首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of apple germplasm is important for conservation management and breeding strategies. A set of 448 Malus domestica accessions, primarily of local Danish origin, were genotyped using 15 microsatellite markers. Ploidy levels were determined by flow cytometry. Special emphasis was given to pedigree reconstruction, cultivar fingerprinting and genetic clustering. A reference set of cultivars, mostly from other European countries, together with a private nursery collection and a small set of Malus sieversii, Malus sylvestris and small-fruited, ornamental Malus cultivars, was also included. The microsatellite markers amplified 17–30 alleles per loci with an average degree of heterozygosity at 0.78. We identified 104 (23%) duplicate genotypes including colour sports. We could infer first-degree relationships for many cultivars with previously unknown parentages. STRUCTURE analysis provided no evidence for a genetic structure but allowed us to present a putative genetic assembly that was consistent with both PCA analysis and parental affiliation. The Danish cultivar collection contains 10% duplicate genotypes including colour sports and 22% triploids. Many unique accessions and considerable genetic diversity make the collection a valuable resource within the European apple germplasm. The findings presented shed new light on the origin of Danish apple cultivars. The fingerprints can be used for cultivar identification and future management of apple genetic resources. In addition, future genome-wide association studies and breeding programmes may benefit from the findings concerning genetic clustering and diversity of cultivars.  相似文献   

2.
Polyploid Prunus spinosa (2n = 4×) and P. insititia (2n = 6×) represent enormous genetic potential in Central Europe, which can be exploited in breeding programmes. In Hungary, 17 cultivar candidates were selected from wild-growing populations including 10 P. spinosa, 4 P. insititia and three P. spinosa × P. domestica hybrids (2n = 5×). Their taxonomic classification was based on their phenotypic characteristics. Six simple sequence repeats (SSRs) and the multiallelic S-locus genotyping were used to characterize genetic variability and reliable identification of the tested accessions. A total of 98 SSR alleles were identified, which presents 19.5 average allele number per locus, and each of the 17 genotypes could be discriminated based on unique SSR fingerprints. A total of 23 S-RNase alleles were identified. The complete and partial S-genotype was determined for 8 and 9 accessions, respectively. The identification of a cross-incompatible pair of cultivar candidates and several semi-compatible combinations help maximize fruit set in commercial orchards. Our results indicate that the S-allele pools of wild-growing P. spinosa and P. insititia are overlapping in Hungary. A phylogenetic and principal component analysis confirmed the high level of diversity and genetic differentiation present within the analysed genotypes and helped clarify doubtful taxonomic identities. Our data confirm that S-locus genotyping is suitable for diversity studies in polyploid Prunus species. The analysed accessions represent huge genetic potential that can be exploited in commercial cultivation.  相似文献   

3.

Background

Vernalization genes VRN1 play a major role in the transition from vegetative to reproductive growth in wheat. In di-, tetra- and hexaploid wheats the presence of a dominant allele of at least one VRN1 gene homologue (Vrn-A1,?Vrn-B1, Vrn-G1 or Vrn-D1) determines the spring growth habit. Allelic variation between the Vrn-1 and vrn-1 alleles relies on mutations in the promoter region or the first intron. The origin and variability of the dominant VRN1 alleles, determining the spring growth habit in tetraploid wheat species have been poorly studied.

Results

Here we analyzed the growth habit of 228 tetraploid wheat species accessions and 25 % of them were spring type. We analyzed the promoter and first intron regions of VRN1 genes in 57 spring accessions of tetraploid wheats. The spring growth habit of most studied spring accessions was determined by previously identified dominant alleles of VRN1 genes. Genetic experiments proof the dominant inheritance of Vrn-A1d allele which was widely distributed across the accessions of Triticum dicoccoides. Two novel alleles were discovered and designated as Vrn-A1b.7 and Vrn-B1dic. Vrn-A1b.7 had deletions of 20 bp located 137 bp upstream of the start codon and mutations within the VRN-box when compared to the recessive allele of vrn-A1. So far the Vrn-A1d allele was identified only in spring accessions of the T. dicoccoides and T. turgidum species. Vrn-B1dic was identified in T. dicoccoides IG46225 and had 11 % sequence dissimilarity in comparison to the promoter of vrn-B1. The presence of Vrn-A1b.7 and Vrn-B1dic alleles is a predicted cause of the spring growth habit of studied accessions of tetraploid species. Three spring accessions T. aethiopicum K-19059, T. turanicum K-31693 and T. turgidum cv. Blancal possess recessive alleles of both VRN-A1 and VRN-B1 genes. Further investigations are required to determine the source of spring growth habit of these accessions.

Conclusions

New allelic variants of the VRN-A1 and VRN-B1 genes were identified in spring accessions of tetraploid wheats. The origin and evolution of VRN-A1 alleles in di- and tetraploid wheat species was discussed.
  相似文献   

4.
Flowering time of wheat cultivars contributes greatly to the adaptability to environmental conditions and it is largely controlled by vernalization genes. In this study, 262 Chinese mini-core wheat cultivars were used to identify the allelic variation at VRN-B1 locus. A novel dominant allele Vrn-B1d was found in Chinese spring wheat landrace cultivar Hongchunmai. This allele contained several genetic divergence within the first intron comparing to the recessive allele vrn-B1, including one large 6850-bp deletion (670–7519 bp), one small 187-bp deletion (7851–8037 bp), one unique SNP (T to C, 7845 bp), and one 4-bp mutation (TTTT to ACAA, 7847–7850 bp). Meanwhile, it was also different from the three known dominant alleles at VRN-B1 locus. Two pairs of primers were designed to identify the novel allele Vrn-B1d and other four known alleles of VRN-B1. A multiplex PCR was established to discriminate all five alleles simultaneously. The greenhouse experiment with high temperature (non-vernalizing condition) and long light showed that F2 plants containing Vrn-B1d allele headed significantly earlier than those with recessive vrn-B1 allele, suggesting that Vrn-B1d is a dominant allele conferring the spring growth habit. This study provides a useful germplasm and molecular markers for wheat breeding.  相似文献   

5.

Background

Triticum araraticum and Triticum timopheevii are tetraploid species of the Timopheevi group. The former includes both winter and spring forms with a predominance of winter forms, whereas T. timopheevii is considered a spring species. In order to clarify the origin of the spring growth habit in T. timopheevii, allelic variability of the VRN-1 gene was investigated in a set of accessions of both tetraploid species, together with the diploid species Ae. speltoides, presumed donor of the G genome to these tetraploids.

Results

The promoter region of the VRN-A1 locus in all studied tetraploid accessions of both T. araraticum and T. timopheevii represents the previously described allele VRN-A1f with a 50 bp deletion near the start codon. Three additional alleles were identified namely, VRN-A1f-del, VRN-A1f-ins and VRN-A1f-del/ins, which contained large mutations in the first (1st) intron of VRN-A1. The first allele, carrying a deletion of 2.7 kb in a central part of intron 1, occurred in a few accessions of T. araraticum and no accessions of T. timopheevii. The VRN-A1f-ins allele, containing the insertion of a 0.4 kb MITE element about 0.4 kb upstream from the start of intron 1, and allele VRN-A1f-del/ins having this insertion coupled with a deletion of 2.7 kb are characteristic only for T. timopheevii. Allelic variation at the VRN-G1 locus includes the previously described allele VRN-G1a (with the insertion of a 0.2 kb MITE in the promoter) found in a few accessions of both tetraploid species. We showed that alleles VRN-A1f-del and VRN-G1a have no association with the spring growth habit, while in all accessions of T. timopheevii this habit was associated with the dominant VRN-A1f-ins and VRN-A1f-del/ins alleles. None of the Ae. speltoides accessions included in this study had changes in the promoter or 1st intron regions of VRN-1 which might confer a spring growth habit. The VRN-1 promoter sequences analyzed herein and downloaded from databases have been used to construct a phylogram to assess the time of divergence of Ae. speltoides in relation to other wheat species.

Conclusions

Among accessions of T. araraticum, the preferentially winter predecessor of T. timopheevii, two large mutations were found in both VRN-A1 and VRN-G1 loci (VRN-A1f-del and VRN-G1a) that were found to have no effect on vernalization requirements. Spring tetraploid T. timopheevii had one VRN-1 allele in common for two species (VRN-G1a), and two that were specific (VRN-A1f-ins, VRN-A1f-del/ins). The latter alleles include mutations in the 1st intron of VRN-A1 and also share a 0.4 kb MITE insertion near the start of intron 1. We suggested that this insertion resulted in a spring growth habit in a progenitor of T. timopheevii which has probably been selected during subsequent domestication. The phylogram constructed on the basis of the VRN-1 promoter sequences confirmed the early divergence (~3.5 MYA) of the ancestor(s) of the B/G genomes from Ae. speltoides.
  相似文献   

6.
Cajanus platycarpus, a wild relative of Cajanus cajan, is an important source for various agronomically desirable traits, including resistance towards pod borer, Helicoverpa armigera. In the present study, the inhibitory activity of proteinase inhibitors (PIs) present in crude protein extracted from different accessions of C. platycarpus and cultivars of C. cajan was evaluated against H. armigera under in vitro and in vivo conditions. The PIs active against H. armigera gut trypsin-like proteinases (HGPs), referred to as ‘HGPIs’, were more pronounced in mature dry seeds of C. platycarpus accessions when compared with cultivars, which is also evident through gelatin activity staining studies. Therefore, the inhibitory activity of HGPIs was further evaluated in various plant organs of C. platycarpus accessions, such as leaves, flowers, pods, developing seeds at 8–10 days (DAP-I), 18–20 days (DAP-II), and 28–32 days after pollination (DAP-III). However, the HGPI activity was more pronounced in mature dry seeds > DAP-III > DAP-II > DAP-I > flowers > pods > leaves. The observed quantitative allocation of HGPIs closely resembled “Optimal Defense Theory”. Further, bioassays demonstrated that there was a significant reduction in the body weight of the larvae fed upon crude PI extracts of C. platycarpus accessions with concomitant increase in mortality rate and the formation of larval–pupal intermediates. Nevertheless, such changes were not observed when the larvae were fed on crude PI extracts of C. cajan cultivars. These results suggest that the PI gene(s) from C. platycarpus accessions could be exploited in the management of H. armigera by introgression into C. cajan cultivars.  相似文献   

7.
IGT family genes share the highly conserved motif GφL-(A/T) IGT in domain II and play an essential role in plant form. The tree architecture of apple (Malus ×?domestica Borkh.) affects fruit quality and yield. However, little information is available regarding IGT family genes in apple. Apple cultivars of four ideotypes (columnar, tip bearer, spur, and standard) were selected to characterize IGT family genes. Four IGT family members named MdoTAC1a, MdoTAC1b, MdoLAZY1, and MdoLAZY2 were found in the apple genome, sharing four conserved domains. In addition, MdoLAZY1 and MdoLAZY2 contain a fifth domain (EAR motif) at the C-terminus. There was no difference in the coding sequences of each gene in the four cultivars, but several mutated sites were found in their promoters. The four genes displayed lower expression levels in all tested tissues and organs of the columnar cultivar than in the other three cultivars, while expression levels of MdoTAC1a and MdoTAC1b in shoot tips and vegetative buds were highest in the standard cultivar, followed by spur, tip bearing, and columnar cultivars in decreasing order. These results indicate that IGT gene promoters are of great importance in the development of apple tree architecture and lay a theoretical basis for developing gene-specific markers for marker-assisted selection in breeding programs.  相似文献   

8.
Since its first report almost 200 years ago, fire blight, caused by the gram-negative bacterium Erwinia amylovora, has threatened apple and pear production globally. Identifying novel genes and their functional alleles is a prerequisite to developing apple cultivars with enhanced fire blight resistance. Here, we report 13 strain-specific and environment-dependent minor QTLs linked to fire blight resistance from a segregating Malus sieversii × Malus × domestica mapping population. Interval mapping at 95% confidence and Kruskal–Wallis analysis at P value =?0.005 were used to identify QTLs for three strains of E. amylovora differing in virulence and pathogenicity. The QTLs identified explain a small to moderate part of resistance variability, and a majority was not common between years or E. amylovora strains. These QTLs are distributed in eight linkage groups of apples and comparison of their map position to previously identified fire blight resistance QTLs indicates that most are novel loci. Interaction between experimental conditions in the greenhouse and field, and between years, and differences in virulence levels of strains might be responsible for strain- and year-specific QTLs. The QTLs identified on LG10 for strain Ea273 in 2011 and strain LP101 in 2011, and on LG15 for strain LP101 could be the same QTLs identified previously with strain CFBP1430 in cultivar “Florina” and “Co-op16 × Co-op17” mapping population, respectively. We discuss the potential impact of newly identified minor fire blight QTLs and major gene-based resistance on the rate of mutation in pathogen populations to overcome resistance and durability of resistance.  相似文献   

9.
Gibberellin-sensitive dwarfing gene Rht18 was mapped in two durum wheat recombinant inbred lines (RIL) populations developed from crosses, Bijaga Yellow/Icaro and HI 8498/Icaro. Rht18 was mapped within genetic interval of 1.8 cM on chromosome 6A. Simple sequence repeat (SSR) markers S470865SSR4, barc37 and TdGA2ox-A9 specific marker showed co-segregation with Rht18 in Bijaga Yellow/Icaro population consisting 256 RILs. Effect of Rht18 on plant height was validated in HI 8498/Icaro RIL population which segregated for Rht18 and Rht-B1b. Rht-B1b from HI 8498 showed pleiotropic effect on plant height and coleoptile length, on the other hand, Rht18 did not show effect on coleoptile length. The SSR and SNP markers linked to Rht18 were also validated by assessing their allelic frequency in 89 diverse durum and bread wheat accessions. It was observed that 204 bp allele of S470865SSR4 could differentiate Icaro from rest of the wheat accessions except HI 8498, suggesting its utility for selection of Rht18 in wheat improvement programs. Rht18 associated alleles of TdGA2ox-A9, IAW4371 and IAW7940 were absent in most of the tall Indian local durum wheat and bread wheat, hence could be used to transfer Rht18 to bread wheat and local durum wheat. SSR marker barc3 showed high recombination frequency with Rht18, though it showed allele unique to Icaro. Since semidwarf wheat with GA-sensitive dwarfing genes are useful in dry environments owing to their longer coleoptile, better emergence and seedling vigor, Rht18 may provide a useful alternative to widely used GA-insensitive dwarfing genes under dry environments.  相似文献   

10.
Pollination-constant non-astringent (PCNA) trait is desirable in persimmon production because it confers natural astringency loss in mature persimmon fruit. Expression of the PCNA trait requires six homozygous recessive PCNA (ast) alleles at the single ASTRINGENCY (AST) locus in hexaploid persimmon. When crossing non-PCNA accessions to breed PCNA offspring, knowledge of ast and non-PCNA (AST) allele dosage in the parental accessions is important, because more PCNA offspring can segregate from a non-PCNA parent with more ast and fewer AST alleles. Previously, we have demonstrated that a region linked to the AST locus has numerous fragment size polymorphisms with varying numbers of simple sequence repeats. Here, we reveal the polymorphisms in this region in a broad collection of persimmon germplasms. Among 237 accessions, we distinguished 21 AST- and 5 ast-linked fragments with different sizes. Based on the number of fragments detected per individual, we identified 21 non-PCNA accessions with three different ast alleles; by crossing these with a PCNA parent, we obtain PCNA offspring under autohexaploid inheritance. Furthermore, AST and ast allelic combination patterns in hexaploid persimmon were shown to be applicable to cultivar identification of non-PCNA accessions. We directly sequenced ast-linked fragments from 48 accessions with one-size peak of ast-linked fragment and found two distinctive groups of fragments based on single nucleotide polymorphisms. This result suggests that a bottleneck event occurred during ast allele development. We conclude that our fragment size profile can be used to accelerate PCNA breeding that uses non-PCNA parents and to study ast allele accumulation in persimmon.  相似文献   

11.
Nucleotide sequences polymorphism of mitochondrial nad1 gene b/c intron was studied in 41 Malus accessions and 21 related Rosaceae accessions. The b/c intron sequence in genus Malus appeared to be very conservative, while in other studied Rosaceae species 126 variable sites and indels were detected in the intron sequence that varied in length from 1124 to 1456 bp. The predicted b/c intron pre-mRNA secondary structure for Malus species was determined; IBS/EBS binding sites and the boundaries of the six functional domains were identified.  相似文献   

12.
Genetic similarity and relatedness within the set of pear genotypes including autochthonous Circassian cultivars from North Caucasus, European cultivars, accessions of Pyrus caucasica Fed., and modern Russian cultivars were estimated on the basis of analysis of SSR loci. The level of polymorphism for the studied loci varied from 11 to 15 alleles per locus in the set of 29 samples of pears. A higher level of allelic polymorphism of SSR loci was revealed for a set of P. caucasica samples in comparison with modern cultivated cultivars: from 9 to 12 alleles for P. caucasica and from 6 to 8 alleles for modern cultivars. Specific alleles for the mentioned groups of pears were identified. UPGMA clustering revealed two distinct groups: one includes P. caucasica accessions and autochthonous Caucasian cultivars and the other group includes all cultivated European and Russian pear cultivar. The results support the hypothesis of an isolated gene pool formation of autochthonous pear cultivars of the North Caucasus and their probable origin from the wild P. caucasica.  相似文献   

13.
?12 fatty acid desaturase (FAD2) is a key enzyme for linoleic acid and linolenic acid biosynthesis. Perilla frutescens is a special oil plant species with highest linolenic acid content. In this study, based on RACE, two alleles for one FAD2 gene were isolated from P. frutescens cultivar C2: the 3956 bp PfFAD2a and the 3959 bp PfFAD2b, both with a full-length cDNA of 1526 bp, and both encoding a 382aa basic protein. The alleles have identities of over 98%, and their encoded proteins differ only by substitution of a strongly similar residue. Saccharomyces cerevisiae heterologous expression suggested that PfFAD2a/b both encode a bio-functional FAD2 enzyme. Phylogenetic analyses indicated that PfFAD2 shows the highest homologies to FAD2 genes from dicots such as Boraginaceae and Burseraceae. PfFAD2a/b expressions are mainly restricted to developing seeds. PfFAD2a/b expression in the seedling leaf is upregulated by cold (4 °C) and repressed by heat (42 °C). Each of the eight cultivars contains two alleles for one PfFAD2 and 40 SNP sites are found. One allelic gene in cultivars C1 and P1 is pseudogene because of premature stop codon mutation in 5′ coding region. All other normal PfFAD2 genes/allelic genes encode identical or very similar proteins. PfFAD2a/b expression level in developing seeds also varies among the eight cultivars. This study provides systemic molecular and functional features of PfFAD2 and enables its application in the study of plant fatty acids traits.  相似文献   

14.
The Cf-9 gene in the tomato is known to confer resistance against leaf mold disease caused by Cladosporium fulvum, and a gene-based marker targeted to the Cf-9 allele has been widely used as a crop protection approach. However, we found this marker to be misleading in genotyping. Therefore, we developed new single-nucleotide polymorphism (SNP) and insertion and deletion (InDel) markers targeted to the Cf-9 allele in order to increase genotyping accuracy and facilitate high-throughput screening. The DNA sequences of reported Cf-9, cf-9, Cf-0, and closely related Cf-4 alleles were compared, and two functional and non-synonymous SNPs were found to distinguish the Cf-9 resistance allele from the cf-9, Cf-0, and Cf-4 alleles. An SNP marker including these two SNPs was developed and applied to the genotyping of 33 tomato cultivars by high-resolution melting analysis. Our SNP marker was able to select all three Cf-9 genotypes (resistant, heterozygous, and susceptible alleles). Interestingly, two cultivars were grouped separately from these three genotypes. To further examine this outgroup, we preformed polymerase chain reaction (PCR) on two InDel regions identified by sequence comparison of the Cf-9 and Cf-4 genes. The band patterns revealed that these two cultivars carried Cf-4 rather than Cf-9 alleles and that three cultivars classified in the Cf-9 resistance group actually carried both Cf-9 and Cf-4 genes. To determine whether these genotyping results were consistent with disease resistance phenotypes, we examined the induction of a hypersensitive response by transiently expressing the corresponding effector genes, and found that the results matched perfectly with the genotyping results. These findings indicate that the combination of our SNP and InDel markers allows resistant Cf-9 alleles to be distinguished from cf-9 and Cf-4 alleles, which will be useful for marker-assisted selection of tomato cultivars resistant to C. fulvum.  相似文献   

15.
Apple scab caused by Venturia inaequalis is the most important fungal disease of apples (Malus × domestica). Currently, the disease is controlled by up to 15 fungicide applications to the crop per year. Resistant apple cultivars will help promote the sustainable control of scab in commercial orchards. The breakdown of the Rvi6 (Vf) major-gene based resistance, the most used resistance gene in apple breeding, prompted the identification and characterization of new scab resistance genes. By using a large segregating population, the Rvi12 scab resistance gene was previously mapped to a genetic location flanked by molecular markers SNP_23.599 and SNP_24.482. Starting from these markers, utilizing chromosome walking of a Hansen’s baccata #2 (HB2) BAC-library; a single BAC clone spanning the Rvi12 interval was identified. Following Pacific Biosciences (PacBio) RS II sequencing and the use of the hierarchical genome assembly process (HGAP) assembly of the BAC clone sequence, the Rvi12 resistance locus was localized to a 62.3-kb genomic region. Gene prediction and in silico characterization identified a single candidate resistance gene. The gene, named here as Rvi12_Cd5, belongs to the LRR receptor-like serine/threonine-protein kinase family. In silico comparison of the resistance allele from HB2 and the susceptible allele from Golden Delicious (GD) identified the presence of an additional intron in the HB2 allele. Conserved domain analysis identified the presence of four additional LRR motifs in the susceptible allele compared to the resistance allele. The constitutive expression of Rvi12_Cd5 in HB2, together with its structural similarity to known resistance genes, makes it the most likely candidate for Rvi12 scab resistance in apple.  相似文献   

16.
RING-finger-containing E3 ubiquitin ligases play important roles in plant response to biotic and abiotoc stresses. In this study, through homology analysis, a Malus× domestica MYB30-Interacting E3 Ligase 1 gene, MdMIEL1, was identified and subsequently cloned from apple ‘Gala’ (Malus×domestica). MdMIEL1 contained a zinc finger domain close to N-terminus and a RING finger domain close to Cterminus. Expression of MdMIEL1 was significantly induced by NaCl and H2O2 treatments. Further study demonstrated that the MdMIEL1-overexpressing Arabidopsis and apple calli were less tolerance to salt stress than wild-type control. In addition, transgenic plants had higher levels of reactive oxygen species (ROS) (H2O2 and O2 ). And transgenic Arabidopsis and apple calli exhibited more sensitive phenotype to H2O2 treatment, which was associated with increased levels of ROS. These findings indicate MdMIEL1 is an important regulator involved in plant response to salt and oxidative stresses tolerance.  相似文献   

17.
Eighteen species and subspecies (34 accessions) of Allium sect. Acanthoprason and 11 species (17 accessions) belonging to other subgenera and sections of Allium were karyologically investigated and include first reports for 12 species. The examined plants of 47 accessions were diploid, three accessions of two species were tetraploid, and in the A. bisotunense accession, we found a mix of di- and triploid individuals. B chromosomes were found in 10 accessions. A basic chromosome number of x = 8 was confirmed for all investigated members of subg. Melanocrommyum and subg. Allium, and x = 9 for Allium tripedale of subg. Nectaroscordum. Idiograms were drawn for each accession, and metaphase images are presented illustrating observed chromosomal variations. Also, karyotype features and asymmetry parameters were calculated for all accessions. Chromosomal aberrations, e.g. aneuploid cells or loss of whole or parts of chromosome arms, were rarely observed. In general, the karyotypes showed low variation in inter- and intrachromosomal asymmetry especially inside of the taxonomic groups, though satellited chromosomes were good markers for subgenera and even specific for two studied sections of subg. Allium. Six different types of satellites were recognized, two of them were newly described: Type P was prevalent in subg. Melanocrommyum, and type O in sect. Codonoprasum. Statistical analyses were performed on five karyological parameters to test correct relationships and also to test previous grouping hypotheses. Although our data confirm distinct karyological characters for the subgenera investigated, the remarkable morphological diversity inside of subg. Melanocrommyum is not mirrored by striking karyological differences.  相似文献   

18.
Allelic combinations of major photoperiodic (E1, E3, E4) and maturity (E2) genes have extended the adaptation of quantitative photoperiod sensitive soybean crop from its origin (China ~35 °N latitude) to both north (up to ~50 °N) and south (up to 40 °S) latitudes, but their allelic status and role in India (6–35 °N) are unknown. Loss of function and hypoactive alleles of these genes are known to confer photoinsensitivity to long days and early maturity. Early maturity has helped to adapt soybean to short growing season of India. We had earlier found that all the Indian cultivars are sensitive to incandescent long day (ILD) and could identify six insensitive accessions through screening 2071 accessions under ILD. Available models for ILD insensitivity suggested that identified insensitive genotypes should be either e3 /e4 or e1 (e1-nl or e1-fs) with either e3 or e4. We found that one of the insensitive accessions (EC 390977) was of e3 /e4 genotype and hybridized it with four ILD sensitive cultivars JS 335, JS 95-60, JS 93-05, NRC 37 and an accession EC 538828. Inheritance studies and marker-based cosegregation analyses confirmed the segregation of E3 and E4 genes and identified JS 93-05 and NRC 37 as E3E3E4E4 and EC 538828 as e3e3E4E4. Further, genotyping through sequencing, derived cleaved amplified polymorphic sequences (dCAPS) and cleaved amplified polymorphic sequences (CAPS) markers identified JS 95-60 with hypoactive e1-as and JS 335 with loss of function e3-fs alleles. Presence of photoperiodic recessive alleles in these two most popular Indian cultivars suggested for their role in conferring early flowering and maturity. This observation could be confirmed in F 2 population derived from the cross JS 95-60 × EC 390977, where individuals with e1-as e1-as and e4e4 genotypes could flower 7 and 2.4 days earlier, respectively. Possibility of identification of new alleles or mechanism for ILD insensitivity and use of photoinsensitivity in Indian conditions have been discussed.  相似文献   

19.
Six-rowed spike 1 (Vrs1) is a gene of major importance for barley breeding and germplasm management as it is the main gene determining spike row-type (2-rowed vs. 6-rowed). This is a widely used DUS trait, and has been often associated to phenotypic traits beyond spike type. Comprehensive re-sequencing Vrs1 revealed three two-rowed alleles (Vrs1.b2; Vrs1.b3; Vrs1.t1) and four six-rowed (vrs1.a1; vrs1.a2; vrs1.a3; vrs1.a4) in the natural population. However, the current knowledge about Vrs1 alleles and its distribution among Spanish barley subpopulations is still underexploited. We analyzed the gene in a panel of 215 genotypes, made of Spanish landraces and European cultivars. Among 143 six-rowed accessions, 57 had the vrs1.a1 allele, 83 were vrs1.a2, and three showed the vrs1.a3 allele. Vrs1.b3 was found in most two-rowed accessions, and a new allele was observed in 7 out of 50 two-rowed Spanish landraces. This allele, named Vrs1.b5, contains a ‘T’ insertion in exon 2, originally proposed as the causal mutation giving rise to the six-row vrs1.a2 allele, but has an additional upstream deletion that results in the change of 15 amino acids and a potentially functional protein. We conclude that eight Vrs1 alleles (Vrs1.b2, Vrs1.b3, Vrs1.b5, Vrs1.t1, vrs1.a1, vrs1.a2, vrs1.a3, vrs1.a4) discriminate two and six-rowed barleys. The markers described will be useful for DUS identification, plant breeders, and other crop scientists.  相似文献   

20.
Phytoene synthase-1 (Psy-1) homoeologs are associated with yellow pigment content (YPC) in endosperm of durum and bread wheat. In the present study, microsatellite variation in promoter region of Psy-A1 was identified in durum wheat and marker Psy-1SSR, targeting the microsatellite variation was developed which amplifies variation in Psy-A1 and Psy-B1 loci simultaneously. Psy-A1SSR was mapped within QYp.macs-7A, a major QTL for YPC identified earlier in PDW 233/Bhalegaon 4 population. Marker Psy-A1SSR was further validated in two different RIL populations and a set of 222 tetraploid wheat accessions including less cultivated tetraploid wheat species. Eight alleles of Psy-A1SSR were identified in 222 wheat accessions, while seven alleles were observed for Psy-B1SSR. Variation at Psy-A1SSR showed significant association with YPC, whereas no association was observed with Psy-B1SSR. Marker-assisted introgression of Psy-A1SSRe allele from PDW 233, to durum wheat cultivars MACS 3125 and HI 8498 resulted in improvement of YPC. Backcrossed BC3F2:4 and BC2F2:3 lines selected using Psy-A1SSR showed 89 to 98% gain in YPC over recurrent parents indicating robustness of marker. The marker can thus be utilized in marker-assisted improvement of YPC in durum wheat cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号