revealed a total of 11 markers for four color parameters, and one marker (RM346) for phenolic content. Among them, Wx gene locus was identified for the color parameters of lightness (L*), redness (a*) and hue angle (H o). Our study suggested that the markers identified in this study can feasibly be used to improve nutritional quality or health benefit properties of rice by marker-assisted selection if the co-segregations of the marker–trait associations are validated in segregating populations.  相似文献   

7.
Salinity tolerance in rice is highly desirable to sustain production in areas rendered saline due to various reasons. It is a complex quantitative trait having different components, which can be dissected effectively by genome-wide association study (GWAS). Here, we implemented GWAS to identify loci controlling salinity tolerance in rice. A custom-designed array based on 6,000 single nucleotide polymorphisms (SNPs) in as many stress-responsive genes, distributed at an average physical interval of <100 kb on 12 rice chromosomes, was used to genotype 220 rice accessions using Infinium high-throughput assay. Genetic association was analysed with 12 different traits recorded on these accessions under field conditions at reproductive stage. We identified 20 SNPs (loci) significantly associated with Na+/K+ ratio, and 44 SNPs with other traits observed under stress condition. The loci identified for various salinity indices through GWAS explained 5–18% of the phenotypic variance. The region harbouring Saltol, a major quantitative trait loci (QTLs) on chromosome 1 in rice, which is known to control salinity tolerance at seedling stage, was detected as a major association with Na+/K+ ratio measured at reproductive stage in our study. In addition to Saltol, we also found GWAS peaks representing new QTLs on chromosomes 4, 6 and 7. The current association mapping panel contained mostly indica accessions that can serve as source of novel salt tolerance genes and alleles. The gene-based SNP array used in this study was found cost-effective and efficient in unveiling genomic regions/candidate genes regulating salinity stress tolerance in rice.  相似文献   

8.
The leak fluxes of Na+, K+, Mg++ and Ca++ in mouse thymocytes are increased by Concavaline A (Con A), within minutes after mitogen addition. The intracellular Mg++ and K+ concentrations were decreased and the Na+ and Ca++ contents were increased by Con A in mouse thymocytes and spleen cells.  相似文献   

9.
Summary Electrical membrane properties of solitary spiking cells during newt (Cynops pyrrhogaster) retinal regeneration were studied with whole-cell patch-clamp methods in comparison with those in the normal retina.The membrane currents of normal spiking cells consisted of 5 components: inward Na+ and Ca++ currents and 3 outward K+ currents of tetraethylammonium (TEA)-sensitive, 4-aminopyridine (4-AP)-sensitive, and Ca++-activated varieties. The resting potential was about -40mV. The activation voltage for Na+ and Ca++ currents was about -30 and -17 mV, respectively. The maximum Na+ and Ca++ currents were about 1057 and 179 pA, respectively.In regenerating retinae after 19–20 days of surgery, solitary cells with depigmented cytoplasm showed slowrising action potentials of long duration. The ionic dependence of this activity displayed two voltage-dependent components: slow inward Na+ and TEA-sensitive outward K+ currents. The maximum inward current (about 156 pA) was much smaller than that of the control. There was no indication of an inward Ca++ current.During subsequent regeneration, the inward Ca++ current appeared in most spiking cells, and the magnitude of the inward Na+, Ca++, and outward K+ currents all increased. By 30 days of regeneration, the electrical activities of spiking cells became identical to those in the normal retina. No significant difference in the resting potential and the activation voltage for Na+ and Ca++ currents was found during the regenerating period examined.  相似文献   

10.
The key to plant survival under NaCl salt stress is maintaining a low Na+ level or Na+/K+ ratio in the cells. A population of recombinant inbred lines (RILs, F2∶9) derived from a cross between the salt-tolerant japonica rice variety Jiucaiqing and the salt-sensitive indica variety IR26, was used to determine Na+ and K+ concentrations in the roots and shoots under three different NaCl stress conditions (0, 100 and 120 mM NaCl). A total of nine additive QTLs were identified by QTL Cartographer program using single-environment phenotypic values, whereas eight additive QTLs were identified by QTL IciMapping program. Among these additive QTLs, five were identified by both programs. Epistatic QTLs and QTL-by-environment interactions were detected by QTLNetwork program in the joint analyses of multi-environment phenotypic values, and one additive QTL and nine epistatic QTLs were identified. There were three epistatic QTLs identified for Na+ in roots (RNC), three additive QTLs and two epistatic QTLs identified for Na+ in shoots (SNC), four additive QTLs identified for K+ in roots (RKC), four additive QTLs and three epistatic QTLs identified for K+ in shoots (SKC) and one additive QTL and one epistatic QTL for salt tolerance rating (STR). The phenotypic variation explained by each additive, epistatic QTL and QTL×environment interaction ranged from 8.5 to 18.9%, 0.5 to 5.3% and 0.7 to 7.5%, respectively. By comparing the chromosomal positions of these additive QTLs with those previously identified, five additive QTLs, qSNC9, qSKC1, qSKC9, qRKC4 and qSTR7, might represent novel salt tolerance loci. The identification of salt tolerance in selected RILs showed that a major QTL qSNC11 played a significant role in rice salt tolerance, and could be used to improve salt tolerance of commercial rice varieties with marker-assisted selection (MAS) approach.  相似文献   

11.
Behaviour of different water soluble and exchangeable bases in a brackishwater fish pond soil was studied under four levels of water salinity, in combination with and without organic matter application. The results showed average content of water soluble bases to increase with increase in water salinity. The bases were dominated by Na+ followed by Mg++, Ca++ and K+ in decreasing order. SAR values of water increased with increase in water salinity and decreased slightly on organic matter treatment.Total content of exchangeable bases in soils was fairly high and was dominated by Ca++ and Mg++, followed by Na+ and K+ respectively. Amount of exchangeable Ca++ + Mg++ decreased while that of Na+ increased with increase in water salinity levels. Amount of exchangeable K+ did not show any appreciable change. Application of organic matter tended to increase the exchangeable Ca++ + Mg++ content and decrease the amount of exchangeable Na+ in the soil, while exchangeable K+ content remained practically unaffected due to organic matter treatment.Formed part of a Ph.D. thesis submitted to Bidhan Chandra Agricultural University, India in 1978Formed part of a Ph.D. thesis submitted to Bidhan Chandra Agricultural University, India in 1978  相似文献   

12.
Intracellular Ca++ is known to influence Na+ flux in luminal membranes. Abnormally elevated Ca++ levels in some cells is believed to be the primary pathophysiologic defect in cystic fibrosis (CF). This in turn is thought to alter Na+ transport which accounts for certain clinical manifestations of this disease. Two Na+-dependent intestinal transport mechanisms have been reported to be suppressed or missing in CF. To examine whether alterations in cell Ca++ may account for these findings, studies were performed to examine the influence of Ca++ on Na+-solute co-transport across intestinal luminal membranes. Purified brush border membrane vesicles prepared from rat small bowel were preincubated in either Ca++-free buffer or buffer containing 2.5 mM CaCl2. Ca++ loaded vesicles showed marked inhibition of Na+ co-transport of taurocholic acid, taurochenodeoxycholic acid, glucose and valine when compared to controls. The uptake of Na+ was also significantly reduced by intravesicular Ca++. These data demonstrate that intravesicular Ca++ inhibits Na+-coupled solute transport as well as Na+ influx across intestinal brush border membranes. These data suggest that intracellular Ca++ may suppress Na+-dependent solute absorption in the intestine. Results presented here further support the theory that elevated intracellular Ca++ may account for intestinal malabsorption and other altered transport phenomena reported in CF.  相似文献   

13.
Drought stress is a major limitation to rice (Oryza sativa L.) yields and its stability, especially in rainfed conditions. Developing rice cultivars with inherent capacity to withstand drought stress would improve rainfed rice production. Mapping quantitative trait loci (QTLs) linked to drought resistance traits will help to develop rice cultivars suitable for water-limited environments through molecular marker-assisted selection (MAS) strategy. However, QTL mapping is usually carried out by genotyping large number of progenies, which is labour-intensive, time-consuming and cost-ineffective. Bulk segregant analysis (BSA) serves as an affordable strategy for mapping large effect QTLs by genotyping only the extreme phenotypes instead of the entire mapping population. We have previously mapped a QTL linked to leaf rolling and leaf drying in recombinant inbred (RI) lines derived from two locally adapted indica rice ecotypes viz., IR20/Nootripathu using BSA. Fine mapping the QTL will facilitate its application in MAS. BSA was done by bulking DNA of 10 drought-resistant and 12 drought-sensitive RI lines. Out of 343 rice microsatellites markers genotyped, RM8085 co-segregated among the RI lines constituting the respective bulks. RM8085 was mapped in the middle of the QTL region on chromosome 1 previously identified in these RI lines thus reducing the QTL interval from 7.9 to 3.8 cM. Further, the study showed that the region, RM212–RM302–RM8085–RM3825 on chromosome 1, harbours large effect QTLs for drought-resistance traits across several genetic backgrounds in rice. Thus, the QTL may be useful for drought resistance improvement in rice through MAS and map-based cloning.  相似文献   

14.
Summary When the mulletMugil capito is transferred to medium lacking Ca++ (either Ca++-free seawater or distilled water) the passive permeability of the gill to Na+ and Cl is increased and the activating effect of external K+ on the Na+ and Cl effluxes in hyposaline media is inhibited. The permeability of the gill increases progressively in proportion to the time of Ca++ deprivation; it declines when Ca++ is added again to the external medium. The active mechanisms for ion excretion are not reversible. At external Ca++ concentrations from 0.1 to 10 mM the Na+ permeability is constant but the activation of Na+ efflux by K+ shows a maximum at a Ca++ concentration of about 1 mM. For activation of Cl efflux external bicarbonate must be present, in addition to Ca++, suggesting the existence of a Cl/HCO 3 exchange. The mechanism by which Ca++ controls the passive branchial permeability is thus probably different from that involved in K+ activation of ion excretion. The Ca++ effect on the K+ sensitive ionic excretory mechanisms seems to be related to intracellular Ca++ movements. Thus, on the one hand, substances such as Ruthenium Red and La+++ which both inhibit Ca++ exchange, in media containing Ca++ and HCO 3 also inhibit K+ activation of Na+ and Cl effluxes; on the other hand, the ionophore A 23187, a stimulator of Ca++ exchange, when added to these media, activates the Na+ and Cl effluxes; its maximal effect on the Na+ flux occurs at 2 mM Ca++.Abbreviations ASW-Ca artificial seawater minus calcium - DW deionised water - DWCa deionised water with 1 mM Ca++ added - DWCaHCO 3 DW with calcium plus bicarbonate - DWHCO 3 DW with 1 mM sodium bicarbonate added - FW freshwater (tap water) - FWK freshwater with K+ added - P. D. potential difference - SW seawater The experiments reported in this paper were done with Jean Maetz who tragically died in August 1977. It is the last report about several years of friendly collaboration  相似文献   

15.
Association analysis was applied to a panel of accessions of Assam rice (indica) using 98 SSR markers for dormancy-related traits and cooking quality. Analysis of population structure revealed 10 subgroups in the population. The mean r 2 and D value for all intrachromosomal loci pairs was 0.24 and 0.51, respectively. Linkage disequilibrium between linked markers decreased with distance. Marker-trait associations were investigated using the unified mixed-model approach, considering both population structure (Q) and kinship (K). Genome-wide scanning, detected a total of seven significant marker-trait associations (P < 0.01), with the R 2 values ranging from 12.0 to 18.0%. The significant marker associations were for grain dormancy (RM27 on chromosome 2), α-amylase activity (RM27 and RM234 on chromosomes 2 and 7, respectively), germination (RM27 and RM106 on chromosome 2), amylose (RM282 on chromosome 3) and grain length elongation ratio (RM142 on chromosome 4). The present study revealed the association of marker RM27 with traits like dormancy, α-amylase activity and germination. Simple correlation analysis of these traits revealed that these traits were positively correlated with each other and this marker may be useful for simultaneous improvement of these traits. The study indicates the presence of novel QTLs for a few traits under consideration. The study reveals association of traits like dormancy, α-amylase activity, germination, amylose content, grain length elongation ratio with SSR markers indicating the feasibility of undertaking association analysis in conjunction with germplasm characterization.  相似文献   

16.
The influx of Na+, K+, Rb+, and Cs+ into frog sartorius muscle has been followed. The results show that a maximum rate is found for K+, while Na+ and Cs+ penetrate much more slowly. Similar measurements with Ca++, Ba++, and Ra++ show that Ba++ penetrates at a rate somewhat greater than that of either Ca++ or Ra++. All these divalent cations, however, penetrate at rates much slower than do the alkali cations. The results obtained are discussed with reference to a model that has been developed to explain the different penetration rates for the alkali cations.  相似文献   

17.
Drought is a major limitation for rice production in rainfed ecosystems. Identifying quantitative trait loci (QTLs) linked to drought resistance provides opportunity to breed high yielding rice varieties suitable for drought-prone areas. Although considerable efforts were made in mapping QTLs associated with drought-resistance traits in rice, most of the studies involved indica × japonica crosses and hence, the drought-resistance alleles were contributed mostly by japonica ecotypes. It is desirable to look for genetic variation within indica ecotypes adapted to target environment (TE) as the alleles from japonica ecotype may not be expressed under lowland conditions. A subset of 250 recombinant inbred lines (RILs) of F8 generation derived from two indica rice lines (IR20 and Nootripathu) with contrasting drought-resistance traits were used to map the QTLs for morpho-physiological and plant production traits under drought stress in the field in TE. A genetic linkage map was constructed using 101 polymorphic PCR-based markers distributed over the 12 chromosomes covering a total length of 1,529 cM in 17 linkage groups with an average distance of 15.1 cM. Composite interval mapping analysis identified 22 QTLs, which individually explained 4.8–32.2% of the phenotypic variation. Consistent QTLs for drought-resistance traits were detected using locally adapted indica ecotypes, which may be useful for rainfed rice improvement.  相似文献   

18.
The influence of K+, Na+, Mg++, Li+, a serotonin, acetylcholine and tubocurarine on calcium-ganglioside-interactions was studied by way of equilibrium dialysis using 45Ca as tracer. Experiments were carried out at 22 °C and 4 °C, respectively. The concentrations of the substances were in the range of physiologically relevant conditions. Cations caused a release of Ca++ from calcium-ganglioside-complexes in the sequence of their molar efficiency: Mg++ ≈ Li+ > K+ ≈ Na+. Tubocurarine, serotonin and acetylcholine also affected calcium-ganglioside-interactions. Ca++ was displaced from ganglioside most effectively by tubocurarine, followed by serotonin, whereas acetylcholine competed considerably more weakly.  相似文献   

19.
Abstract

A procedure for purification of the bungarotoxin-binding fraction of sarcolemma from rabbit skeletal muscle is described. Muscle is homogenized in 0.25M sucrose without high salt extraction and membrane fractions separated initially by differential centrifugation procedures. An ultracentrifugation pellet enriched in cell surface and sarcoplasmic reticulum markers is further fractionated on a dextran gradient (density = 1.0 to 1.09). Two fractions are identified as sarcolemma according to high specific activities for lactoperoxidaseiodination, Na+, K+-ATPase and α-bungarotoxin-binding. No Ca++, Mg++-ATPase activity is found in these fractions. A third fraction, the dextran gradient pellet, is enriched in Ca++, Mg++-ATPase activity and lactoperoxidase iodinatable material and characterized by low bungarotoxin binding. This fraction represents a mixture of sarcoplasmic reticulum and transverse tubules with some sarcolemma contamination.  相似文献   

20.
Soil salinity and sodicity are major constraints to rice production in about twenty per cent of the irrigated crop land. Inbuilt genetic tolerance to salinity is the most economical and environmentally sustainable way to solve this problem. A mapping population of 200 F2 plants and their corresponding F3 families, derived from a cross between a salt tolerant indica rice variety CSR27 and a salt sensitive variety MI48 were used to map OTLs for salt tolerance. Seventeen different parameters, including seedling salt injury score, Na+, K+, CI? concentrations and Na+/K+ ratio in leaf and stem tissues at vegetative and reproductive stages were mapped. A framework linkage map was constructed using 79 SSR and EST markers distributed over the twelve rice chromosomes at an average interval of 20.7cM and total map distance of 1634.5 cM. Twenty five major OTLs, each explaining more than ten per cent of the trait phenotypic variance, were mapped on chromosomes 1, 2, 3 and 8. These included one OTL for seedling salt injury score, nine for Na+ concentration, three for K+ concentration and four for Cl? concentration in leaf and stem tissues at vegetative and reproductive stages. The Na+/K+ ratio, an important ion balancing parameter for the salt tolerance, was controlled by eight OTLs explaining phenotypic variance in the range of 42.88–52.63%. Four OTL intervals were robust with major effect and having OTLs for multiple salt tolerance parameters that might be governed by common or tightly linked genes. One major OTL for multiple salt tolerance parameters on chromosome 8 and three major OTLs for CI? ion concentration are novel for this study. The OTLs identified here will serve as a base for fine mapping, gene tagging and marker assisted selection for salt tolerance in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号