首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to antigenic stimulation, helper T cells secrete a set of protein mediators called lymphokines that regulate proliferation, differentiation, and maturation of lymphocytes and hemopoietic cells. Because all known lymphokines are composed of a single polypeptide chain, their coding sequences can be isolated by functional expression in appropriate host cells. Based on this expression cloning protocol, a number of T cell lymphokine genes have been isolated, their primary structure has been determined, and biological properties of their recombinant products have been examined. These studies revealed the existence of a regulatory network between lymphoid cells and hemopoietic cells mediated by the actions of multiple pleiotropic lymphokines produced by activated T cells. Because all or a part of this network can be activated in different ways by unique combinations of lymphokines, it is clear that T cells can play a vital role in coordinating the function of different body compartments in the immune and inflammatory responses. The activation of lymphokine genes in T cells by antigen is rapid and temporal. Therefore, an inflammatory response that involves proliferation and maturation of target cells may be restricted to the site of lymphokine production. This inducible hemopoiesis appears to be differentially regulated from the steady state or constitutive hemopoiesis that occurs in the bone marrow microenvironment in the absence of immunological stimuli.  相似文献   

2.
We present a review of experimental studies performed at the Laboratory of Histogenesis of the Institute of Developmental Biology, Russian Academy of Sciences, on the problem of cell interactions during hemopoiesis. Special attention has been given to original experimental models, such as production of hemopoietic foci on underlayers of fibroblasts encapsulating a foreign body in the peritoneal cavity of rodents (after intraperitoneal transplantation of hemopoietic cells) and repopulation of ectopic hemopoietic territories under the kidney capsule of mice by syngeneic or xenogeneic hemopoietic cells. We describe the competitive interactions of genetically different hemopoietic cells after the transplantation of their mixtures to irradiated mice (multicomponent radiation chimeras). Xenogeneic and multicomponent chimeras have also been obtained in long-term bone marrow culture. We have examined characteristics of hemopoiesis on stromal cell underlayers produced by cells of various origins in vitro and then transplanted into the peritoneal cavity of irradiated mice. We discuss the results obtained and possible mechanisms of these phenomena.  相似文献   

3.
Leptin is a hormone secreted by adipocytes. Besides controlling appetite and body weight, it has been suggested that leptin plays a role in inflammation and hemopoiesis. In this study we demonstrate that the pro-inflammatory/hemopoietic cytokines, IL-1beta, IL-6, TNF-alpha, and interferon-gamma, significantly inhibit gene expression and secretion of leptin by bone marrow adipocytes. These findings are in agreement with the data recently obtained from non-medullary adipose tissues. Within the bone marrow environment, leptin regulation by these pleiotropic cytokines could contribute to controlling the proliferation and differentiation of hemopoietic precursors as well as the maturation of stromal cells.  相似文献   

4.
Trends in modern histology have been reviewed. The role of evolutionary concepts (hypotheses) in analysis of experimental data has been stressed. Several problems of onto- and phylogenesis of hemopoiesis have been discussed. They include evolution of structure of hemopoietic system; origin of fibroblasts and correlation of hemal (mobile) and desmal (fixed) mesenchymal cells; immunological approaches to studies of evolution of hemopoietic cell.  相似文献   

5.
Long-term marrow cultures: human and murine systems   总被引:1,自引:0,他引:1  
The intramedullary control of marrow cell production has been a difficult area to approach experimentally. The introduction by Dr. Dexter and colleagues of long-term stromal dependent culture systems for murine marrow and the adaptation of these systems to human marrow growth have allowed for in-vitro studies of stromal dependent hemopoiesis. Despite some controversy in this area, most studies appear to show that adherent murine or human stromal cells are capable of producing a relatively large number of hemopoietic growth factors including G-CSF, GM-CSF, CSF-1, IL-6 and, at least by PCR analysis, IL-3. Other work indicates that the most primitive hemopoietic cells which appear to be multifactor responsive adhere directly to these stromal cells presumably through mediation of various adherence proteins. An early acting, multilineage factor termed hemolymphopoietic growth factor-1 (HLGF-1) has been isolated from a murine stromal cell line and may be identical to the recently described ligand for the c-kit receptor. This may represent an important early survival/maintenance factor for stem cells in this system. Studies on primitive stem cells, especially the high proliferative potential colony forming cell (HPP-CFC), indicate that they are responsive to varying combinations of growth factors and that with increasing numbers of growth factors, as studied in serum-free systems, decreasing concentrations of the factors may be biologically active. These observations altogether suggest that intramedullary hemopoiesis may be regulated by the positioning of early multifactor responsive stem cells via adherent proteins in juxtaposition to synergistically acting combinations of growth factors attached to stromal cell surfaces or the extracellular matrix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The death of hemopoietic cells on withdrawal of CSF occurs by a mechanism known as apoptosis characterized by the early degradation of chromatin into oligonucleosome-length fragments. Insulin-like growth factor I plays a pivotal role in the regulation of somatic cell growth as a mediator of growth hormone action. Animals with low levels of circulating IGF-I are more vulnerable to infections and have diminished immune responses. To analyze the possibility of a regulatory role of IGF-I on hemopoiesis and determine its mechanism of action, we have studied the effect of this growth factor on the survival and proliferation of two IL-3-dependent hemopoietic cell lines and in IL-3-responsive primary cultures of bone marrow-derived mast cells. In IL-3-depleted cultures, IGF-I prevented DNA fragmentation and apoptotic cell death. Insulin at high concentration had a weak protective action and IGF-II was inactive in suppressing apoptosis in these IL-3-dependent hemopoietic cells. Cell proliferation was also stimulated by IGF-I in the absence of other hemopoietic growth factors although it was a weak mitogen when compared with IL-3. These results indicate that circulating or locally produced IGF-I may promote survival of both the steady state hemopoietic precursor population and cytokine-producing cells and could therefore regulate hemopoiesis acting in a concerted manner with other CSF.  相似文献   

7.
We investigated the developmental potential of hemopoietic progenitors in the aorta-gonad-mesonephros (AGM) region, where the definitive type hemopoietic progenitors have been shown to emerge before the fetal liver develops. By using an assay system that is able to determine the developmental potential of individual progenitors toward the T, B, and myeloid lineages, we show that not only multipotent progenitors but also progenitors committed to the T, B, or myeloid lineage already exist in this region of day 10 fetuses. Bipotent progenitors generating myeloid and T cells or those generating myeloid and B cells were also detected, suggesting that the commitment to T and B cell lineages is in progress in the AGM region. The numbers of these progenitors, however, were only 1/200-1/1000 of those in fetal liver of day 12 fetuses. Such small numbers of progenitors suggest that hemopoiesis has just started in the AGM region of day 10 fetuses. Although most of T cell lineage-committed progenitors in the AGM region generated only a small number of immature T cells, some were able to generate a large number of mature T cells. The detection of various types of lineage-committed progenitors strongly suggests that the AGM region is not only the site of stem cell emergence, but also the site of hemopoiesis, including lineage commitment. The T cell progenitors found in the AGM region may represent the first immigrants to the thymus anlage.  相似文献   

8.
9.
Developments in modern hematology.   总被引:1,自引:0,他引:1  
In the past 40 years our concepts about hemopoiesis have been changed dramatically. The results of bone marrow transplantation into lethally irradiated mice since the mid-fifties suggested the existence of a hemopoietic stem cell, which was initially identified as a spleen colony forming cell (CFU-S). Later experiments showed that the stem cell compartment is rather heterogeneous and that the most primitive stem cell, unlike the CFU-S, has the ability for long-term engraftment of an irradiated recipient. Daughter cells of such primitive quiescent stem cells lose their capacity for self-generation gradually with each mitosis and become more and more committed to a specific differentiation lineage. In vitro culture techniques in a serum-free semi-solid medium enabled the establishment and analysis of specific hemopoietic growth factors. Such factors, which are essential for the maintenance, proliferation and differentiation of progenitor cells and the functional activity of mature cells can now be produced with recombinant DNA techniques in pure form and large quantities. Hemopoiesis requires an appropriate microenvironment, consisting of various stromal cell types and an extracellular matrix. Intercellular contacts, adhesion of cells and growth factors to the matrix molecules seem essential in the regulating action of this hemopoietic microenvironment. In long-term bone marrow cultures the development of a stromal hemopoietic microenvironment can facilitate long-term maintenance of stem cells and hemopoietic differentiation. For bone marrow transplantation and infusion of hemopoietic growth factors many clinical indications are well established and our possibilities to interfere in the regulation of hemopoiesis are still growing.  相似文献   

10.
The preceding paper describes a new approach to the detection and assay of growth factors for developmentally early multipotent hemopoietic cells (Bartelmez et al., J. Cell. Physiol., 1985). This approach, involving measurement of the increase in the number of receptors for the mononuclear phagocyte specific hemopoietic growth factor (HGF), colony stimulating factor-1 (CSF-1), in cultures of developmentally early murine cells incubated with putative HGFs, has been used to define and assay hemopoietin-1. Hemopoietin-1 (Mr approximately 20,000) is found in the medium derived from serum-free cultures of cells of the human urinary bladder carcinoma line 5637. In contrast to both hemopoietin-2 and CSF-1, which also stimulate an increase in CSF-1 receptor numbers in cultures of developmentally early hemopoietic cells, hemopoietin-1 alone has no detectable effect. However, hemopoietin-1 exhibits dramatic synergism with CSF-1. In the presence of CSF-1, hemopoietin-1 stimulates the proliferation of developmentally earlier cells than those that respond to either CSF-1 alone or hemopoietin-2 alone or their combination. These cells proliferate for at least 3 days with no alteration of the average CSF-1 receptor density. However, by 5 days of incubation, the progeny of developmentally early hemopoietic cells that have proliferated in response to hemopoietin-1 + CSF-1 exhibit an approximately tenfold increase in the average CSF-1 receptor density per cell, which immediately precedes their differentiation to adherent mononuclear phagocytes. As hemopoietin-1 does not possess colony stimulating or burst promoting activities for murine bone marrow cells, but acts on multipotent hemopoietic cells, the analysis of the mechanism of its synergistic effects with HGFs such as CSF-1 are of special relevance to the regulation of early events in hemopoiesis.  相似文献   

11.
Stromal cells of hemopoietic origin   总被引:1,自引:0,他引:1  
Hemopoiesis is a multistep process involving stem cell renewal, commitment, differentiation, maturation and consequent positioning of the cells within the tissue. Stromal cells are a major component of the hemopoietic microenvironment. The in vitro culture of cloned stromal cells has enabled detailed analysis of their functions and has provided answers relating to the contribution of stromal cells to the control of hemopoiesis. Cultured stromal cells were found to support the renewal of stem cells through a mechanism that did not seem to involve already known cytokines. Cloned stromal cells from both marrow and thymus supported the in vitro accumulation of myeloid as well as T and B lymphoid cells. Thus, cloned stromal cells had the ability to induce multilineage hemopoiesis, irrespective of the organ from which they were derived. Invariably, stromal cells tended to select in culture for hemopoietic cells at early differentiation stages and restricted the accumulation of mature cells. These functions may be part of the mechanism that protects the stem cell pool from excess differentiation.  相似文献   

12.
Embryogenesis of hemopoietic cell populations in the pronephros of Rana pipiens was examined during embryonic and early larval development. Differential cell counts of Wright-Giemsa-stained cell suspensions demonstrated that granulopoiesis is the predominant hemopoietic activity in the pronephros, erythropoiesis accounts for a minor component of the hemopoietic activity (less than 10%), and lymphopoiesis within the organ is negligible. Microdensitometric analysis of Feulgen-DNA stained granulocyte populations in pronephroses from larvae that had received chromosomally labeled pronephric analgen transplants between 84 and 96 h of development demonstrated that hemopoiesis in this organ is dependent on colonization by an extrinsic hemopoietic stem cell. A similar analysis of pronephric hemopoiesis in larvae which had received chromosomally labeled, presumptive ventral blood island transplants between 62 and 67 h of development, indicates that granulopoietic cells are not derived from the embryonic blood islands. It is proposed that the pronephros may be the initial site of granulocyte differentiation during early embryogenesis. Although the embryonic origin of the hemopoietic stem cell is unknown, indirect evidence from this study indicates a dorsal stem cell compartment.  相似文献   

13.
Embryogenesis of hemopoietic cell populations in the pronephros of Rana pipiens was examined during embryonic and early larval development. Differential cell counts of Wright-Giemsa-stained cell suspensions demonstrated that granulopoiesis is the predominant hemopoietic activity in the pronephros, erythropoiesis accounts for a minor component of the hemopoietic activity (> 10%), and lymphopoiesis within the organ is negligible. Microdensitometric analysis of Feulgen-DNA stained granulocyte populations in pronephroses from larvae that had received chromosomally labeled pronephric anlagen transplants between 84 and 96 h of development demonstrated that hemopoiesis in this organ is dependent on colonization by an extrinsic hemopoietic stem cell. A similar analysis of pronephric hemopoiesis in larvae which had received chromosomally labeled, presumptive ventral blood island transplants between 62 and 67 h of development, indicates that granulopoietic cells are not derived from the embryonic blood islands. It is proposed that the pronephros may be the initial site of granulocyte differentiation during early embryogenesis. Although the embryonic origin of the hemopoietic stem cell is unknown, indirect evidence from this study indicates a dorsal stem cell compartment  相似文献   

14.
To test whether the major histocompatibility complex class I genes are involved in the regulation of hemopoiesis, the stem cell activities of BALB/c-H-2dm2 (Dm2) mice, which are defective in the expression of H-2L antigens, have been compared with those of the wild-type, BALB/c-Kh, in in vivo and in vitro stem cell assays. In spleen colony-forming unit assays, Dm2 as hosts consistently supported a smaller number of colonies than did BALB/c-Kh. However, both Dm2 and BALB/c-Kh supported a comparable number of colonies in in vitro granulocyte-macrophage colony-forming unit and erythroid colony-forming unit assays. These observations together suggest that the mutation in Dm2 has not affected the hemopoietic potential of the stem cells but may probably affect the hemopoietic microenvironment for the development of the stem cells.  相似文献   

15.
We have isolated cDNAs representing a previously unrecognized human gene that apparently encodes a protein-tyrosine kinase. We have designated the gene as HCK (hemopoietic cell kinase) because its expression is prominent in the lymphoid and myeloid lineages of hemopoiesis. Expression in granulocytic and monocytic leukemia cells increases after the cells have been induced to differentiate. The 57-kilodalton protein encoded by HCK resembles the product of the proto-oncogene c-src and is therefore likely to be a peripheral membrane protein. HCK is located on human chromosome 20 at bands q11-12, a region that is affected by interstitial deletions in some acute myeloid leukemias and myeloproliferative disorders. Our findings add to the diversity of protein-tyrosine kinases that may serve specialized functions in hemopoietic cells, and they raise the possibility that damage to HCK may contribute to the pathogenesis of some human leukemias.  相似文献   

16.
H A Messner 《Blut》1986,53(4):269-277
The assay for CFU-GEMM has provided a measurement for pluripotent hemopoietic precursors in normal and abnormal hemopoiesis. While these cells are able to express the functional repertoire that includes not only myelopoiesis but also lymphopoiesis attempts to determine their self-renewal have shown little or no self-renewal capability. It is currently not known whether this observation reflects culture conditions favouring differentiation processes and suppressing self-renewal, or whether the observation made in culture truly reflects the potential of cells in vivo. Recent advances in molecular biology have lead to the identification of the genomic sequences of at least one of the hemopoietic growth factors thus confirming their importance as regulators.  相似文献   

17.
Morphological and autoradiographic studies on various hemopoietic tissues in sturgeon are presented. The classic hemopoietic organs characteristic of lower vertebrates, such as the kidney and spleen, are studied as well as unique hemopoietic structures described only in the evolutionarily most ancient fish species (hemopoietic tissues of cartilaginous skull capsules and epicardium). The intensity of cell divisions in hemopoietic foci has been characterized by autoradiography. The results obtained provide a basis for the revision of traditional views about the phylogeny of hemopoiesis. They provide evidence that the osteogenic gravitation of hemopoietic tissue shows up in evolution alongside the appearance of the inner skeleton.  相似文献   

18.
Morphological and autoradiographic studies on various hemopoietic tissues in sturgeon are presented. The classic hemopoietic organs characteristic of lower vertebrates, such as the kidney and spleen, are studied, as well as unique hemopoietic structures described only in the evolutionarily most ancient fish species (hemopoietic tissues of cartilaginous skull capsules and epicardium). The intensity of cell divisions in hemopoietic foci has been characterized by autoradiography. The results obtained provide a basis for the revision of traditional views about the phylogeny of hemopoiesis. They provide evidence that the osteogenic gravitation of hemopoietic tissue shows up in evolution alongside the appearance of the inner skeleton.  相似文献   

19.
By flow cytometry of individual cells, multiple cell properties can be analyzed. Such parameters may be important in relation to cytotoxic treatment of cancer. For example, DNA measurements will answer questions regarding cell kinetics. Myelosuppression is the major dose-limiting toxicity during cancer treatment. Therefore, the study of cell cycle parameters in bone marrow cells is highly relevant. However, inattention to the existence and potential importance of biological rhythms may introduce artifacts and misleading results. The literature of rhythms in hematology is reviewed. Time-dependent variations in hematological variables have been extensively studied and rhythms have been described for all kinds of blood cells. Also the numbers of hemopoietic stem cells in the bone marrow undergo circadian variations. Our group has shown how such variations change with aging in mice. The relevance of time sequence studies in aging research of hemopoiesis was clearly demonstrated. In animal studies using cytometry, our group has demonstrated extensive circadian variations in cell cycle distribution of bone marrow cells, especially the DNA synthesis (S-phase). In humans a few and rather small time sequence studies of the bone marrow have been performed, so far. In this overview the clinical implications of circadian rhythms of S-phase variations measured by flow cytometry of human bone marrow cells are discussed. Male volunteers were examined every 4 h around-the-clock. The data indicated a lower proliferative activity during night, suggesting the possibility of reducing the bone marrow toxicity to cancer treatment when taking these time-dependent variations into consideration.  相似文献   

20.
Stromal cell-derived growth factor-1alpha (SDF-1alpha) is a member of the CXC chemokines and interacts with the G protein, seven-transmembrane CXCR4 receptor. SDF-1alpha acts as a chemoattractant for immune and hemopoietic cells. The Tac1 gene encodes peptides belonging to the tachykinin family with substance P being the predominant member. Both SDF-1alpha and Tac1 peptides are relevant hemopoietic regulators. This study investigated the effects of SDF-1alpha on Tac1 expression in the major hemopoietic supporting cells, the bone marrow stroma, and addresses the consequence to hemopoiesis. Reporter gene assays with the 5' flanking region of Tac1 showed a bell-shaped effect of SDF-1alpha on luciferase activity with 20 ng/ml SDF-1alpha acting as stimulator, whereas 50 and 100 ng/ml SDF-1alpha acted as inhibitors. Gel shift assays and transfection with wild-type and mutant IkappaB indicate NF-kappaB as a mediator in the repressive effects at 50 and 100 ng/ml SDF-1alpha. Northern analyses and ELISA showed correlations among reporter gene activities, mRNA (beta-preprotachykinin I), and protein levels for substance P. Of relevance is the novel finding by long-term culture-initiating cell assays that showed an indirect effect of SDF-1alpha on hemopoiesis through substance P production. The results also showed neurokinin 1 and not neurokinin 2 as the relevant receptor. Another crucial finding is that substance P does not regulate the production of SDF-1alpha in stroma. The studies indicate that SDF-1alpha levels above baseline production in bone marrow stroma induce the production of substance P to stimulate hemopoiesis. Substance P, however, does not act as autocrine stimulator to induce the production of SDF-1alpha. This study adds SDF-1alpha as a mediator within the neural-immune-hemopoietic axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号