共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Site-specific mutagenesis has identified amino acids involved in bR proton transport. Biophysical studies of the mutants have elucidated the roles of two membrane-embedded residues: Asp-85 serves as the acceptor for the proton from the isomerized retinylidene Schiff base, and Asp-96 participates in reprotonation of this group. The functions of Arg-82, Leu-93, Asp-212, Tyr-185, and other residues that affect bR properties when substituted are not as well understood. Structural characterization of the mutant proteins will clarify the effects of substitutions at these positions. Current efforts in the field remain directed at understanding how retinal isomerization is coupled to proton transport. In particular, there has been more emphasis on determining the structures of bR and its photointermediates. Since well-ordered crystals of bR have not been obtained, continued electron diffraction studies of purple membrane offer the best opportunity for structure refinement. Other informative techniques include solid-state nuclear magnetic resonance of isotopically labeled bR (56) and electron paramagnetic resonance of bR tagged with nitroxide spin labels (2, 3, 13, 15). Site-directed mutagenesis will be essential in these studies to introduce specific sites for derivatization with structural probes and to slow the decay of intermediates. Thus, combining molecular biology and biophysics will continue to provide solutions to fundamental problems in bR. 相似文献
3.
Unraveling the mechanism of proton translocation in the extracellular half‐channel of bacteriorhodopsin 下载免费PDF全文
Bacteriorhodopsin, a light activated protein that creates a proton gradient in halobacteria, has long served as a simple model of proton pumps. Within bacteriorhodopsin, several key sites undergo protonation changes during the photocycle, moving protons from the higher pH cytoplasm to the lower pH extracellular side. The mechanism underlying the long‐range proton translocation between the central (the retinal Schiff base SB216, D85, and D212) and exit clusters (E194 and E204) remains elusive. To obtain a dynamic view of the key factors controlling proton translocation, a systematic study using molecular dynamics simulation was performed for eight bacteriorhodopsin models varying in retinal isomer and protonation states of the SB216, D85, D212, and E204. The side‐chain orientation of R82 is determined primarily by the protonation states of the residues in the EC. The side‐chain reorientation of R82 modulates the hydrogen‐bond network and consequently possible pathways of proton transfer. Quantum mechanical intrinsic reaction coordinate calculations of proton‐transfer in the methyl guanidinium‐hydronium‐hydroxide model system show that proton transfer via a guanidinium group requires an initial geometry permitting proton donation and acceptance by the same amine. In all the bacteriorhodopsin models, R82 can form proton wires with both the CC and the EC connected by the same amine. Alternatively, rare proton wires for proton transfer from the CC to the EC without involving R82 were found in an O′ state where the proton on D85 is transferred to D212. Proteins 2016; 84:639–654. © 2016 Wiley Periodicals, Inc. 相似文献
4.
5.
6.
7.
Cytochrome c oxidase is essential for aerobic life as a membrane-bound energy transducer. O(2) reduction at the haem a(3)-Cu(B) centre consumes electrons transferred via haem a from cytochrome c outside the membrane. Protons are taken up from the inside, both to form water and to be pumped across the membrane (M.K.F. Wikstr?m, Nature 266 (1977) 271; M. Wikstr?m, K. Krab, M. Saraste, Cytochrome Oxidase, A Synthesis, Academic Press, London, 1981 ). The resulting electrochemical proton gradient drives ATP synthesis (P. Mitchell, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, UK, 1966 ). Here we present a molecular mechanism for proton pumping coupled to oxygen reduction that is based on the unique properties of water in hydrophobic cavities. An array of water molecules conducts protons from a conserved glutamic acid, either to the Delta-propionate of haem a(3) (pumping), or to haem a(3)-Cu(B) (water formation). Switching between these pathways is controlled by the redox-state-dependent electric field between haem a and haem a(3)-Cu(B), which determines the water-dipole orientation, and therefore the proton transfer direction. Proton transfer via the propionate provides a gate to O(2) reduction. This pumping mechanism explains the unique arrangement of the metal cofactors in the structure. It is consistent with the large body of biochemical data, and is shown to be plausible by molecular dynamics simulations. 相似文献
8.
The chromophore retinal hinders passive proton/hydroxide ion translocation through bacteriorhodopsin 总被引:2,自引:0,他引:2
Experiments have been performed to examine any influence of the chromophore retinal in bacteriorhodopsin (BR) on the passive proton/hydroxide ion flux through this integral membrane protein. BR was reconstituted into dimyristoylphosphatidylcholine (DMPC)-phosphatidylserine or DMPC-dimyristoylphosphatidylglycerol unilamellar vesicles with molar lipid to protein ratios ranging from 30 to 150. The entrapped fluorescence dye pyranine served as a reliable indicator of the internal proton concentration. Transmembrane pH-gradients were quickly established across the vesicular membrane and the kinetics of the induced fluorescence changes were compared for vesicles with incorporated native BR, BR bleached to the chromophore-free protein bacterioopsin, and BR regenerated from bacterioopsin with all-trans-retinal, respectively. For aggregated protein molecules, the H+/OH- diffusion across bacterioopsin was always considerably faster than that through the protein containing covalently bound retinal. The decay rate of the imposed pH-gradient was 4.4-9.1 and 2.0-5.1 times slower for native and regenerated BR, respectively, as compared to bacterioopsin. Stepwise regeneration of bacterioopsin with all-trans-retinal revealed a linear dependence of the predominant delta pH-decay time on the degree of regeneration. Essentially the same observations were made with monomeric protein molecules in vesicular lipid membranes. The results demonstrate that the chromophore retinal itself blocks the H+/OH- conducting pathway across the transmembrane protein BR or indirectly controls this path by inducing conformational changes in the protein upon binding. 相似文献
9.
10.
Cytochrome c oxidase is essential for aerobic life as a membrane-bound energy transducer. O2 reduction at the haem a3-CuB centre consumes electrons transferred via haem a from cytochrome c outside the membrane. Protons are taken up from the inside, both to form water and to be pumped across the membrane (M.K.F. Wikström, Nature 266 (1977) 271 [1]; M. Wikström, K. Krab, M. Saraste, Cytochrome Oxidase, A Synthesis, Academic Press, London, 1981 [2]). The resulting electrochemical proton gradient drives ATP synthesis (P. Mitchell, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, UK, 1966 [3]). Here we present a molecular mechanism for proton pumping coupled to oxygen reduction that is based on the unique properties of water in hydrophobic cavities. An array of water molecules conducts protons from a conserved glutamic acid, either to the Δ-propionate of haem a3 (pumping), or to haem a3-CuB (water formation). Switching between these pathways is controlled by the redox-state-dependent electric field between haem a and haem a3-CuB, which determines the water-dipole orientation, and therefore the proton transfer direction. Proton transfer via the propionate provides a gate to O2 reduction. This pumping mechanism explains the unique arrangement of the metal cofactors in the structure. It is consistent with the large body of biochemical data, and is shown to be plausible by molecular dynamics simulations. 相似文献
11.
Stable membrane proteins and lipids are convenient to study biomembranes. Two stable proton translocating proteins were purified and reconstituted into vesicles capable of proton translocation. One was a thermostable ATPase (TF0-F1) of thermophilic bacterium PS3 and the other was rhodopsin of Halobacterium halobium. TF0-F1 was composed of a proton pump moiety (TF1) and a proton channel moiety (TF0). TF1 was the first membrane ATPase which was crystallized and reconstituted from its five polypeptides. Like TF0 and TF1, the rhodopsin in purple membrane was highly stable against dissociating agents, acids and alkali. Phospholipids of these biomembranes were also stable and contained no unsaturated fatty acyl groups. The molecular species of the phospholipids of PS3 were determined by mass chromatography. Measurements were made of the difference in electrochemical potential of protons (deltamicronH+) across the membrane of the reconstituted vesicles. The deltamicronH+ attained was 312 mV in TF0-F1 vesciles and was 230 mV in the rhodopsin vesicles. To conclude that electron transport components are not necessary for ATP synthesis in energy yielding biomembranes, two experiments were performed: The ATP synthesis was observed i) on acid-base treatment of TF0-F1 vesicles, and ii) on illumination of the rhodopsin-TF0-F1 vesicles. 相似文献
12.
菌紫质(bR)是嗜盐菌紫膜中的唯一蛋白,具有光驱动的质子泵功能,迄今为止对于光循环和质子泵的具体分子机理仍未弄清楚,作者概述了近几年来关于bP质子泵机理的研究进展,介绍了两个较新的模型。 相似文献
13.
G W Rayfield 《Biophysical journal》1983,41(2):109-117
The short-circuit photoresponse of a bacteriorhodopsin-based photoactive membrane is studied. The membrane is formed by first coating a Teflon membrane with lipid and then fusing bacteriorhodopsin vesicles to it. An incandescent light source was used to obtain the rise time of the photocurrent in response to a step-function illumination. A fast response, less than 1 ms, characterizes the initial rise and decay of the photocurrent. The trailing edge of the rise and trailing edge of the decay each exhibit different time constants both greater than 1 ms. These slower components show a sensitivity to membrane charging, the presence of diethylether in the bathing solution, and the presence of a charged cation complex in the lipid region. The photoresponse is not analyzed by means of the usual equivalent electrical circuit, but rather in terms of image charges in the conducting electrolyte bathing the membrane. Further experiments using a pulsed laser (pulse width less than 1 microseconds) resolve at least three time constants in the photoresponse: 0.057 ms, 1.06 ms, and 13 ms. Three distinct charge displacements (4.4, 7.5, and 33.1 A) are derived from the data, each corresponding to one of the above time constants. 相似文献
14.
Dimeric circular chromosomes, formed by recombination between monomer sisters, cannot be segregated to daughter cells at cell division. XerCD site-specific recombination at the Escherichia coli dif site converts these dimers to monomers in a reaction that requires the DNA translocase FtsK. Short DNA sequences, KOPS (GGGNAGGG), which are polarized toward dif in the chromosome, direct FtsK translocation. FtsK interacts with KOPS through a C-terminal winged helix domain gamma. The crystal structure of three FtsKgamma domains bound to 8 bp KOPS DNA demonstrates how three gamma domains recognize KOPS. Using covalently linked dimers of FtsK, we infer that three gamma domains per hexamer are sufficient to recognize KOPS and load FtsK and subsequently activate recombination at dif. During translocation, FtsK fails to recognize an inverted KOPS sequence. Therefore, we propose that KOPS act solely as a loading site for FtsK, resulting in a unidirectionally oriented hexameric motor upon DNA. 相似文献
15.
B G Malmstr?m 《FEBS letters》1989,250(1):9-21
16.
17.
Time-resolved Fourier transform infrared spectroscopy of the polarizable proton continua and the proton pump mechanism of bacteriorhodopsin 下载免费PDF全文
Nanosecond-to-microsecond time-resolved Fourier transform infrared (FTIR) spectroscopy in the 3000-1000-cm(-1) region has been used to examine the polarizable proton continua observed in bacteriorhodopsin (bR) during its photocycle. The difference in the transient FTIR spectra in the time domain between 20 ns and 1 ms shows a broad absorption continuum band in the 2100-1800-cm(-1) region, a bleach continuum band in the 2500-2150-cm(-1) region, and a bleach continuum band above 2700 cm(-1). According to Zundel (G., J. Mol. Struct. 322:33-42), these continua appear in systems capable of forming polarizable hydrogen bonds. The formation of a bleach continuum suggests the presence of a polarizable proton in the ground state that changes during the photocycle. The appearance of a transient absorption continuum suggests a change in the polarizable proton or the appearance of new ones. It is found that each continuum has a rise time of less than 80 ns and a decay time component of approximately 300 micros. In addition, it is found that the absorption continuum in the 2100-1800-cm(-1) region has a slow rise component of 190 ns and a fast decay component of approximately 60 micros. Using these results and those of the recent x-ray structural studies of bR(570) and M(412) (H. Luecke, B. Schobert, H.T. Richter, J.-P. Cartailler, and J. K., Science 286:255-260), together with the already known spectroscopic properties of the different intermediates in the photocycle, the possible origins of the polarizable protons giving rise to these continua during the bR photocycle are proposed. Models of the proton pump are discussed in terms of the changes in these polarizable protons and the hydrogen-bonded chains and in terms of previously known results such as the simultaneous deprotonation of the protonated Schiff base (PSB) and Tyr185 and the disappearance of water molecules in the proton release channel during the proton pump process. 相似文献
18.
Control of bacteriorhodopsin color by chloride at low pH. Significance for the proton pump mechanism
The chromophore of bacteriorhodopsin undergoes a transition from purple (570 nm absorbance maximum) to blue (605 nm absorbance maximum) at low pH or when the membrane is deionized. The blue form was stable down to pH 0 in sulfuric acid, while 1 M NaCl at pH 0 completely converted the pigment to a purple form absorbing maximally at 565 Other acids were not as effective as sulfuric in maintaining the blue form, and chloride was the best anion for converting blue membrane to purple membrane at low pH. The apparent dissociation constant for Cl- was 35 mM at pH 0, 0.7 M at pH 1 and 1.5 M at pH 2. The pH dependence of apparent Cl- binding could be modeled by assuming two different types of chromophore-linked Cl- binding site, one pH-dependent. Chemical modification of bacteriorhodopsin carboxyl groups (probably Asp-96, -102 and/or -104) by 1-ethyl-3-dimethlyaminopropyl carbodiimide, Lys-41 by dansyl chloride, or surface arginines by cyclohexanedione had no effect on the conversion of blue to purple membrane at pH 1. Fourier transform infrared difference spectroscopy of chloride purple membrane minus acid blue membrane showed the protonation of a carboxyl group (trough at 1392 cm -1 and peak at 1731 cm -1). The latter peak shifted to 1723 cm -1 in D2O. Ultraviolet difference spectroscopy of chloride purple membrane minus acid blue membrane showed ionization of a phenolic group (peak at 243 nm and evidence for a 295 nm peak superimposed on a tryptophan perturbation trough). This suggests the possibility of chloride-induced proton transfer from a tyrosine phenolic group to a carboxylate side-chain. We propose a mechanism for the purple to acid blue to chloride purple transition based on these results and the proton pump model of Braiman et al. (Biochemistry 27 (1988) 8516-8520). 相似文献
19.
《BBA》1985,809(2):181-186
The pH-dependence of proton motion during the photocycle was investigated by measuring the photoelectric signals due to charge displacement inside bacteriorhodopsin molecules. Measurements were performed on purple membranes oriented in suspension and the kinetics of flash excited electric and light absorption signals was compared. It was found that in the pH range 4.5–8 the photocycle and the successive proton movements have identical kinetics, and do not depend on pH. In the pH range 8–10 both kinetics change, though differently; the charge motion decouples from the photocycle and the photocycle seems to split up into two parallel paths, the photoelectric signal becomes faster. However, the net proton transfer remains the same as at lower pH values. Above pH ≈ 10, the photocycle behaves differently and cannot be described by the parallel pathway model and the net proton displacement drops. The results are explained by the successive titration of two groups (probably tyrosine) participating in proton translocation. 相似文献
20.
A proton channel in bacteriorhodopsin 总被引:1,自引:0,他引:1