首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiotensin III is formed from des-Asp1 -angiotensin I by angiotensin-converting enzyme. The Km (11 muM) of the reaction is one-third of that for the conversion of angiotensin I into angiotensin II. As suggested by the Km values, bradykinin, peptide BPP9a and angiotensins II and III are better inhibitors of the formation of angiotensin II than of the formation of angiotensin III.  相似文献   

2.
A reduced incidence of nonmelanoma skin cancer among users of angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARb) has been reported. A similar effect is suggested for cutaneous melanoma. We aimed to investigate the possible association between use of ACEi and ARb and the risk of cutaneous melanoma. A general population-based case control study with the PHARMO database, containing drug-dispensing records from community pharmacies and the national pathology database (PALGA) was conducted. Cases were patients with a primary cutaneous melanoma between January 1st 1991 and December 14th 2004, aged ≥18 years and having ≥3 years of follow-up prior to diagnosis. Finally, 1272 cases and 6520 matched controls were included. Multivariable conditional logistic regression showed no statistically significant associations between the incidence of melanoma and the use of ACEi (adjusted OR = 1.0, 95%CI: 0.8–1.3) or ARb (adjusted OR = 1.0, 95%CI: 0.7–1.5). Thus, in this study, the use of ACEi or ARb does not seem to protect against the development of cutaneous melanoma. However, we cannot exclude an association between ACEi and ARb exposure and an increased or decreased incidence of cutaneous melanoma.  相似文献   

3.
Recent reports of the presence of components of the renin-angiotensin system (RAS) in the mammalian ovary suggest that angiotensin II (Ang II) may be elaborated by this structure. In this study, angiotensin-converting enzyme (ACE), a key enzyme in the synthesis of Ang II, was identified enzymatically and localized to the germinal epithelium surrounding corpora lutea, granulosa cells of some--but not all--follicles, and blood vessels of the rat ovary using a potent and specific radiolabeled ACE inhibitor, 125I-351A. Follicles that bound 125I-351A also contained Ang II-receptor binding sites. Co-localization of RAS components to the follicular granulosa cells and the ability of Ang II to promote estrogen formation suggest that the ovarian RAS may promote follicular development and assertion of dominance.  相似文献   

4.
5.
The role of angiotensin IV (AngIV) in the regulation of angiotensin-converting enzyme (ACE) was studied in vitro. This study demonstrates that this active fragment appeared as a novel endogenous ACE inhibitor. Inhibitory kinetic studies revealed that AngIV acts as a purely competitive inhibitor with a K(i) value of 35 microM. AngIV was found to be quite resistant to ACE hydrolysis opposite to hemorphins which are both ACE inhibitors and substrates. In order to confirm a putative role of AngIV and hemorphins in the Renin-Angiotensin system (RAS) regulation, we studied their influence on AngI conversion. We noticed that 16.7 microM of both peptides decreased more than 50% of AngI conversion to AngII in vitro. The capacity of hemorphins, particularly LVVH-7, and AngIV to inhibit ACE activity here suggests a synergistic relation between these two peptides and the regulation of RAS.  相似文献   

6.
We have previously shown that acute intravenous injection of the angiotensin-converting enzyme (ACE) inhibitor enalapril in diabetic rats evokes a baroreflex-independent sympathoexcitatory effect that does not occur with angiotensin receptor blockade alone. As ACE inhibition also blocks bradykinin degradation, we sought to determine whether bradykinin mediated this effect. Experiments were performed in conscious male Sprague-Dawley rats, chronically instrumented to measure mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), 2 wk after streptozotocin (55 mg/kg iv, diabetic, n = 11) or citrate vehicle (normal, n = 10). Enalapril (2.5 mg/kg iv) decreased MAP in normal rats (-15 +/- 3 mmHg), while a smaller response (-4 +/- 1 mmHg) occurred in diabetic rats. Despite these different depressor responses to enalapril, HR (+44 +/- 8 vs. +26 +/- 7 bpm) and RSNA (+90 +/- 21 vs +71 +/- 8% baseline) increased similarly between the groups (P > or = 0.22 for both). Pretreatment with the bradykinin B2 receptor antagonist Hoe 140 (10 microg/kg bolus followed by 0.8.mug(-1)kg.min(-1) infusion) attenuated the decrease in MAP observed with enalapril in normal rats but had no effect in diabetic rats. Moreover, the normal group had smaller HR and RSNA responses (HR: +13 +/- 8 bpm; RSNA: +32 +/- 13% baseline) that were abolished in the diabetic group (HR: -4 +/- 5 bpm; RSNA: -5 +/- 9% baseline; P < 0.05 vs. preenalapril values). Additionally, bradykinin (20 microg/kg iv) evoked a larger, more prolonged sympathoexcitatory effect in diabetic compared with normal rats that was further potentiated after treatment with enalapril. We conclude that enhanced bradykinin signaling mediates the baroreflex-independent sympathoexcitatory effect of enalapril in diabetic rats.  相似文献   

7.
Abnormal lipid metabolism contributes to the renal lipid accumulation, which is associated with diabetic kidney disease, but its precise mechanism remains unclear. The growing evidence demonstrates that thioredoxin-interacting protein is involved in regulating cellular glucose and lipid metabolism. Here, we investigated the effects of thioredoxin-interacting protein on lipid accumulation in diabetic kidney disease. In contrast to the diabetic wild-type mice, the physical and biochemical parameters were improved in the diabetic thioredoxin-interacting protein knockout mice. The increased renal lipid accumulation, expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1, and phosphorylated Akt and mTOR associated with diabetes in wild-type mice was attenuated in diabetic thioredoxin-interacting protein knockout mice. Furthermore, thioredoxin-interacting protein knockout significantly increased the expression of peroxisome proliferator-activated receptor-α, acyl-coenzyme A oxidase 1 and carnitine palmitoyltransferaser 1 in diabetic kidneys. In vitro experiments, using HK-2 cells, revealed that knockdown of thioredoxin-interacting protein inhibited high glucose-mediated lipid accumulation, expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1, as well as activation of Akt and mTOR. Moreover, knockdown of thioredoxin-interacting protein reversed high glucose-induced reduction of peroxisome proliferator-activated receptor-α, acyl-coenzyme A oxidase 1 and carnitine palmitoyltransferaser 1 expression in HK-2 cells. Importantly, blockade of Akt/mTOR signaling pathway with LY294002, a specific PI3K inhibitor, replicated these effects of thioredoxin-interacting protein silencing. Taken together, these data suggest that thioredoxin-interacting protein deficiency alleviates diabetic renal lipid accumulation through regulation of Akt/mTOR pathway, thioredoxin-interacting protein may be a potential therapeutic target for diabetic kidney disease.  相似文献   

8.
Angiotensin converting enzyme [EC 3.4.15.1] was solubilized from the membrane fraction of human kidney cortex using trypsin and purified to homogeneity by DEAE-cellulose, hydroxylapatite and DEAE-Sephadex A-50 column chromatographies, preparative isoelectric focusing, and Sephadex G-200 gel filtration. The final recovery of the enzyme was 13.9%. The molecular weight of the enzyme was estimated to be 199,000 by a sedimentation equilibrium method. A value of 170,000 was obtained for the reduced and denatured enzyme by dodecylsulfate-polyacrylamide gel electrophoresis. The enzyme was a glycoprotein consisting of a single polypeptide chain with an isoelectric point of 5.10. Neutral sugar accounted for 13% per weight of the enzyme. The purified enzyme had a specific activity of 96.9 mumol/min/mg protein for hippurylhistidylleucine. The Km value, Kcat value and hydrolytic coefficient (Kcat/Km) of the enzyme for hippurylhistidylleucine were 2.0 mM, 545 s-1 and 273 mM-1 . s-1, respectively. Rabbit antibody against the human kidney converting enzyme inhibited the activities of the enzymes from human lung and serum as equally as that from human kidney, but not those from sheep, dog, or rat sera. The human kidney and lung converting enzymes were immunologically identical on double immunodiffusion analysis.  相似文献   

9.
10.
An insertion/deletion (I/D) polymorphism in the gene for angiotensin-converting enzyme (ACE) is associated with myocardial infarction and other cardiac pathology. There is evidence for a role of the renin-angiotensin system in cell growth and in the repair of damaged arterial walls, so the ACE gene is postulated to be a candidate gene affecting the important clinical problem of coronary artery disease (CAD). In view of the clinical importance of the ACE as a major marker of cardiovascular diseases, we investigated the I/D polymorphism of the ACE gene in Turkish CAD patients in comparison with control subjects to evaluate a possible association between CAD and the gene encoding ACE. Polymerase chain reaction, restriction fragment length polymorphism, and agarose gel electrophoresis techniques were used to determine the ACE genotype in 58 subjects. The frequencies of ACE D and ACE I allele among the patients with CAD were 62.26% and 37.73 % and in the control subjects were 49.3% and 50.76%, respectively. The greater frequency of deletion allele (D) was in the CAD group than in the control subjects was significant (P < 0.01).  相似文献   

11.
Novel peptide inhibitors of angiotensin-converting enzyme 2   总被引:23,自引:0,他引:23  
Angiotensin-converting enzyme 2 (ACE2), a recently identified human homolog of ACE, is a novel metallocarboxypeptidase with specificity, tissue distribution, and function distinct from those of ACE. ACE2 may play a unique role in the renin-angiotensin system and mediate cardiovascular and renal function. Here we report the discovery of ACE2 peptide inhibitors through selection of constrained peptide libraries displayed on phage. Six constrained peptide libraries were constructed and selected against FLAG-tagged ACE2 target. ACE2 peptide binders were identified and classified into five groups, based on their effects on ACE2 activity. Peptides from the first three classes exhibited none, weak, or moderate inhibition on ACE2. Peptides from the fourth class exhibited strong inhibition, with equilibrium inhibition constants (K(i) values) from 0.38 to 1.7 microm. Peptides from the fifth class exhibited very strong inhibition, with K(i) values < 0.14 microm. The most potent inhibitor, DX600, had a K(i) of 2.8 nm. Steady-state enzyme kinetic analysis showed that these potent ACE2 inhibitors exhibited a mixed competitive and non-competitive type of inhibition. They were not hydrolyzed by ACE2. Furthermore, they did not inhibit ACE activity, and thus were specific to ACE2. Finally, they also inhibited ACE2 activity toward its natural substrate angiotensin I, suggesting that they would be functional in vivo. As novel ACE2-specific peptide inhibitors, they should be useful in elucidation of ACE2 in vivo function, thus contributing to our better understanding of the biology of cardiovascular regulation. Our results also demonstrate that library selection by phage display technology can be a rapid and efficient way to discover potent and specific protease inhibitors.  相似文献   

12.
M R Ehlers  R E Kirsch 《Biochemistry》1988,27(15):5538-5544
The catalysis of the hydrolysis of angiotensin I, an important natural substrate, by human angiotensin-converting enzyme (ACE) was examined in detail as a function of chloride and hydrogen ion concentration. Chloride was found to be a nonessential activator over the pH range 5.0-10.0, with the chloride dependence increasing with increasing pH: the velocity enhancement at optimal [Cl-] increased from 1.6- to 42-fold; the chloride optimum and Ka' increased from 20 to 520 mM and from 0.22 to 120 mM, respectively, and activity in the absence of chloride decreased from 60.9 to 2.4% (relative to maximal activation). Kinetic analyses at pH 6.0, 7.5, and 9.0 confirmed the nonessential activator mechanism. At all pH values tested chloride was found to be inhibitory (relative to maximal activation) at supraoptimal chloride levels. Depending on the [Cl-] range, both apparent uncompetitive and competitive modes were demonstrated. From pH 6.0 to 9.0 Kis varied between 110 and 1140 mM (apparent). In all cases Ki' much greater than Ka'. We suggest that at high [Cl-] chloride binds to low-affinity inhibitory sites on the free enzyme and on the ES and EP complexes. The pH-rate profile demonstrated a chloride-dependent alkaline shift, with the pH optimum increasing from 7.1 at zero chloride to 7.6 at 400 mM NaCl. At [S] much greater than Km a plot of log nu vs pH revealed pKs of 5.9 and 9.4 in the ES complex in the absence of chloride, while at maximally activating [Cl-] only one ionization at pK = 6.3 was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
AimsAngiotensin-converting enzyme (ACE) inhibitors are used in diabetic kidney disease to reduce systemic/intra-glomerular pressure. The objective of this study was to investigate whether reducing blood pressure (BP) could modulate renal glucose transporter expression, and urinary markers of diabetic nephropathy in diabetic hypertensive rats treated with ramipril or amlodipine.Main methodsDiabetes was induced in spontaneously-hypertensive rats (~ 210 g) by streptozotocin (50 mg/kg). Thirty days later, animals received ramipril 15 μg/kg/day (R, n = 10), or amlodipine 10 mg/kg/day (A, n = 8,) or water (C, n = 10) by gavage. After 30-day treatment, body weight, glycaemia, urinary albumin and TGF-β1 (enzyme-linked immunosorbent assay) and BP (tail-cuff pressure method) were evaluated. Kidneys were removed for evaluation of renal cortex glucose transporters (Western blotting) and renal tissue ACE activity (fluorometric assay).Key findingsAfter treatments, body weight (p = 0.77) and glycaemia (p = 0.22) were similar among the groups. Systolic BP was similarly reduced (p < 0.001) in A and R vs. C (172.4 ± 3.2; 186.7 ± 3.7 and 202.2 ± 4.3 mm Hg; respectively). ACE activity (C: 0.903 ± 0.086; A: 0.654 ± 0.025, and R: 0.389 ± 0.057 mU/mg), albuminuria (C: 264.8 ± 15.4; A: 140.8 ± 13.5 and R: 102.8 ± 6.7 mg/24 h), and renal cortex GLUT1 content (C: 46.81 ± 4.54; A: 40.30 ± 5.39 and R: 26.89 ± 0.79 AU) decreased only in R (p < 0.001, p < 0.05 and p < 0.001; respectively).SignificanceWe concluded that the blockade of the renin–angiotensin system with ramipril reduced early markers of diabetic nephropathy, a phenomenon that cannot be specifically related to decreased BP levels.  相似文献   

14.
15.
Angiotensin I analogues with a phosphonic acid group replacing the C-terminal carboxyl group were shown to be competitive inhibitors of angiotensin-converting enzyme. This new class of inhibitors was used to study the binding requirements of the angiotensin I-like ligands to the enzyme's active site. These studies indicate that angiotensin-converting enzyme recognizes at least five amino acid residues at the C-terminus of the peptide. The effect of pH on the binding of the most potent inhibitor peptide was compared to Captopril. The two inhibitors showed similar Ki-pH profiles despite their structural differences. Chloride enhanced the binding of the peptide inhibitor at both pH 9.0 and pH 6.5. At pH 9.0 the inhibitor peptide and the anion bind randomly to the enzyme, while at pH 6.5 the mechanism is ordered. In the latter case, the anion binds first to the enzyme.  相似文献   

16.
Oxidative stress and P53 contribute to the pathogenesis of diabetic kidney disease (DKD). Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular antioxidant defense system, is negatively regulated by P53 and prevents DKD. Recent findings revealed an important role of mouse double minute 2 (MDM2) in protection against DKD. However, the mechanism remained unclear. We hypothesized that MDM2 enhances NRF2 antioxidant signaling in DKD given that MDM2 is a key negative regulator of P53. The MDM2 inhibitor nutlin3a elevated renal P53, inhibited NRF2 signaling and induced oxidative stress, inflammation, fibrosis, DKD-like renal pathology and albuminuria in the wild-type (WT) non-diabetic mice. These effects exhibited more prominently in nutlin3a-treated WT diabetic mice. Interestingly, nutlin3a failed to induce greater renal injuries in the Nrf2 knockout (KO) mice under both the diabetic and non-diabetic conditions, indicating that NRF2 predominantly mediates MDM2's action. On the contrary, P53 inhibition by pifithrin-α activated renal NRF2 signaling and the expression of Mdm2, and attenuated DKD in the WT diabetic mice, but not in the Nrf2 KO diabetic mice. In high glucose-treated mouse mesangial cells, P53 gene silencing completely abolished nutlin3a's inhibitory effect on NRF2 signaling. The present study demonstrates for the first time that MDM2 controls renal NRF2 antioxidant activity in DKD via inhibition of P53, providing MDM2 activation and P53 inhibition as novel strategies in the management of DKD.  相似文献   

17.
The authors describe a structure-based strategy to identify therapeutically beneficial off-target effects by screening a chemical library of Food and Drug Administration (FDA)-approved small-molecule drugs matching pharmacophores defined for specific target proteins. They applied this strategy to angiotensin-converting enzyme 2 (ACE2), an enzyme that generates vasodilatory peptides and promotes protection from hypertension-associated cardiovascular disease. The conformation-based structural selection method by molecular docking using DOCK allowed them to identify a series of FDA-approved drugs that enhance catalytic efficiency of ACE2 in vitro. These data demonstrate that libraries of approved drugs can be rapidly screened to identify potential side effects due to interactions with specific proteins other than the intended targets.  相似文献   

18.
Inhibition of bovine lung and testicular angiotensin-converting enzyme (ACE) by some well-known ACE inhibitors (lisinopril, captopril, enalapril), new substances (Nalpha-carboxyalkyl dipeptides PP-09, PP-35, and PP-36), and phosphoramidon was investigated using Cbz-Phe-His-Leu and FA-Phe-Phe-Arg (C-terminal analogs of angiotensin I and bradykinin, respectively) as the substrates. The somatic (two domains) and testicular (single domain) isoenzymes demonstrated different kinetic parameters for hydrolysis of these substrates. All of the inhibitors were competitive inhibitors of both ACE isoforms, and the Ki values were substrate-independent. The relative potencies of the inhibitors for both enzymes were: lisinopril > captopril > PP-09 > enalapril > PP-36 > PP-35 > phosphoramidon. The inhibition efficiency of PP-09 was comparable with those of the well-known ACE inhibitors. Captopril was more effectively bound to the somatic ACE (Ki = 0.5 nM) than to the testicular isoform (Ki = 6.5 nM).  相似文献   

19.
The activity of angiotensin converting enzyme(ACE) in crude extracts of the rat renal cortex was increased when the oxidizing agent diamide was added to the extract. The maximal activity was obtained at concentrations over 1 mM, and the value was twice or more the activity in the absence of the pretreatment. The activity of ACE was also increased by the diamide-pretreatment of the isolated membrane fraction of the renal cortex, thereby indicating that the increase in activity was not due to oxidation of endogenous glutathione (GSH) that may lower the ACE activity, but rather that ACE itself was oxidized. When O2 was included in the extract for 2 h, the ACE activity also increased to about twice the original activity. Lineweaver-Burk plots analysis demonstrated that, after oxidation with diamide and O2, the Vmax was increased but the Km remained unchanged. We conclude that the action of ACE in the kidney functions may differ in relation to oxidation of the tissue.  相似文献   

20.

Introduction

Dysregulation of acylcarnitines (AcylCNs) and amino acids metabolism have implicated in abnormality of fatty acid oxidation in type 2 diabetes (T2D). However, it is not well known whether altered plasma AcylCN, and amino acid profiles are associated with albuminuria or diabetic nephropathy (DN) in T2D.

Objective

The aim of this study was to elucidate alterations in plasma levels of AcylCNs and amino acids with respect to the T2D patients with various stages of albuminuria.

Methods

We recruited 52 healthy subjects as control, and 156 T2D patients which were divided into 52 normoalbuminuria, 52 microalbuminuria, and 52 macroalbuminuria. Plasma 37 AcylCNs and 12 amino acids were analyzed by tandem mass spectrometry.

Results

We found that T2D with normoalbuminuria and microalbuminuria had lower shot-, medium-, and long-chain AcylCNs, whereas T2D with macroalbuminuria had higher short-and medium-chain AcylCNs and lower long-chain AcylCNs than healthy subjects. Moreover, estimated glomerular filtration rate (eGFR) was a negative, independent and significant predictor of albumin to creatinine ratio (ACR) levels (β = ?0.376, P < 0.001), whereas plasma Low-density lipoprotein cholesterol (LDL-C) was significantly and positively associated with ACR levels (β = 0.169, P = 0.049). Furthermore, multivariate ordinal logistic regression analysis revealed that isobutyrylcarnitine (C4) was a positive, independent, and significant predictor of ACR levels with higher odds of having T2D patients with progression normoalbuminuria to microalbuminuria [OR = 9.93, 95 % CI (3.51–28.05), P < 0.001].

Conclusions

The findings suggest that plasma C4 may serve as a potential biomarker for the early stages of DN.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号