首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melatonin (MLT) is a strong free-radical scavenger, which protects the body from the effects of oxidants. In recent years, MLT have been described resulting in much attention in the development of synthetic compounds possessing. As a part of our ongoing study a series of indole-based MLT analogue hydrazide/hydrazone derivatives were synthesized, characterized and in vitro antioxidant activity was investigated by evaluating their reducing effect against oxidation of a redox sensitive fluorescent probe. Membrane stabilizing effect of all compounds was also investigated by lactate dehydrogenase leakage assay. Furthermore voltammetric methods have been applied to the synthesized compounds to characterize oxidation potentials to get insight into their metabolism owing to the oxidation mechanisms taking place at the electrode and in the body share similar principles.  相似文献   

2.
Overproduction of reactive oxygen species results in oxidative stress that can cause fatal damage to vital cell structures. It is known that the use of antioxidants could be beneficial in the prevention or delay of numerous diseases associated with oxidative stress. Melatonin (MLT) is known as a powerful free-radical scavenger and antioxidant. It was found that indole ring of MLT can be employed by bioisosteric replacement by other aromatic rings. Quinoline derivatives constitute an important class of compounds for new drug development. Owing to quinoline and hydrazones appealing physiological properties and are mostly found in numerous biologically active compounds a series of quinoline-2-carbaldehyde hydrazone derivatives were synthesized as bioisosteric analogues of MLT, characterized and in vitro antioxidant activity was investigated by evaluating their reducing effect against oxidation of a redox-sensitive fluorescent probe. Cytotoxicity potential of all compounds was investigated both by lactate dehydrogenase leakage assay and by MTT assay.  相似文献   

3.
Oxidative stress has been recognized as a contributing factor in ageing and various diseases including cancer and neuropathological disorders. Indole derivatives such as the neurohormone melatonin (MLT) constitute an important class of therapeutic agent in medicinal chemistry. MLT can scavenge different reactive oxygen species and can also stimulate the synthesis of antioxidant enzymes. As a part of our ongoing studies, a series of new indole-based hydrazide/hydrazone derivatives were synthesized as MLT analogues. Their antioxidant activity was investigated in human erythrocytes by evaluating their reducing effect against oxidation of a redox-sensitive fluorescent probe. Possible inherent cytotoxicity of the compounds was investigated in CHO-K1 cells by lactate dehydrogenase leakage test. Protection of neuronal PC12 cells against amyloid β-induced damage was examined by MTT assay and their ability in reduction of ROS generation induced by amyloid β was tested. MLT analogues having an o-halogenated aromatic moiety exhibited effective antioxidant properties without having any membrane-damaging effect. Moreover, derivatives having o-halogenated and dihalogenated aromatic side chain significantly protected neuronal cells at concentrations of 10 and 100 μM. In conclusion, MLT derivatives represent promising scaffolds for discovery of effective antioxidant and neuroprotective agents.  相似文献   

4.
Melatonin (MLT) is a hormone synthesized from the pineal gland. It is a direct scavenger of free radicals, which is related to its capability to defend cells from oxidative stress. Recently MLT-related compounds are under investigation to establish which exhibit the maximum activity with the lowest side effects. In this study 5-chloroindole hydrazide/hydrazone derivatives were synthesized from 5-chloroindole-3-carboxaldehyde and phenyl hydrazine derivatives. All the compounds characterized and in vitro antioxidant activity was investigated against MLT and BHT. Most of the compounds showed strong inhibitory effect on the superoxide radical scavenging assay at 1?mM concentration (79 to 95%). Almost all the tested compounds possessed strong scavenging activity against the DPPH radical scavenging activity with IC50 values (2 to 60 µM). Lastly, compound 1j revealed stronger inhibitory activity against MLT in the LP inhibitory assay at 0.1mM concentration (51%) while the rest of the compounds showed moderate inhibition.  相似文献   

5.
Melatonin (MLT) is a hormone produced in the brain by the pineal gland, from the amino acid tryptophan. It is also an antioxidant hormone with a particular role in the protection of nuclear and mitochondrial DNA. In recent years, many physiological properties of MLT have been described resulting in much attention in the development of synthetic compounds possessing the indole ring. Sixteen MLT analogue indole hydrazide/hydrazone derivatives were synthesized and in vitro antioxidant activity was investigated. Most of the compounds showed significantly higher activity than MLT at 10? 3 M and 10? 4 M concentrations.  相似文献   

6.
New, except 1d, melatonin analogue benzimidazole derivatives were synthesized and characterized in the present study. The potential role of melatonin as an antioxidant by scavenging and detoxifying ROS raised the possibility that compounds that are analogous to melatonin can also be used for their antioxidant properties. Therefore the antioxidant effects of the newly synthesized compounds were investigated in vitro by means of their inhibitory effect on hydrogen peroxide-induced erythrocyte membrane lipid peroxidation (EMLP) and on various erythrocyte antioxidant enzymes viz. superoxide dismutase (SOD), catalase (CAT) and glucose-6-phosphate dehydrogenase (G6PD). The synthesized benzimidazole derivatives showed remarkable antioxidant activity in vitro in the H2O2-induced EMLP system. Furthermore their effects on various antioxidant enzymes are discussed and evaluated from the perspective of structure- activity relationships.  相似文献   

7.
In this study, we report the design, synthesis and antioxidant activity of a series of substituted 2-(4-aminophenyl)-1H-indoles and 2-(methoxyphenyl)-1H-indoles. The new compounds are structurally related to the known indole-based antioxidant lead compound melatonin (MLT), and the antitumour 2-(4-aminophenyl)benzothiazole and 2-(3,4-dimethoxyphenyl)benzothiazole series. Efficient access to the target 2-phenylindoles was achieved via Fischer indole synthesis between substituted phenylhydrazines and acetophenones. 2-(4-Aminophenyl)indoles (such as the 6-fluoro analogue 3b) in particular showed potent antioxidant activity in the DPPH and superoxide radical scavenging assays (80% and 81% inhibition at 1 mM concentration of 3b, respectively), at a level comparable with the reference standard MLT (98% and 75% at 1 mM).  相似文献   

8.
A series of new isoxazolyl, triazolyl and phenyl based 3-thiophen-2-yl-quinoline derivatives were synthesized adopting click chemistry approach. In addition, the synthesis of new useful synthon, (2-chloroquinolin-3-yl) (thiophen-2-yl) methanol, is reported. The obtained compounds were characterized by spectral data analysis and evaluated for their anticancer activity. All the derivatives were subjected to in vitro MTT cytotoxicity screening assay against a panel of four different human cancer cell lines, liver (HepG-2), colon (HCT-116), human cervical cancer (HeLa) and breast (MCF-7). Out of a library of 17 compounds, two compounds have been identified as potent and selective cytotoxic agents against HeLa and MCF-7 cell lines. SAR studies for such hybridized analogues were investigated and phenyl derivatives were proved to be more potent than isoxazole and triazole derivatives. Furthermore, the promising compounds were selected for in vitro inhibition of EGFR-TK and Topo II enzymes. Also, they were subjected to cell cycle arrest analysis and apoptosis assay on MCF-7 cells. Our recent finding highlights these thiophene-quinoline analogues as a promising class of compounds for further studies concerning new anticancer therapies.  相似文献   

9.
Nucleophilic aromatic substitution (SNAr) chemistry has been applied to develop many functionalized pentafluorobenzene derivatives. Those compounds are highly specific at the para position of the fluorinated ring. Therefore, they are typical adducts for the preparation of antioxidant molecular systems. In this context, we report the use of SNAr chemistry as a suitable and simple approach for the synthesis of fluorescent antioxidant perfluorinated materials bearing ether bonds in various para-substituted alkoxy chains and with high purity and excellent yields. The fluoroterphenyl core was prepared via alkylation, Cu(I)-assisted decarboxylation, and cross-coupling using the potassium salt of fluorobenzoate, followed by the reaction with different alcohols. The structures of the synthesized fluoroterphenyl adducts were investigated using FT-IR, 1H NMR, 13C NMR, and 19F NMR spectroscopy. The emission spectra and absorption spectra showed solvatochromism. The newly prepared tetrafluoroterphenyl analogues were investigated by antioxidant examination using the 2,2-diphenyl-1-picrylhydrazyl assay. Results were compared with ascorbic acid and butylated hydroxytoluene as references, and revealed that the tetrafluoroterphenyl analogues containing a decyl chain had the highest activity, with an IC50 value of 22.36 ± 0.19 g/ml. The produced tetrafluoroterphenyl analogues were used in molecular docking strategies with a Protein Data Bank protein ID 5IKQ. The antioxidant investigations and docking results were convergent.  相似文献   

10.
A series of new di- and polyamine-caffeine analogues were synthesised and characterised by NMR, FT-IR, and MS spectroscopic methods. To access the stability of the investigated caffeine analogues, molecular dynamic simulations were performed in NAMD 2.9 assuming CHARMM36 force field. To evaluate the antioxidant capacity of new compounds, three different antioxidant assays were used, namely 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH?) scavenging activity, ferrous ions (Fe2+) chelating activity, and Fe3+→Fe2+reducing ability. In vitro, the ability of new derivatives to protect human erythrocytes against oxidative haemolysis induced by free radical from 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH) was estimated. The cytotoxic activity was tested using MCF-7 breast cancer cells and human erythrocytes. All compounds showed the antioxidant capacity depending mostly on their ferrous ions chelating activity. In the presence of AAPH, some derivatives were able to effectively inhibit the oxidative haemolysis. Two derivatives, namely 8-(methyl(2-(methylamino)ethyl)-amino)caffeine and 8-(methyl(3-(methylamino)propyl)amino)caffeine, showed cytotoxic activity against MCF-7 breast cancer cells but not against human erythrocytes. Therefore, it is concluded that the selected di- and polyamine caffeine analogues, depending on their chemical structure, were able to minimise the oxidative stress and to inhibit the tumour cell growth. The confirmed antioxidant and cytotoxic properties of some caffeine derivatives make them attractive for potential applications in food or pharmaceutical industries.  相似文献   

11.
A series of novel thiazolo[3,2‐a]pyrimidines were synthesized and characterized by FT‐IR, 1H, 13C‐NMR and mass techniques. Their antioxidant activities were investigated by 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical scavenging assay and the results showed that all the synthesized compounds exhibit good antioxidant activity. In addition, it was found that any substituent on the aromatic ring of the products plays an important role in their antioxidant activity. In vitro cytotoxicity of compounds 4a – 4j was investigated using MTT cell viability assay. Among these compounds, 6‐ethyl 2,3‐dimethyl 5‐(4‐chlorophenyl)‐7‐methyl‐2,3‐dihydro‐5H‐[1,3]thiazolo[3,2‐a]pyrimidine‐2,3,6‐tricarboxylate ( 4e ) bearing a chlorine substituent displayed the highest cytotoxic effect (IC50=6.26±0.6 μm ) in comparison with doxorubicin (IC50=0.68±0.1 μm ) as a standard after 72 h. Therefore, it is assumed that these compounds could be used as effective antioxidant and cytotoxic agents.  相似文献   

12.
Melatonin (MLT) is a hormone synthesized from the pineal gland. It is a direct scavenger of free radicals, which is related to its capability to defend cells from oxidative stress. Recently MLT-related compounds are under investigation to establish which exhibit the maximum activity with the lowest side effects. In this study 5-chloroindole hydrazide/hydrazone derivatives were synthesized from 5-chloroindole-3-carboxaldehyde and phenyl hydrazine derivatives. All the compounds characterized and in vitro antioxidant activity was investigated against MLT and BHT. Most of the compounds showed strong inhibitory effect on the superoxide radical scavenging assay at 1?mM concentration (79 to 95%). Almost all the tested compounds possessed strong scavenging activity against the DPPH radical scavenging activity with IC(50) values (2 to 60 μM). Lastly, compound 1j revealed stronger inhibitory activity against MLT in the LP inhibitory assay at 0.1mM concentration (51%) while the rest of the compounds showed moderate inhibition.  相似文献   

13.
Four novel N-isobutyryl-l-cysteine/2-mercaptoethylamine (MEA, cysteamine) conjugates have been designed and synthesized. The antioxidant activities of these new series were evaluated by three different free radical scavenging methods (DPPH test, ABTS test, and deoxyribose assay) and their metal binding capacity was evaluated by the ethidium bromide fluorescence binding assay. These results were compared with those obtained with their pro-GSH acetyl analogues recently developed in our laboratory. We observed that most of these compounds exhibit free radical-scavenging activities similar to those of Trolox, but always superior than NAC. While none of these new derivatives had pro-GSH activities, they displayed anti-HIV properties in human monocyte-derived macrophages infected in vitro. The present study demonstrates that these new N-isobutyryl derivatives, which are expected to have a greater bioavailability than their acetyl analogues, may have useful applications in HIV infection in respect to their antioxidant and anti-HIV activities.  相似文献   

14.
Melatonin (MLT) is a hormone produced in the brain by the pineal gland, from the amino acid tryptophan. It is also an antioxidant hormone with a particular role in the protection of nuclear and mitochondrial DNA. In recent years, many physiological properties of MLT have been described resulting in much attention in the development of synthetic compounds possessing the indole ring. Sixteen MLT analogue indole hydrazide/hydrazone derivatives were synthesized and in vitro antioxidant activity was investigated. Most of the compounds showed significantly higher activity than MLT at 10(-3) M and 10(-4) M concentrations.  相似文献   

15.
Novel series of bis- and tris-pyrrolo[1,2-a]quinoxaline derivatives 1 were synthesized and tested for in vitro activity upon the intraerythrocytic stage of W2 and 3D7 Plasmodium falciparum strains. Biological results showed good antimalarial activity with IC50 in the μM range. In attempting to investigate the large broad-spectrum antiprotozoal activities of these new derivatives, their properties toward Leishmania donovani were also investigated and revealed their selective antiplasmodial profile. In parallel, the in vitro cytotoxicity of these molecules was assessed on the human HepG2 cell line. Structure–activity relationships of these new synthetic compounds are discussed here. The bis-pyrrolo[1,2-a]quinoxalines 1n and 1p were identified as the most potent antimalarial candidates with selectivity index (SI) of 40.6 on W2 strain, and 39.25 on 3D7 strain, respectively. As the telomeres of the parasite could constitute an attractive target, we investigated the possibility of targeting Plasmodium telomeres by stabilizing the Plasmodium telomeric G-quadruplexes through a FRET melting assay by our new compounds.  相似文献   

16.
In search for new fungicidal and free radical scavenging agents, we synthesized a focused library of 2‐chloroquinoline based monocarbonyl analogs of curcumin (MACs). The synthesized MACs were evaluated for in vitro antifungal and antioxidant activity. The antifungal activity was evaluated against five different fungal strains such as Candida albicans, Fusarium oxysporum, Aspergillus flavus, Aspergillus niger, and Cryptococcus neoformans, respectively. Most of the synthesized MACs displayed promising antifungal activity compared to the standard drug Miconazole. Furthermore, molecular docking study on a crucial fungal enzyme sterol 14α‐demethylase (CYP51) could provide insight into the plausible mechanism of antifungal activity. MACs were also screened for in vitro radical scavenging activity using butylated hydroxytoluene (BHT) as a standard. Almost all MACs exhibited better antioxidant activity compared to BHT.  相似文献   

17.
Curcumin has antioxidant properties resulting from its radical scavenging ability and inhibition of inflammation-associated factors. However, its lack of solubility, instability, and poor bioavailability are impediments to its therapeutic use. As potential alternatives, we synthesized and performed chemical analysis of thirty diarylidene-N-methyl-4-piperidone (DANMP), diheteroarylidene-N-methyl-4-piperidone (DHANMP), and spirobibenzopyran (SBP) derivatives, one of which was also characterized by single crystal X-ray diffraction. All compounds were evaluated for antioxidant activity via 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and for drug-like properties in silico. A subset of five compounds was investigated in terms of aqueous solubilities, which were significantly improved compared to that of curcumin. In vitro assessments of cellular and anti-inflammatory effects were conducted via real time polymerase chain reaction (RT-PCR) and Griess assays to evaluate the presence of inflammatory/activated (M1) markers and production of nitric oxide (NO) species, which are associated with inflammation. The five compounds reduced levels of markers and NO to extents similar to or better than curcumin in inflamed cells, and showed no adverse effects on cell viability. We show that these compounds possess anti-inflammatory properties and may be used as curcumin-substitutes with improved characteristics.  相似文献   

18.
《Free radical research》2013,47(12):1473-1484
Abstract

A series hydroxycinnamic and gallic acids and their derivatives were studied with the aim of evaluating their in vitro antioxidant properties both in homogeneous and in cellular systems. It was concluded from the oxygen radical absorbance capacity-fluorescein (ORAC-FL), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and cyclic voltammetry data that some compounds exhibit remarkable antioxidant properties. In general, in homogeneous media (DPPH assay), galloyl-based cinnamic and benzoic systems (compounds 7–11) were the most active, exhibiting the lowest oxidation potentials in both dimethyl sulfoxide (DMSO) and phosphate buffer. Yet, p-coumaric acid and its derivatives (compounds 1–3) disclosed the highest scavenging activity toward peroxyl radicals (ORAC-FL assay). Interesting structure–property– activity relationships between ORAC-FL, or DPPH radical, and redox potentials have been attained, showing that the latter parameter can be a valuable antioxidant measure. It was evidenced that redox potentials are related to the structural features of cinnamic and benzoic systems and that their activities are also dependent on the radical generated in the assay. Electron spin resonance data of the phenoxyl radicals generated both in DMSO and phosphate buffer support the assumption that radical stability is related to the type of phenolic system. Galloyl-based cinnamic and benzoic ester-type systems (compounds 9 and 11) were the most active and effective compounds in cell-based assays (51.13 ± 1.27% and 54.90 ± 3.65%, respectively). In cellular systems, hydroxycinnamic and hydroxybenzoic systems operate based on their intrinsic antioxidant outline and lipophilic properties, so the balance between these two properties is considered of the utmost importance to ensure their performance in the prevention or minimization of the effects due to free radical overproduction.  相似文献   

19.
Abstract

New 1,3,4-thiadiazole thioglycosides linked to substituted pyrimidines were synthesized via glycosylation of 1,3,4-thiadiazole thiol compounds. Also, novel 1,2,3-triazole derivatives linked to carbohydrate units were prepared using the standard click chemistry conditions employing the Cu(I)-catalyzed azide-alkyne cycloaddition of substituted-aryl-azides with a selection of alkyne-functionalized sugars. The chemical structures of the new derivatives were verified using various spectroscopic techniques, such as IR, 1H NMR, 13C NMR and elemental analyses. The cytotoxic activities of the prepared compounds were investigated in vitro against human liver cancer (HepG-2) and human breast adenocarcinoma (MCF7) cell lines. In addition, the biological evaluation of the new compounds involved the investigation of their effects on a human normal retinal pigmented epithelial cell line (RPE1) using the MTT assay.  相似文献   

20.
An efficient diastereoselective synthesis of spirocyclopropaneoxindoles is reported using three‐component reactions of various phenacylidenetriphenylphosphorane, isatins and phenacyl bromide under ultrasonic irradiation. The structures of synthesized spirocyclopropaneoxindoles were characterized by their spectral data. The antioxidant activities of the synthesized compounds were evaluated by 1,1‐diphenyl‐2‐picrylhydrazyl radical scavenging assay. Among the products, those with NH group in their structure exhibited higher antioxidant activities than other derivatives. Also, in vitro cytotoxicity of compounds 4b , 4e , 4j , 4k were examined against heLa cancer cell lines using MTT assay. The results revealed that compound 4j with chlorine substituent on phenyl group displayed higher cytotoxicity activity (IC50=4.50±0.30 μg/mL) after 48 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号