首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
CD2-associated protein (CD2AP) is an adaptor molecule involved in T cell receptor signaling and podocyte homeostasis. CD2AP-deficient mice develop nephrotic syndrome and renal failure caused by glomerulosclerosis. Here we report that increased transforming growth factor-beta1 (TGF-beta1) expression and apoptosis were present in podocytes at the onset of albuminuria and were followed by depletion of podocytes associated with progressive focal-segmental glomerulosclerosis in CD2AP-/- mice. Conditionally immortalized podocytes derived from CD2AP-/- mice were more susceptible to TGF-beta-induced apoptosis compared with CD2AP+/+ podocytes. Reconstitution of CD2AP rescued CD2AP-/- podocytes from TGF-beta-induced apoptosis. CD2AP was required for early activation of anti-apoptotic phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase 1/2 by TGF-beta. In contrast, activation of pro-apoptotic p38 MAPK by TGF-beta was accelerated and enhanced in the absence of CD2AP. CD2AP was not required for PI3K/AKT activation by insulin and epidermal growth factor, indicating that CD2AP is a selective mediator of anti-apoptotic TGF-beta signaling. In summary, we identified CD2AP as a novel mediator for selective activation of survival pathways and repression of apoptosis signaling by TGF-beta in podocytes. Together, our in vitro and in vivo findings suggest that TGF-beta-induced podocyte apoptosis is an early pathomechanism in mice developing focal-segmental glomerulosclerosis associated with functional impairment of CD2AP.  相似文献   

2.
Protosappanin‐A (PrA) and oleanolic acid (OA), which are important effective ingredients isolated from Caesalpinia sappan L., exhibit therapeutic potential in multiple diseases. This study focused on exploring the mechanisms of PrA and OA function in podocyte injury. An in vitro model of podocyte injury was induced by the sC5b‐9 complex and assays such as cell viability, apoptosis, immunofluorescence, quantitative real‐time polymerase chain reaction, and western blot were performed to further investigate the effects and mechanisms of PrA and OA in podocyte injury. The models of podocyte injury were verified to be successful as seen through significantly decreased levels of nephrin, podocin, and CD2AP and increased level of desmin. The sC5b‐9‐induced podocyte apoptosis was inhibited in injured podocytes treated with PrA and OA, accompanied by increased protein levels of nephrin, podocin, CD2AP, and Bcl2 and decreased levels of desmin and Bax. The p‐AKT/p‐mTOR levels were also reduced by treatment of PrA and OA while AKT/mTOR was unaltered. Further, the effects of PrA and OA on injured podocytes were similar to that of LY294002 (a PI3K‐AKT inhibitor). PrA and OA were also seen to inhibit podocyte apoptosis and p‐AKT/p‐mTOR levels induced by IGF‐1 (a PI3K‐AKT activator). Our data demonstrate that PrA and OA can protect podocytes from injury or apoptosis, which may occur through inhibition of the abnormal activation of AKT‐mTOR signaling.  相似文献   

3.
Angiotensin II (Ang II) works as a paracrine or autocrine cytokine agent to regulate renal functions and promotes podocytes dysfunction directly or indirectly, causing proteinuria. The glomerular slit diaphragm (SD) serves as a size-selective barrier and is linked to the actin-based cytoskeleton by adaptor proteins, including CD2-associated protein (CD2AP). Therefore, damages to CD2AP affect not only the function of the SD, but also directly disrupt the podocyte cytoskeleton, leading to proteinuria. In addition, CD2AP can facilitate the nephrin-induced phosphoinositide 3-kinase (PI3-K)/Akt signaling, which protects podocytes from apoptosis. Here we found that CD2AP staining was located diffusely but predominantly in the peripheral cytoplasm and CD2AP co-localized with nephrin in mouse podocytes; however, Ang II decreased CD2AP staining diffusely and induced a separation from concentrated nephrin. Ang II notably reduced CD2AP expression in time- and concentration-dependent manners, and this was significantly recovered by losartan. Ang II induced podocyte apoptosis in time- and concentration-dependent manners in TUNEL and FACS assays. LY294002, a PI3-K inhibitor, further reduced CD2AP expression and increased podocyte apoptosis, which was augmented by siRNA for CD2AP. Thus, Ang II induces the relocalization and reduction of CD2AP via AT1R, which would cause podocyte apoptosis by the suppression of CD2AP/PI3-K signaling.  相似文献   

4.
Mutations of NPHS1 or NPHS2, the genes encoding nephrin and podocin, as well as the targeted disruption of CD2-associated protein (CD2AP), lead to heavy proteinuria, suggesting that all three proteins are essential for the integrity of glomerular podocytes, the visceral glomerular epithelial cells of the kidney. It has been speculated that these proteins participate in common signaling pathways; however, it has remained unclear which signaling proteins are actually recruited by the slit diaphragm protein complex in vivo. We demonstrate that both nephrin and CD2AP interact with the p85 regulatory subunit of phosphoinositide 3-OH kinase (PI3K) in vivo, recruit PI3K to the plasma membrane, and, together with podocin, stimulate PI3K-dependent AKT signaling in podocytes. Using two-dimensional gel analysis in combination with a phosphoserine-specific antiserum, we demonstrate that the nephrin-induced AKT mediates phosphorylation of several target proteins in podocytes. One such target is Bad; its phosphorylation and inactivation by 14-3-3 protects podocytes against detachment-induced cell death, suggesting that the nephrin-CD2AP-mediated AKT activity can regulate complex biological programs. Our findings reveal a novel role for the slit diaphragm proteins nephrin, CD2AP, and podocin and demonstrate that these three proteins, in addition to their structural functions, initiate PI3K/AKT-dependent signal transduction in glomerular podocytes.  相似文献   

5.
Defects in podocyte signaling are the basis of many inherited glomerular diseases leading to glomerulosclerosis. CD2-associated protein (CD2AP) is highly expressed in podocytes and is considered to play an important role in the maintenance of the glomerular slit diaphragm. Mice deficient for CD2AP (CD2AP(-/-)) appear normal at birth but develop a rapid onset nephrotic syndrome at 3 weeks of age. We demonstrate that impaired intracellular signaling with subsequent podocyte damage is the reason for this delayed podocyte injury in CD2AP(-/-) mice. We document that CD2AP deficiency in podocytes leads to diminished signal initiation and termination of signaling pathways mediated by receptor tyrosine kinases (RTKs). In addition, we demonstrate that CIN85, a paralog of CD2AP, is involved in termination of RTK signaling in podocytes. CIN85 protein expression is increased in CD2AP(-/-) podocytes in vitro. Stimulation of CD2AP(-/-) podocytes with various growth factors, including insulin-like growth factor 1, vascular endothelial growth factor, and fibroblast growth factor, resulted in a significantly decreased phosphatidylinositol 3-kinase/AKT and ERK signaling response. Moreover, increased CIN85 protein is detectable in podocytes in diseased CD2AP(-/-) mice, leading to decreased base-line activation of ERK and decreased phosphorylation after growth factor stimulation in vivo. Because repression of CIN85 protein leads to a restored RTK signaling response, our results support an important role of CD2AP/CIN85 protein balance in the normal signaling response of podocytes.  相似文献   

6.
Accumulating evidence has shown that podocyte apoptosis is of vital importance for the development of glomerulosclerosis and progressive loss of renal function. However, the molecular mechanisms leading to podocyte apoptosis are still elusive. In this study, we investigated the role of estrogen-related receptor (ERR) γ in podocyte apoptosis, as well as the underlying mechanisms. Treatment of PAN caused a dose- and time-dependent podocyte apoptosis in line with a significant downregulation of ERRγ. Interestingly, the occurrence of ERRγ downregulation appeared earlier than the onset of cell apoptosis, suggesting a potential that ERRγ reduction triggered apoptotic response in podocyte. To test this hypothesis, ERRγ siRNA was administered to the podocytes. Strikingly, ERRγ silencing resulted in a significant cell apoptosis accompanied with increased injury markers of B7-1 and cathepsin L and decreased podocyte protein nephrin. In contrast, overexpression of ERRγ remarkably attenuated PAN-induced cell apoptosis. Moreover, ERRγ overexpression stimulated PI3K/Akt signaling pathway evidenced by increased expression of PI3K subunits p85α and p110α and phosphorylated Akt. Importantly, a specific PI3K inhibitor LY294002 entirely reversed the anti-apoptotic effect of ERRγ following PAN treatment. Finally, we observed a striking downregulation of ERRγ in PAN-treated rat kidneys, suggesting that our cell model replicated the in vivo condition. Taken together, these data highly suggested that ERRγ played a novel role in modulating podocyte apoptosis by targeting PI3K/Akt signaling pathway.  相似文献   

7.
Proteinuria is a well-established exacerbating factor of chronic kidney diseases. However, the harmful effects of protein overload on podocytes and the underlying mechanisms are still poorly understood. In the present study, we examined the effects of high concentrations of albumin on podocytes and investigated the role of CD2AP (CD2-associated protein) in albumin overload-induced podocyte apoptosis. Conditionally immortalized mouse podocytes were cultured in vitro and treated with different concentrations of BSA. In addition, CD2AP eukaryotic expression vector or siRNA (small interfering RNA) was transfected into podocytes before they were exposed to BSA. Podocyte apoptosis, expressions of active caspase-3 (p17) and CD2AP, and the distribution of F-actin cytoskeleton were detected by flow cytometry, Western-blot analysis and fluorescent staining respectively. It was found that exposure of podocytes to BSA induced podocyte apoptosis in a concentration-dependent manner that was accompanied by up-regulation of active caspase-3, the disruption of F-actin cytoskeleton, and decreased expression of CD2AP. Transfection of CD2AP eukaryotic expression vector into podocytes increased CD2AP expression, partially restored F-actin distribution, blocked active caspase-3 expression and inhibited podocyte apoptosis. In contrast, transfection of CD2AP siRNA deteriorated the above changes induced by BSA. It is concluded that protein overload induces podocyte apoptosis via the down-regulation of CD2AP and subsequent disruption of cytoskeleton of podocytes, and CD2AP may play an important role in protein overload-induced podocyte injury.  相似文献   

8.
CD2相关蛋白在足细胞分化中的作用   总被引:3,自引:0,他引:3  
Jiang HJ  Chang Y  Zhu ZH  Liu JS  Deng AG  Zhang C 《生理学报》2008,60(1):135-142
本文旨在研究肾脏足细胞的分化特点及CD2相关蛋白(CD2-associated protein,CD2AP)在足细胞分化过程中的作用.用RPMI 1640培养基在33.C许可条件下培养永生化小鼠足细胞系(未分化组),转染针对CD2AP的小分子干扰RNA(smallinterfering RNA,siRNA)后置于37.C非许可条件下培养(转染组),并将非许可条件下未转染组作为对照组.用MTT法检测足细胞的生长速度;用RT-PCR方法检测CD2AP、WTI、synaptopodin和nephrin mRNA表达;用Western blot检测CD2AP、wTl和nephrin蛋白表达;用免疫荧光结合激光共聚焦方法检测CD2AP、nephrin、F-actin和tubulin在分化及未分化足细胞中的分布及其共定位情况.结果显示,CD2AP、WTl和nephrin在分化及未分化足细胞中均可稳定表达,而synaptopodin仅表达于已分化足细胞,在未分化足细胞无表达.在足细胞分化过程中,CD2AP和nephrin的表达上调(P<0.05);CD2AP、tubulin和F-actin在细胞内的分布发生改变,CD2AP与nephrin及F-actin在未分化足细胞中存在共定位关系.转染特异性siRNA下调CD2AP表达,细胞生长速度明显减慢,synaptopodin mRNA表达下调(P<0.05),细胞分化迟滞.结果表明,足细胞分化过程中伴随细胞骨架的重新分布和细胞形态的改变;CD2AP可能作为足细胞裂孔隔膜分子与细胞骨架的连接蛋白,在足细胞分化过程中发挥重要作用.  相似文献   

9.
Interaction with podocin facilitates nephrin signaling   总被引:72,自引:0,他引:72  
Mutations of NPHS1 or NPHS2, the genes encoding for the glomerular podocyte proteins nephrin and podocin, cause steroid-resistant proteinuria. In addition, mice lacking CD2-associated protein (CD2AP) develop a nephrotic syndrome that resembles NPHS mutations suggesting that all three proteins are essential for the integrity of glomerular podocytes. Although the precise glomerular function of either protein remains unknown, it has been suggested that nephrin forms zipper-like interactions to maintain the structure of podocyte foot processes. We demonstrate now that nephrin is a signaling molecule, which stimulates mitogen-activated protein kinases. Nephrin-induced signaling is greatly enhanced by podocin, which binds to the cytoplasmic tail of nephrin. Mutational analysis suggests that abnormal or inefficient signaling through the nephrin-podocin complex contributes to the development of podocyte dysfunction and proteinuria.  相似文献   

10.
Zinc plays an important role in maintaining intestinal barrier function as well as modulating cellular signaling recognition and protein kinase activities. The phosphatidylinositol 3-kinase (PI3K) cascade has been demonstrated to affect intercellular integrity and tight junction (TJ) proteins. The current study investigated the hypothesis that zinc regulates intestinal intercellular junction integrity through the PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. A transwell model of Caco-2 cell was incubated with 0, 50 and 100 μM of zinc at various time points. Transepithelial electrical resistance (TEER), paracellular permeability, TJ proteins, cell proliferation, differentiation and cell damage were measured. Compared with controls, 50 and 100 μM of zinc increased cell growth at 6, 12 and 24 h and the expression of proliferating cell nuclear antigen at 24 h. Zinc (100 μM) significantly elevated TEER at 6–24 h and reduced TJ permeability at 24 h, accompanied by the up-regulation of alkaline phosphatase (AP) activity and zonula occludens (ZO)-1 expression. In addition, zinc (100 μM) affected the PI3K/AKT/mTOR pathway by stimulating phosphorylation of AKT and the downstream target mTOR. Inhibition of PI3K signaling by LY294002 counteracted zinc promotion, as shown by a decrease in AP activity, TEER, the abundance of ZO-1 and phosphorylation of AKT and mTOR. Additionally, TJ permeability and the expression of caspase-3 and LC3II (markers of cell damage) were increased by addition of PI3K inhibitor. In conclusion, the activation of PI3K/AKT/mTOR signaling by zinc is involved in improving intestinal barrier function by enhancing cell differentiation and expression of TJ protein ZO-1.  相似文献   

11.
12.
Autophagy is a ubiquitous catabolic process involving degradation of damaged organelles and protein aggregates. It shows cytoprotective effects in many cell types and helps to maintain cell homeostasis. In many glomerular diseases, podocyte damage leads to the disruption of the renal filtration barrier and subsequent proteinuria. Puromycin aminonucleoside (PAN) which induces podocyte apoptosis in vitro and in vivo is widely used for studying the pathophysiology of glomerular diseases. It has been shown that PAN induces autophagy in podocytes. However, the relationship between autophagy and apoptosis in PAN treated human podocytes is not known and the role of PAN-induced autophagy in podocyte survival remains unclear. Here we demonstrate that PAN induced autophagy in human podocytes prior to apoptosis which was featured with the activation of mTOR complex 1 (mTORC1). When the PAN-induced autophagy was inhibited by 3-methyladenine (3-MA) or chloroquine (CQ), podocyte apoptosis increased significantly along with the elevation of active caspase-3. Under such circumstance, the podocyte cytoskeleton was also disrupted. Collectively, our results suggested that the induced autophagy may be an early adaptive cytoprotective mechanism for podocyte survival after PAN treatment.  相似文献   

13.
14.
Emerging evidences show that CD2-associated protein (CD2AP) is involved in podocyte injury and the pathogenesis of proteinuria. However, the exact molecular mechanism by which CD2AP exerts its biological function is elusive. We knocked down CD2AP gene by target siRNA in conditionally immortalized mouse podocytes, which showed lowered cell adhesion and spreading ability (P < 0.05). At the same time, cell cycle was arrested in G2/M phase (P < 0.05), and pathologic nuclear division could easily be seen in CD2AP siRNA-transfected podocytes. The proliferation of podocytes were also inhibited significantly by CD2AP siRNA transfection (P < 0.05). Further study revealed disordered distributions of F-actin, as well as lowered nephrin expression and phosphorylation in podocytes. These data suggest that CD2AP may play a crucial role in maintaining the normal function of podocytes and lowered CD2AP causes podocyte injury by disrupting the cytoskeleton and disturbing the nephrin-CD2AP signaling pathway.  相似文献   

15.
16.
CD40 has been involved in tumor and inflammatory neoangiogenesis. In this study we determined that stimulation of endothelial CD40 with sCD154 induced resistance to apoptosis and in vitro vessel-like formation by human microvascular endothelial cells (HMEC). These effects were determined to be mediated by CD40-dependent signaling because they were inhibited by a soluble CD40-muIg fusion protein. Moreover, apoptosis of HMEC was associated with an impairment of Akt phosphorylation, which was restored by stimulation with sCD154. The anti-apoptotic effect as well as in vitro vessel-like formation and Akt phosphorylation were inhibited by treatment of HMEC with two unrelated pharmacological inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002. CD40 stimulation induced a rapid increase in Akt enzymatic activity that was not prevented by cycloheximide, an inhibitor of protein synthesis. The enhanced Akt activity induced by stimulation of endothelial CD40 was temporarily correlated with the association of CD40 with TRAF6, c-Cbl, and the p85 subunit of PI3K. Expression of negative-dominant Akt inhibited the activation of endogenous Akt through CD40 stimulation, despite the observation that association of CD40 with TRAF6, c-Cbl, and PI3K was intact. The defective activation of Akt abrogated not only the anti-apoptotic effect of CD40 stimulation but also the proliferative response, the enhanced motility, and the in vitro formation of vessel-like tubular structures by CD40-stimulated HMEC. In conclusion, these results suggest that endothelial CD40, through activation of the PI3K/Akt signaling pathway, regulates cell survival, proliferation, migration, and vessel-like structure formation, all steps considered critical for angiogenesis.  相似文献   

17.
S Liu  W Shi  H Xiao  X Liang  C Deng  Z Ye  P Mei  S Wang  X Liu  Z Shan  Y Liang  B Zhang  W Wang  Y Liu  L Xu  Y Xia  J Ma  Z Li 《PloS one》2012,7(7):e41331

Background

Glomerulosclerosis correlates with reduction in podocyte number that occurs through mechanisms which include apoptosis. Podocyte injury or podocyte loss in the renal glomerulus has been proposed as the crucial mechanism in the development of glomerulosclerosis. However, the mechanism by which podocytes respond to injury is poorly understood. TNF and TNF receptor superfamilies are important in the pathogenesis of podocyte injury and apoptosis. The ligand of receptor activator of NF-kappaB (RANKL) and receptor activator of NF-kappaB (RANK) are members of the TNF and receptor superfamilies. We investigated whether RANK - RANKL is a receptor - ligand complex for podocytes responding to injury.

Methodology/Principal Findings

In this study, RANKL and RANK were examined in human podocyte diseases and a rat model of puromycin aminonucleoside nephrosis (PAN). Compared with controls, RANK and RANKL were increased in both human podocyte diseases and the rat PAN model; double immunofluorescence staining revealed that RANK protein expression was mainly attributed to podocytes. Immunoelectron microscopy showed that RANK was localized predominantly at the top of the foot process membrane and the cytoplasm of rat podocyte. In addition, RANK was upregulated in mouse podocytes in vitro after injury induced by puromycin aminonucleoside (PA). Knockdown of RANK expression by small interference RNA (siRNA) exacerbated podocyte apoptosis induced by PA. However, RANKL inhibited significantly the apoptosis of podocytes induced by PA.

Conclusions/Significance

These findings suggest the increase in RANK–RANKL expression is a response to podocyte injury, and RANK–RANKL may be a novel receptor–ligand complex for the survival response during podocyte injury.  相似文献   

18.
While mitogen-activated protein kinase (MAPK) activation has been implicated in the pathogenesis of various glomerular diseases, including nephrotic syndrome (NS), its specific role in podocyte injury is not known. We hypothesized that MK-2, a downstream substrate of p38 MAPK, mediates the adverse effects of this pathway and that inhibition of MK-2 would protect podocytes from NS-related injury. Using cultured podocytes, we analyzed 1) the roles of MK-2 and p38 MAPK in puromycin aminonucleoside (PAN)-induced podocyte injury; 2) the ability of specific MK-2 and p38 MAPK inhibitors to protect podocytes against injury; 3) the role of serum albumin, known to induce podocyte injury, in activating p38 MAPK/MK-2 signaling; and 4) the role of p38 MAPK/MK-2 signaling in the expression of Cox-2, an enzyme associated with podocyte injury. Treatment with protein kinase inhibitors specific for both MK-2 (C23, a pyrrolopyridine-type compound) or p38 MAPK (SB203580) reduced PAN-induced podocyte injury and actin cytoskeletal disruption. Both inhibitors reduced baseline podocyte p38 MAPK/MK-2 signaling, as measured by the degree of phosphorylation of HSPB1, a downstream substrate of MK-2, but exhibited disparate effects on upstream signaling. Serum albumin activated p38 MAPK/MK-2 signaling and induced Cox-2 expression, and these responses were blocked by both inhibitors. Given the critical importance of podocyte injury to both NS and other progressive glomerular diseases, these data suggest an important role for p38 MAPK/MK-2 signaling in podocyte injury and identify MK-2 inhibition as a promising potential therapeutic strategy to protect podocytes in various glomerular diseases.  相似文献   

19.
The phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway is one of the well-characterized and most important signaling pathways activated in response to DNA damage. This review discusses the most recent discoveries on the involvement of PI3K/Akt signaling pathway in cancer development, as well as stimulation of some important signaling networks involved in the maintenance of cellular homeostasis upon DNA damage, with an exploration of how PI3K/Akt signaling pathway contributes to the regulation of modulators and effectors underlying DNA damage response, the intricate, protein-based signal transduction network, which decides between cell cycle arrest, DNA repair, and apoptosis, the elimination of irreparably damaged cells to maintain homeostasis. The review continues by looking at the interplay between cell cycle checkpoints, checking the repair of damage inflicted to the DNA before entering DNA replication to facilitate DNA synthesis, and PI3K/Akt signaling pathway. We then investigate the challenges the cells overcome to ameliorate damages induced by oxidative activities, for example, the recruitment of many pathways and factors to maintain integrity and hemostasis. Finally, the review provides a discussion of how cells use the PI3K/Akt signaling pathway to regulate the balance between these networks.  相似文献   

20.
We found that in MCF-7 breast carcinoma cells, PI3K and Akt suppressed a dose-dependent induction of apoptosis by tumor necrosis factor alpha (TNF). PI3K and Akt stimulated NF-kappaB activation in a dose-dependent manner, suggesting a common link between these two pathways. TNF has been shown to activate both an apoptotic cascade, as well as a cell survival signal through NF-kappaB. PI3K and AKT cell survival signaling were correlated with increased TNF-stimulated NF-kappaB activity in MCF-7 cells. We demonstrate that while both TNFR1 and NIK are partially involved in Akt-induced NF-kappaB stimulation, a dominant negative IkappaBalpha completely blocked Akt-NF-kappaB cross-talk. PI3K-Akt signaling activated NF-kappaB through both TNFR signaling-dependent and -independent mechanisms, potentially representing a mechanism by which Akt functions to suppress apoptosis in cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号