首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plastic consumables, used universally in bioscience laboratories, are presumed inert with respect to bioassay outcomes. However, it is clear that many pipette tips, microfuge tubes, and other plastic disposables leach bioactive compounds into assay solutions, profoundly affecting data and experimental interpretation. In this paper we discuss the nature and sources of leachates and review several examples of compromised bioassay data that speak to the probable widespread nature of this largely unrecognised source of error. Strategies for minimizing leachate interferences are discussed.  相似文献   

2.
An assessment of potential contamination risk associated with devices routinely used in hospitals and clinical laboratories for sampling and storage of whole blood and serum was made by analysis of leachates from the devices. The devices checked were disposable stainless steel needles, different types of blood collection tubes; serum separation tubes, disposable plastic pipettes and plastic vials used for serum storage. Concentrations of about 70 elements in solution after leaching with 0.05 mol l(-1) HNO3 were determined by double focusing sector field inductively coupled plasma mass spectrometry (sector field ICP-MS). For the elements present in blood/serum at concentrations higher than 10 ng ml(-1) (Na, Ca, Mg, P, Fe, Br, Si, Zn, Cu, Rb, Se and I) contribution from devices was as a rule negligible (less than 1% of expected concentrations in the body fluids), but for the majority of trace and ultra-trace elements it may significantly affect or even prevent accurate determination. The highest trace element contribution was found to derive from commercially available blood collection and serum separation tubes. Apparent concentrations of Al, Ba, Th, rare earth, and some other elements resulting from contamination were higher than normal serum concentrations all types of tubes tested for.  相似文献   

3.
Plastic pipes used to convey hot and cold drinking water are synthetic polymers containing numerous additives that enhance durability, impact strength, and toughness, and resist material degradation. Although some research studies have been conducted to evaluate the type and levels of chemical substances migrating from polymeric materials into drinking water, the potential adverse health effects associated with these compounds in potable water have not been described. This review evaluates the literature on the occurrence of regulated and unregulated substances in drinking water related to the use of plastic pipes, characterizes potential health hazards, and describes uncertainties associated with human health and exposure in need of further research. Of particular public health concern is the potential for sensitive populations to be exposed to short-term elevations in leachates during critical periods, and for co-occurring leachates targeting the same organ(s) and/or sharing a common mode of toxic action to have additive or synergistic effects. Contaminants are measured in the distribution system, not at the tap where human exposure actually occurs. For increased health protection, it is important to identify compounds that migrate from plastic pipes into drinking water and to better quantify human exposures and health hazards to these substances and their degradates.  相似文献   

4.
The Abl tyrosine kinases, Abl and Arg, play a role in the regulation of the actin cytoskeleton by modulating cell-cell adhesion and cell motility. Deregulation of both the actin cytoskeleton and Abl kinases have been implicated in cancers. Abl kinase activity is elevated in a number of metastatic cancers and these kinases are activated downstream of several oncogenic growth factor receptor signaling pathways. However, the role of Abl kinases in regulation of the actin cytoskeleton during tumor progression and invasion remains elusive. Here we identify the Abl kinases as essential regulators of invadopodia assembly and function. We show that Abl kinases are activated downstream of the chemokine receptor, CXCR4, and are required for cancer cell invasion and matrix degradation induced by SDF1α, serum growth factors, and activated Src kinase. Moreover, Abl kinases are readily detected at invadopodia assembly sites and their inhibition prevents the assembly of actin and cortactin into organized invadopodia structures. We show that active Abl kinases form complexes with membrane type-1 matrix metalloproteinase (MT1-MMP), a critical invadopodia component required for matrix degradation. Further, loss of Abl kinase signaling induces internalization of MT1-MMP from the cell surface, promotes its accumulation in the perinuclear compartment and inhibits MT1-MMP tyrosine phosphorylation. Our findings reveal that Abl kinase signaling plays a critical role in invadopodia formation and function, and have far-reaching implications for the treatment of metastatic carcinomas.  相似文献   

5.
The Wiskott-Aldrich syndrome-related protein WAVE2 promotes Arp2/3-dependent actin polymerization downstream of Rho-GTPase activation. The Abelson-interacting protein-1 (Abi-1) forms the core of the WAVE2 complex and is necessary for proper stimulation of WAVE2 activity. Here we have shown that the Abl-tyrosine kinase interacts with the WAVE2 complex and that Abl kinase activity facilitates interaction between Abl and WAVE2 complex members. We have characterized various interactions between Abl and members of the WAVE2 complex and revealed that Abi-1 promotes interaction between Abl and WAVE2 members. We have demonstrated that Abl-dependent phosphorylation of WAVE2 is necessary for its activation in vivo, which is highlighted by the findings that RNA interference of WAVE2 expression in Abl/Arg-/- cells has no additive effect on the amount of membrane ruffling. Furthermore, Abl phosphorylates WAVE2 on tyrosine 150, and WAVE2-deficient cells rescued with a Y150F mutant fail to regain their ability to ruffle and form microspikes, unlike cells rescued with wild-type WAVE2. Together, these data show that c-Abl activates WAVE2 via tyrosine phosphorylation to promote actin remodeling in vivo and that Abi-1 forms the crucial link between these two factors.  相似文献   

6.
The Bcr–Abl oncoprotein is the cause of chronic myelogenous leukemia (CML). Crystal structure analysis suggests that Bcr30–63 is the core of the Bcr–Abl oligomerization interface for aberrant kinase activity; however, the precise role of other residues of Bcr1–72 excluding Bcr30–63 have not been evaluated. In this study, Bcr30–63 was named OD2 and other residues of Bcr1–72 were named OD1. Cytoplasmic transduction peptide (CTP) was used to carry molecules into cytoplasm. CTP-OD1 and CTP-OD2 fusion peptides were expressed from a cold-inducible expression system. Our results demonstrated that both fusion peptides could localize into the cytoplasm, specifically interact with the Bcr–Abl protein and further inhibit growth, induce apoptosis, and decrease the phosphorylation of Bcr–Abl in K562 cell lines. However, the viability of THP-1, a Bcr–Abl negative cell line, was unaffected. These results suggested that CTP-OD1 and CTP-OD2 may be an attractive therapeutic option to inhibit the activation of Bcr–Abl kinase in CML.  相似文献   

7.
The activities of the related Abl and Arg nonreceptor tyrosine kinases are kept under tight control in cells, but exposure to several different stimuli results in a two- to fivefold stimulation of kinase activity. Following the breakdown of inhibitory intramolecular interactions, Abl activation requires phosphorylation on several tyrosine residues, including a tyrosine in its activation loop. These activating phosphorylations have been proposed to occur either through autophosphorylation by Abl in trans or through phosphorylation of Abl by the Src nonreceptor tyrosine kinase. We show here that these two pathways mediate phosphorylation at distinct sites in Abl and Arg and have additive effects on Abl and Arg kinase activation. Abl and Arg autophosphorylate at several sites outside the activation loop, leading to 5.2- and 6.2-fold increases in kinase activity, respectively. We also find that the Src family kinase Hck phosphorylates the Abl and Arg activation loops, leading to an additional twofold stimulation of kinase activity. The autoactivation pathway may allow Abl family kinases to integrate or amplify cues relayed by Src family kinases from cell surface receptors.  相似文献   

8.
Boophone disticha (B. disticha) is a bulbous tropical and subtropical flowering plant widespread in Africa, which is frequently used to treat several human ailments. Until the present, there is no scientific validation on the biological activity of this plant from the Eastern Cape Province of South Africa and as a result, this study aimed to assess the bioactive compounds, free radicals scavenging and anticancer potentials of crude bulb extracts (chloroform, acetone, and ethanol) of Boophone disticha obtained from this geographical location. Standard biochemical techniques and Gas-chromatography mass spectrometry (GCMS) analysis were used to pinpoint the bioactive compounds in the crude extracts sequel to their antioxidant potentials against radicals such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydrogen peroxide and nitric oxide as well as their ferric ion reducing power. In addition, their cytotoxicity effects against Human cervix adenocarcinoma (HeLa) cells were assessed as an in vitro model for anticancer. The phytochemical evaluation of the crude extracts showed the presence of phenolics, flavonoids, and alkaloids. GCMS profiles confirmed the presence of some bioactive compounds in the crude extracts of B. disticha that could be responsible for their biological activities. The plant extracts possessed considerable antioxidant activity and exhibited dose-dependent radicals’ inhibition from all assays carried out. Furthermore, the cytotoxicity effects against HeLa cells recorded inhibition concentration (IC50) of 1.5, 1.6, and 1.9 µg/mL for acetone, chloroform, and ethanolic extracts of B. disticha, respectively. Findings from the present study suggest that B. disticha could be a good prospective source of antioxidant and anticancer agents. Therefore, further research on the isolation and purification of compounds from these extracts are indispensable.  相似文献   

9.
How do Abl family kinases regulate cell shape and movement?   总被引:10,自引:0,他引:10  
Genetic analysis and studies of normal and leukemia cells in culture have shown that Abl family nonreceptor tyrosine kinases regulate cell morphogenesis and motility. Abl family kinases, which include Drosophila (D-) Abl and the vertebrate Abl and Arg proteins, relay signals from cell surface growth-factor and adhesion receptors to promote cytoskeletal rearrangements. Recent biochemical and crystallographic analyses have clarified the mechanisms by which growth-factor and adhesion receptors might regulate the activity of Abl family kinases. When activated, Abl family kinases can regulate cytoskeletal dynamics by phosphorylating several known cytoskeletal regulatory proteins. In addition, the C-terminal half of Abl family kinases has several domains that bind to cytoskeletal components. Emerging evidence suggests that Abl family kinases can use these domains to directly organize cytoskeletal structure in vivo.  相似文献   

10.
Ionizing radiation (IR) treatment results in activation of the nonreceptor tyrosine kinase c-Abl because of phosphorylation by ATM. In vitro evidence indicates that DNA-dependent protein kinase (DNA-PK) can also phosphorylate and thus potentially activate Abl kinase activity in response to IR exposure. To unravel the role of ATM and DNA-PK in the activation of Abl, we assayed Abl, ATM, and DNA-PK activity in ATM- and DNA-PKcs-deficient cells after irradiation. Our results show that despite the presence of higher than normal levels of DNA-PK kinase activity, c-Abl fails to become activated after IR exposure in ATM-deficient cells. Conversely, normal activation of both ATM and c-Abl occurs in DNA-PKcs-deficient cells, indicating that ATM but not DNA-PK is required for activation of Abl in response to IR treatment. Moreover, activation of Abl kinase activity by IR correlates well with activation of ATM activity in all phases of the cell cycle. These results indicate that ATM is primarily responsible for activation of Abl in response to IR exposure in a cell cycle-independent fashion. Examination of DNA-PK activity in response to IR treatment in Abl-deficient cells expressing mutant forms of Abl or in normal cells exposed to an inhibitor of Abl suggests an in vivo role for Abl in the down-regulation of DNA-PK activity. Collectively, these results suggest a convergence of the ATM and DNA-PK pathways in the cellular response to IR through c-Abl kinase.  相似文献   

11.
Deregulated activity of the Abl protein tyrosine kinase is oncogenic in humans and in animals. The normal cellular form of the enzyme is maintained at a low state of activity by mechanisms that have not yet been entirely elucidated. In particular, little is known about the trans-acting cellular factors involved. We have tested the activity of human c-Abl microinjected into oocytes of Xenopus laevis. In contrast to versions of Abl capable of transforming mammalian cells, which were highly active when introduced into oocytes, the activity of wild type c-Abl was inhibited. Oncogenic forms of Abl efficiently enhanced the ability of Xenopus oocytes to enter M phase following stimulation by progesterone. Abl-enhanced maturation was normal as judged by accumulation of Mos as well as activation of MAP kinase and Cdc2/CyclinB (MPF). Concomitant with maturation and activation of these kinases, Abl became extensively phosphorylated. Altogether, this suggests that an SH3 domain-dependent Abl regulation mechanism similar to the one observed in mammalian cells operates in Xenopus oocytes. Maturation enhancement by microinjection into Xenopus oocytes represents a useful novel assay for analyzing Abl activity. Moreover, the Xenopus oocyte may be a convenient source of trans-acting Abl regulators for biochemical studies.  相似文献   

12.
Aquaria with added river red gum, Eucalyptus camaldulensis , litter became hypoxic, with decreased pH and contained up to 30 mg 1−1 tannin and lignin. Survival of golden perch, Macquaria ambigua , larvae in aquaria treated with a simulated annual litter density of 450 g m−2 for 72 h was 14·9% for 15-day-old larvae and 0% for 8-day-old larvae. A litter density of 1223 g m−2 resulted in total mortality for both age groups of larvae. Aeration increased survival of larvae to a minimum of 68·8% in 1223 g m−2 litter treatments compared to 89·8% in aerated controls and 86·8% in non-aerated controls. A kinetic behavioural assay was used to detect alarm responses in golden perch larvae and juveniles exposed to leachates from river red gum bark, leaves and wood. Eight-day-old larvae exposed to bark and wood leachates (0·001–10 g 1−1) exhibited an initial period of hyperactivity, followed by a concentration-dependent decrease in spontaneous activity. Larvae exposed to leaf leachates displayed only a decrease in spontaneous activity. Four-month-old juveniles exposed to wood leachates were also initially hyperactive, then progressively developed mild hypoactivity at increasing leachate concentrations. Juveniles exposed to wood leachates at 20g 1−1 for 30min suffered 97·5% mortality in 96 h. Wood leachates induced dose-dependent lamellar fusion, epithelial dissociation and necrosis in the gills. The presence of toxic leachates and low oxygen availability in flooded river red gum forests may make these habitats unsuitable as nursery areas for native fish.  相似文献   

13.
We have previously shown that F-actin exerts a negative effect on Abl tyrosine kinase activity. This inhibition results from a direct association of F-actin with the C terminus of Abl and accounts, in part, for the loss of Abl activity in detached fibroblasts. We report here that Abl from mitotic cells or cells treated with the protein phosphatase inhibitor okadaic acid remains active when detached from the extracellular matrix. Aspartic acid substitution of Thr(566), which is phosphorylated in mitotic or okadaic acid-treated cells, is sufficient to abolish F-actin-mediated inhibition and to maintain Abl activity despite cell detachment. A recent crystal structure of the Abl N-terminal region has revealed autoinhibitory interactions among the Src homology 3 (SH3), SH2, and kinase domains. We found that deletion of the SH2 domain also abolished the negative effect of F-actin on kinase activity. Immediately following the kinase domain in Abl is a proline-rich linker (PRL) that binds to several SH3 adaptor proteins. Interestingly, binding of the Crk N-terminal SH3 domain to the PRL also disrupted F-actin-mediated inhibition of Abl kinase. These results suggest that F-actin may reinforce the autoinhibitory interactions to regulate Abl kinase and that inhibition can be relieved through phosphorylation and/or protein interactions with the Abl PRL region.  相似文献   

14.
BackgroundAbl1 is a protein tyrosine kinase whose aberrant activation due to mutations is the culprit of several cancers, most notably chronic myeloid leukaemia. Several Abl1 inhibitors are used as anti-cancer drugs. Unfortunately, drug resistance limits their effectiveness. The main cause for drug resistance is mutations in the kinase domain (KD) of Abl1 that evolve in patients. The T315I mutation confers resistance against all clinically-available inhibitors except ponatinib. Resistance to ponatinib can develop by compound (double) mutations.MethodsKinetic measurements of the KD of Abl1 and its mutants were carried out to examine their catalytic activity. Specifically, mutants that lead to drug resistance against ponatinib were considered. Molecular dynamics simulations and multiple sequence analysis were used for explanation of the experimental findings.ResultsThe catalytic efficiency of the T315I pan-resistance mutant is more than two times lower than that of the native KD. All ponatinib resistant mutations restore the catalytic efficiency of the enzyme. Two of them (G250E/T315I and Y253H/E255V) have a catalytic efficiency that is more than five times that of the native KD.ConclusionsThe measurements and analysis suggest that resistance is at least partially due to the development of a highly efficient kinase through subsequent mutations. The simulations highlight modifications in two structurally important regions of Abl1, the activation and phosphate binding loops, upon mutations.General significanceExperimental and computational methods were used together to explain how mutations in the kinase domain of Abl1 lead to resistance against the most advanced drug currently in use to treat chronic myeloid leukaemia.  相似文献   

15.
抗菌和细胞毒活性海洋细菌的筛选及其次生代谢基因证据   总被引:1,自引:0,他引:1  
从不同海域的海水、海泥和海洋生物中分离海洋细菌,利用琼脂扩散法和MTT法对细菌培养液的乙酸乙酯提取物进行了抗菌和细胞毒活性筛选,并对具有细胞毒活性的细菌菌株进行了16SrRNA系统发生学分析和多聚酮合酶(PKSⅠ型)、非核糖体肽合成酶(NRPS)的筛选。结果显示,在分离到的346株海洋细菌中,42株细菌具有抗菌活性,12株具有细胞毒活性。对12株具有细胞毒活性的细菌菌株进行了16SrRNA系统发生学分析,它们分别属于Agrobacterium,Pseudoalteromons,Bacillus,Paracoccus,Rheinheimera,Aerococcus,Exiguobacterium和Alteromonas8个属。对这12株具有细胞毒活性的细菌菌株进行进一步的PKS和NRPS筛选,得到了4株含有PKSⅠ型的KS结构域或NPRS的A结构域的海洋细菌,为从聚酮和非核糖体肽等生物合成途径去深入研究其次生代谢产物提供了基因学的证据。  相似文献   

16.
We have used a recombinant mouse pre-B cell line (TonB210.1, expressing Bcr/Abl under the control of an inducible promoter) and several human leukemia cell lines to study the effect of high tyrosine kinase activity on G protein-coupled receptor (GPCR) agonist-stimulated cellular Ca2+ release and store-operated Ca2+ entry (SOCE). After induction of Bcr/Abl expression, GPCR-linked SOCE increased. The effect was reverted in the presence of the specific Abl inhibitor imatinib (1 μM) and the Src inhibitor PP2 (10 μM). In leukemic cell lines constitutively expressing high tyrosine kinase activity, Ca2+ transients were reduced by imatinib and/or PP2. Ca2+ transients were enhanced by specific inhibitors of PKC subtypes and this effect was amplified by tyrosine kinase inhibition in Bcr/Abl expressing TonB210.1 and K562 cells. Under all conditions Ca2+ transients were essentially blocked by the PKC activator PMA. In Bcr/Abl expressing (but not in native) TonB210.1 cells, tyrosine kinase inhibitors enhanced PKCα catalytic activity and PKCα co-immunoprecipitated with Bcr/Abl.Unlike native TonB210.1 cells, Bcr/Abl expressing cells showed a high rate of cell death if Ca2+ influx was reduced by complexing extracellular Ca2+ with BAPTA. Our data suggest that tonic inhibition of PKC represents a mechanism by which high tyrosine kinase activity can enhance cellular Ca2+ transients and thus exert profound effects on the proliferation, apoptosis and chemotaxis of leukemic cells.  相似文献   

17.
Caveolin-1 is phosphorylated at tyrosine 14 in response to cellular stress. Tyrosine 14 is a consensus Abl phosphorylation site suggesting that caveolin-1 may be an Abl substrate. We report here that expression of c-Abl is required for oxidative stress-induced caveolin-1 phosphorylation. In contrast, c-Src expression is not required. Phosphocaveolin is one of only two phosphotyrosine signals missing in lysates from the Abl(-/-) cells, indicating that these cells still respond to oxidative stress. Oxidative stress-induced tyrosine phosphorylation of caveolin-1 occurs only at the Abl site, tyrosine 14. Caveolin-1 is also a major phosphotyrosine signal detected in cells over-expressing c-Abl. Our results show that Abl activation leads to phosphorylation of caveolin-1 on tyrosine 14. Both Abl and caveolin have been linked to the actin cytoskeleton, and oxidative stress-induced phosphocaveolin is enriched at focal contacts. This suggests that phosphocaveolin regulates these structures, perhaps through recruiting and activating SH2-domain proteins such as Csk.  相似文献   

18.
Abi enhances Abl-mediated Cdc2 phosphorylation and inactivation   总被引:1,自引:1,他引:0  
Abelson tyrosine kinase (Abl) is a non-receptor tyrosine kinase which is frequently coupled with adaptor proteins to interact with its substrates for the regulation of cytoskeleton rearrangement, cell growth and apoptosis in response to a variety of biological stimuli. The Abl interactor (Abi) family members were first identified as adaptor proteins of Abl for regulating Abl transforming and kinase activity. In the present study, we used a yeast two-hybrid screen to identify Cdc2 as a novel Abi-binding protein. This finding led us to investigate the role of Abi in linking Abl and Cdc2. These three proteins formed a trimeric complex inDrosophila and mammalian cells. The expression of Abi in cells greatly enhanced the formation of the Abl-Cdc2 complex, suggesting that Abi functions as an adaptor protein facilitating the binding between Abl and Cdc2. We show that Abi promotes Abl-mediated phosphorylation of Cdc2 at tyrosine 15 and inactivation of Cdc2 kinase activity. Furthermore, coexpression of Abl and Abi inDrosophila S2 cells led to suppression of cell growth. These data suggest that Abl signaling may be involved in the downregulation of Cdc2 kinase in cell cycle control.  相似文献   

19.
The non-receptor tyrosine kinase Abl contains nuclear localization (NLS) and nuclear export signals that drive its nucleo-cytoplasmic shuttling. The nuclear Abl tyrosine kinase is activated by DNA damage through ataxia telangiectasia mutated (ATM). Previous studies have suggested nuclear Abl to have proapoptotic activity. To determine the requirement for Abl nuclear import in DNA damage-induced apoptosis, we took a genetic approach by mutating the three NLS (muNLS) of abl1 in mouse embryonic stem (ES) cells through homologous recombination. Exposure of ES cells to genotoxins caused an ATM-dependent nuclear accumulation of Abl but not Abl muNLS. ES cells expressing Abl muNLS exhibited delayed Bax activation, reduced cytochrome c release and decreased caspase-9 activity in response to DNA damage. These results provide a genetic proof that Abl nuclear entry contributes to DNA damage-induced activation of the intrinsic apoptotic pathway.  相似文献   

20.
The COOH-terminal domain of the NR2D subunit of the NMDA receptor contains proline-rich regions that show striking homology to sequences known to bind to Src homology 3 (SH3) domains. To determine whether the proline-rich region of the NR2D subunit interacts with specific SH3 domains, in vitro SH3 domain binding assays were performed. A proline-rich fragment of the NR2D subunit (2D(866-1064)) bound to the Abl SH3 domain but not to the SH3 domains from Src, Fyn, Grb2, GAP, or phospholipase C-gamma (PLCgamma). Co-immunoprecipitation of NR2D with Abl suggests stable association of NR2D and Abl in transfected cells. The SH3 domain plays an important role in the negative regulation of Abl kinase activity. To determine whether the interaction of NR2D with the Abl SH3 domain alters Abl kinase activity, Abl was expressed alone or with NR2D in 293T cells. Autophosphorylation of Abl was readily observed when Abl was expressed alone. However, co-expression of Abl with 2D(866-1064) or full-length NR2D inhibited autophosphorylation. 2D(866-1064) did not inhibit DeltaSH3 Abl, indicating a requirement for the Abl SH3 domain in the inhibitory effect. Similarly, 2D(866-1064) did not inhibit the catalytic activity of Abl-PP, which contains two point mutations in the SH2-kinase linker domain that release the negative kinase regulation by the SH3 domain. In contrast, the full-length NR2D subunit partially inhibited the autokinase activity of both DeltaSH3 Abl and Abl-PP, suggesting that NR2D and Abl may interact at multiple sites. Taken together, the data in this report provide the first evidence for a novel inhibitory interaction between the NR2D subunit of the NMDA receptor and the Abl tyrosine kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号