首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
We conducted an experiment to assess the predictive capability of a leaf optical meter for determining leaf pigment status of Acer mono Maxim., A. ginnala Maxim., Quercus mongolica Fisch., and Cornus alba displaying a range of visually different leaf colors during senescence. Concentrations of chlorophyll (Chl) a, Chl b, and total Chl [i.e., Chl (a+b)] decreased while the concentration of carotenoids (Car) remained relatively static for all species as leaf development continued from maturity to senescence. C. alba exhibited the lowest average concentration of Chl (a+b), Chl a, and Car, but the highest relative anthocyanin concentration, while Q. mongolica exhibited the highest Chl (a+b), Chl b, and the lowest relative anthocyanin concentration. A. mono exhibited the highest Chl a and Car concentrations. The relationships between leaf pigments and the values measured by the optical meter generally followed an exponential function. The strongest relationships between leaf pigments and optical measurements were for A. mono, A. ginnala, and Q. mongolica (R 2 ranged from 0.64 to 0.95), and the weakest relationships were for C. alba (R 2 ranged from 0.13 to 0.67). Moreover, optical measurements were more strongly related to Chl a than to Chl b or Chl (a+b). Optical measurements were not related to Car or relative anthocyanin concentrations. We predicted that weak relationships between leaf pigments and optical measurements would occur under very low Chl concentrations or under very high anthocyanin concentrations; however, these factors could not explain the weak relationship between Chl and optical measurements observed in C. alba. Overall, our results indicated that an optical meter can accurately estimate leaf pigment concentrations during leaf senescence — a time when pigment concentrations are dynamically changing — but that the accuracy of the estimate varies across species. Future research should investigate how species-specific leaf traits may influence the accuracy of pigment estimates derived from optical meters.  相似文献   

6.
7.
8.
The aim of this study was to examine the effect of abscisic acid (ABA), sucrose, and auxin on grape fruit development and to assess the mechanism of these three factors on the grape fruit ripening process. Different concentrations of ABA, sucrose, and auxin were used to treat the grape fruit, and the ripening-related indices, such as physiological and molecular level parameters, were analyzed. The activity of BG protein activity was analyzed during the fruit development. Sucrose, ABA, and auxin influenced the grape fruit sugar accumulation in different ways, as well as the volatile compounds, anthocyanin content, and fruit firmness. ABA and sucrose induced, but auxin blocked, the ripening-related gene expression levels, such as softening genes PE, PG, PL, and CELL, anthocyanin genes DFR, CHI, F3H, GST, CHS, and UFGT, and aroma genes Ecar, QR, and EGS. ABA, sucrose, and glucose induced the fruit dry weight accumulation, and auxin mainly enhanced fruit dry weight through seed weight accumulation. In the early development of grape, starch was the main energy storage; in the later, it was glucose and fructose. Sucrose metabolism pathway-related gene expression levels were significant for glucose and fructose accumulation. BG protein activity was important in the regulation of grape ABA content levels. ABA plays a core role in the grape fruit development; sucrose functions in fruit development through two pathways: one was ABA dependent, the other ABA independent. Auxin blocked ABA accumulation to regulate the fruit development process.  相似文献   

9.
10.
11.
12.

Key message

MdMYB16 forms homodimers and directly inhibits anthocyanin synthesis via its C-terminal EAR repressor. It weakened the inhibitory effect of MdMYB16 on anthocyanin synthesis when overexpressing MdbHLH33 in callus overexpressing MdMYB16. MdMYB16 could interact with MdbHLH33.

Abstract

Anthocyanins are strong antioxidants that play a key role in the prevention of cardiovascular disease, cancer, and diabetes. The germplasm of Malus sieversii f. neidzwetzkyana is important for the study of anthocyanin metabolism. To date, only limited studies have examined the negative regulatory mechanisms underlying anthocyanin synthesis in apple. Here, we analyzed the relationship between anthocyanin levels and MdMYB16 expression in mature Red Crisp 1–5 apple (M. domestica) fruit, generated an evolutionary tree, and identified an EAR suppression sequence and a bHLH binding motif of the MdMYB16 protein using protein sequence analyses. Overexpression of MdMYB16 or MdMYB16 without bHLH binding sequence (LBSMdMYB16) in red-fleshed callus inhibited MdUFGT and MdANS expression and anthocyanin synthesis. However, overexpression of MdMYB16 without the EAR sequence (LESMdMYB16) in red-fleshed callus had no inhibitory effect on anthocyanin. The yeast one-hybrid assay showed that MdMYB16 and LESMdMYB16 interacted the promoters of MdANS and MdUFGT, respectively. Yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays showed that MdMYB16 formed homodimers and interacted with MdbHLH33, however, the LBSMdMYB16 could not interact with MdbHLH33. We overexpressed MdbHLH33 in callus overexpressing MdMYB16 and found that it weakened the inhibitory effect of MdMYB16 on anthocyanin synthesis. Together, these results suggested that MdMYB16 and MdbHLH33 may be important part of the regulatory network controlling the anthocyanin biosynthetic pathway.
  相似文献   

13.
β-glucosidase (BG) was believed to take part in abscisic acid (ABA) synthesis via hydrolysis of ABA glucose ester to release active ABA during plant growth and development. However, there is no genetic evidence available to indicate the role of genes during fruit ripening. Here, the expression patterns of three genes (VvBG1, VvBG2, and VvBG3) encoding β-glucosidase were analyzed during grape fruit development, and it was found that β-glucosidase activity increased in grape fruit in response to various stresses. Furthermore, to verify the function of β-glucosidase during fruit ripening, heterogeneous expression of the VvBG1 gene in strawberry fruit was validated, and the results showed that the VvBG1 over-expression increased β-glucosidase and promoted the fruit ripening process in strawberry. In addition, we found that ABA contents increased in the VvBG1 over-expression of strawberry fruit, which induced fruit anthocyanin, soluble solid accumulation, and fruit softening. Moreover, genes related to coloring (CHS, CHI, F3H, and UFGT), softening (PG1, PL1, and EXP1), and aroma (SAAT, and QR) were up-regulated. This work will elucidate the specific roles of VvBGs in the synthesis of ABA and provide some new insights into the ABA-controlled grape ripening mechanism.  相似文献   

14.
15.

Main conclusion

This study confirmed pigment profiles in different colour groups, isolated key anthocyanin biosynthetic genes and established a basis to examine the regulation of colour patterning in flowers of Cymbidium orchid. Cymbidium orchid (Cymbidium hybrida) has a range of flower colours, often classified into four colour groups; pink, white, yellow and green. In this study, the biochemical and molecular basis for the different colour types was investigated, and genes involved in flavonoid/anthocyanin synthesis were identified and characterised. Pigment analysis across selected cultivars confirmed cyanidin 3-O-rutinoside and peonidin 3-O-rutinoside as the major anthocyanins detected; the flavonols quercetin and kaempferol rutinoside and robinoside were also present in petal tissue. β-carotene was the major carotenoid in the yellow cultivars, whilst pheophytins were the major chlorophyll pigments in the green cultivars. Anthocyanin pigments were important across all eight cultivars because anthocyanin accumulated in the flower labellum, even if not in the other petals/sepals. Genes encoding the flavonoid biosynthetic pathway enzymes chalcone synthase, flavonol synthase, flavonoid 3′ hydroxylase (F3′H), dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) were isolated from petal tissue of a Cymbidium cultivar. Expression of these flavonoid genes was monitored across flower bud development in each cultivar, confirming that DFR and ANS were only expressed in tissues where anthocyanin accumulated. Phylogenetic analysis suggested a cytochrome P450 sequence as that of the Cymbidium F3′H, consistent with the accumulation of di-hydroxylated anthocyanins and flavonols in flower tissue. A separate polyketide synthase, identified as a bibenzyl synthase, was isolated from petal tissue but was not associated with pigment accumulation. Our analyses show the diversity in flower colour of Cymbidium orchid derives not from different individual pigments but from subtle variations in concentration and pattern of pigment accumulation.
  相似文献   

16.
17.
Genetic analysis of a diverse set of 42 traits for flower (5), phenology (9), fruit quality (19), leaf (8) and disease resistance (1) was carried out in two interspecific almond × peach populations, an F2 (T × E) and a BC1 (T1E), from the cross between ‘Texas’ almond and ‘Earlygold’ peach. Traits related to flower, phenology, fruit quality, leaf morphology and resistance to powdery mildew were phenotyped over 3 years in two locations and studied for co-segregation with a large set of SNP and SSR markers. Three maps were used, one for the T × E and two for the T1E (T1E and E) population. Nine major genes were identified and mapped: anther color (Ag/ag and Ag2/ag2), flower color (Fc2/fc2), maturity date (MD/md), almond fruit type (almond vs. peach; Alf/alf), juiciness (Jui/jui), blood flesh (DBF2/dbf2), powdery mildew resistance (Vr3) and flower type (showy/non-showy; Sh/sh). These genes were often located in genome positions different from those for major genes for similar traits mapped before. Two of them explain fundamental aspects that define the fruit of peach with respect to that of almond: Alf and Jui, for its thick and juicy mesocarp, respectively. The genetics of quantitative traits was studied, and 32 QTLs were detected, with consistent behavior over the years. New alleles identified from almond for important traits such as red skin color, blood flesh, fruit weight and powdery mildew resistance may prove useful for the introduction of new variability into the peach gene pool used in commercial breeding programs.  相似文献   

18.
The biosynthesis of flavonoids such as anthocyanin and stilbenes has attracted increasing attention because of their potential health benefits. Anthocyanins and stilbenes share common phenylpropanoid precursor pathways. We previously reported that the overexpression of sweetpotato IbMYB1a induced anthocyanin pigmentation in transgenic tobacco (Nicotiana tabacum) plants. In the present study, transgenic tobacco (Nicotiana tabacum SR1) plants (STS-OX and ROST-OX) expressing the RpSTS gene encoding stilbene synthase from rhubarb (Rheum palmatum L. cv. Jangyeop) and the RpSTS and VrROMT genes encoding resveratrol O-methyltransferase from frost grape (Vitis riparia) were generated under the control of 35S promoter. Phenotypic alterations in floral organs, such as a reduction in floral pigments and male sterility, were observed in STS-OX transgenic tobacco plants. However, we failed to obtain STS-OX and ROST-OX plants with high levels of resveratrol compounds. Therefore, to improve the production of resveratrol derivatives in plants, we cross-pollinated flowers of STS-OX or ROST-OX and IbMYB1a-OX transgenic lines (SM and RSM). Phenotypic changes in vegetative and reproductive development of SM and RSM plants were observed. Furthermore, by HPLC and LC-MS analyses, we found enhanced production of resveratrol derivatives such as piceid, piceid methyl ether, resveratrol methyl ether O-hexoside, and 5-methyl resveratrol-3,4′-O-β-d-diglucopyranoside in SM and RSM cross-pollinated lines. Here, total contents of trans- and cis-piceids ranged from approximately 104–240 µg/g fresh weight in SM (F2). Collectively, we suggest that coexpression of RpSTS and IbMYB1a via cross-pollination can induce enhanced production of resveratrol compounds in plants by increasing metabolic flux into stilbenoid biosynthesis.  相似文献   

19.
Phalaenopsis species are among the most popular potted flowers for their fascinating flowers. When their whole-genome sequencing was completed, they have become useful for studying the molecular mechanism of anthocyanin biosynthesis. Here, we identified 49 candidate anthocyanin synthetic genes in the Phalaenopsis genome. Our results showed that duplication events might contribute to the expansion of some gene families, such as the genes encoding chalcone synthase (PeCHS), flavonoid 3′-hydroxylase (PeF3′H), and myeloblastosis (PeMYB). To elucidate their functions in anthocyanin biosynthesis, we conducted a global expression analysis. We found that anthocyanin synthesis occurred during the very early flower development stage and that the flavanone 3-hydroxylase (F3H), F3′H, and dihydroflavonol 4-reductase (DFR) genes played key roles in this process. Over-expression of Phalaenopsis flavonoid 3′,5′-hydroxylase (F3′5′H) in petunia showed that it had no function in anthocyanin production. Furthermore, global analysis of sequences and expression patterns show that the regulatory genes are relatively conserved and might be important in regulating anthocyanin synthesis through different combined expression patterns. To determine the functions of MYB2, 11, and 12, we over-expressed them in petunia and performed yeast two-hybrid analysis with anthocyanin (AN)1 and AN11. The MYB2 protein had strong activity in regulating anthocyanin biosynthesis and induced significant pigment accumulation in transgenic plant petals, whereas MYB11 and MYB12 had lower activities. Our work provided important improvement in the understanding of anthocyanin biosynthesis and established a foundation for floral colour breeding in Phalaenopsis through genetic engineering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号