首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Diabetic nephropathy is characterized by decreased expression of bone morphogenetic protein-7 (BMP-7) and decreased podocyte number and differentiation. Extracellular antagonists such as connective tissue growth factor (CTGF; CCN-2) and sclerostin domain-containing-1 (SOSTDC1; USAG-1) are important determinants of BMP signaling activity in glomeruli. We studied BMP signaling activity in glomeruli from diabetic patients and non-diabetic individuals and from control and diabetic CTGF+/+ and CTGF+/− mice. BMP signaling activity was visualized by phosphorylated Smad1, -5, and -8 (pSmad1/5/8) immunostaining, and related to expression of CTGF, SOSTDC1, and the podocyte differentiation markers WT1, synaptopodin, and nephrin. In control and diabetic glomeruli, pSmad1/5/8 was mainly localized in podocytes, but both number of positive cells and staining intensity were decreased in diabetes. Nephrin and synaptopodin were decreased in diabetic glomeruli. Decrease of pSmad1/5/8 was only partially explained by decrease in podocyte number. SOSTDC1 and CTGF were expressed exclusively in podocytes. In diabetic glomeruli, SOSTDC1 decreased in parallel with podocyte number, whereas CTGF was strongly increased. In diabetic CTGF+/− mice, pSmad1/5/8 was preserved, compared with diabetic CTGF+/+ mice. In conclusion, in human diabetic nephropathy, BMP signaling activity is diminished, together with reduction of podocyte markers. This might relate to concomitant overexpression of CTGF but not SOSTDC1. (J Histochem Cytochem 57:623–631, 2009)  相似文献   

3.
Nephrin is a key molecule in podocytes to maintain normal slit diaphragm structure. Nephin interacts with many other podocyte and slit diaphragm protein and also mediates important cell signaling pathways in podocytes. Loss of nephrin during the development leads to the congenital nephrotic syndrome in children. Reduction of nephrin expression is often observed in adult kidney diseases including diabetic nephropathy and HIV-associated nephropathy. The critical role of nephrin has been confirmed by different animal models with nephrin knockout and knockdown. Recent studies demonstrate that knockdown of nephrin expression in adult mice aggravates the progression of unilateral nephrectomy and Adriamycin-induced kidney disease. In addition to its critical role in maintaining normal glomerular filtration unit in the kidney, nephrin is also expressed in other organs. However, the exact role of nephrin in kidney and extra-renal organs has not been well characterized. Future studies are required to determine whether nephrin could be developed as a drug target to treat patients with kidney disease.  相似文献   

4.
Glomerular podocytes are pivotal in maintaining glomerular filtration barrier function. As severe podocyte injury results in proteinuria in patients with diabetic nephropathy, determining the pathogenesis of podocyte injury may contribute to the development of new treatments. We recently showed that autophagy is involved in the pathogenesis of diabetes-related podocyte injury. Insufficient podocyte autophagy and podocyte loss are observed in diabetic patients with massive proteinuria. Podocyte loss and massive proteinuria occur in high-fat diet-induced diabetic mice with podocyte-specific autophagy deficiency, with podocytes of these mice and of diabetic rats having huge damaged lysosomes. Sera from diabetic patients and from rodents with massive proteinuria cause autophagy insufficiency, resulting in lysosome dysfunction and apoptosis of cultured podocytes. These findings suggest the importance of autophagy in maintaining lysosome homeostasis in podocytes under diabetic conditions. Impaired autophagy may be involved in the pathogenesis of podocyte loss, leading to massive proteinuria in diabetic nephropathy.  相似文献   

5.
Rationale: Recent studies have demonstrated that the loss of podocyte is a critical event in diabetic nephropathy (DN). Previously, our group have found that the mitotic arrest deficient protein MAD2B was involved in high glucose (HG)-induced podocyte injury by regulating APC/C activity. However, the exact mechanism of MAD2B implicated in podocyte injury is still lacking.Methods: The experiments were conducted by using kidney tissues from streptozotocin (STZ) induced diabetic mice with or without podocyte-specific deletion of MAD2B and the cultured podocytes exposed to different treatments. Glomerular pathological injury was evaluated by periodic acid-Schiff staining and transmission electron microscopy. The endogenous interaction between MAD2B and Numb was discovered by yeast two-hybrid analysis and co-immunoprecipitation assay. The expressions of MAD2B, Numb and related pathway were detected by western blot, immunochemistry and immunofluorescence.Results: The present study revealed that MAD2B was upregulated in diabetic glomeruli and cultured podocytes under hyperglycemic conditions. Podocyte-specific deletion of MAD2B alleviated podocyte injury and renal function deterioration in mice of diabetic nephropathy. Afterwards, MAD2B was found to interact with Numb, which was downregulated in diabetic glomeruli and HG-stimulated cultured podocytes. Interestingly, MAD2B genetic deletion could partly reverse the decline of Numb in podocytes exposed to HG and in diabetic mice, and the expressions of Numb downstream molecules such as NICD and Hes-1 were decreased accordingly. In addition, overexpression of Numb ameliorated HG-induced podocyte injury.Conclusions: The present findings suggest that upregulated MAD2B expression contributes to Numb depletion and activation of Notch 1 signaling pathway, which ultimately leads to podocyte injury during DN progression.  相似文献   

6.
Nephrin, a critical podocyte membrane component that is reduced in diabetic nephropathy, has been shown to activate phosphotyrosine signaling pathways in human podocytes. Nephrin signaling is important to reduce cell death induced by apoptotic stimuli. We have shown previously that high glucose level exposure and diabetes increased the expression of SHP-1, causing podocyte apoptosis. SHP-1 possesses two Src homology 2 domains that serve as docking elements to dephosphorylate tyrosine residues of target proteins. However, it remains unknown whether SHP-1 interacts with nephrin and whether its elevated expression affects the nephrin phosphorylation state in diabetes. Here we show that human podocytes exposed to high glucose levels exhibited elevated expression of SHP-1, which was associated with nephrin. Coexpression of nephrin-CD16 and SHP-1 reduced nephrin tyrosine phosphorylation in transfected human embryonic kidney 293 cells. A single tyrosine-to-phenylalanine mutation revealed that rat nephrin Tyr1127 and Tyr1152 are required to allow SHP-1 interaction with nephrin. Overexpression of dominant negative SHP-1 in human podocytes prevented high glucose-induced reduction of nephrin phosphorylation. In vivo, immunoblot analysis demonstrated that nephrin expression and phosphorylation were decreased in glomeruli of type 1 diabetic Akita mice (Ins2+/C96Y) compared with control littermate mice (Ins2+/+), and this was associated with elevated SHP-1 and cleaved caspase-3 expression. Furthermore, immunofluorescence analysis indicated increased colocalization of SHP-1 with nephrin in diabetic mice compared with control littermates. In conclusion, our results demonstrate that high glucose exposure increases SHP-1 interaction with nephrin, causing decreased nephrin phosphorylation, which may, in turn, contribute to diabetic nephropathy.  相似文献   

7.
Nicorandil is an orally available drug that can act as a nitric oxide donor, an antioxidant, and an ATP-dependent K channel activator. We hypothesized that it may have a beneficial role in treating diabetic nephropathy. We administered nicorandil to a model of advanced diabetic nephropathy (the streptozotocin-induced diabetes in mice lacking endothelial nitric oxide synthase, eNOSKO); controls included diabetic eNOS KO mice without nicorandil and nondiabetic eNOS KO mice treated with either nicorandil or vehicle. Mice were treated for 8 wk. Histology, blood pressure, and renal function were determined. Additional studies involved examining the effects of nicorandil on cultured human podocytes. Here, we found that nicorandil did not affect blood glucose levels, blood pressure, or systemic endothelial function, but significantly reduced proteinuria and glomerular injury (mesangiolysis and glomerulosclerosis). Nicorandil protected against podocyte loss and podocyte oxidative stress. Studies in cultured podocytes showed that nicorandil likely protects against glucose-mediated oxidant stress via the ATP-dependent K channel as opposed to its NO-stimulating effects. In conclusion, nicorandil may be beneficial in diabetic nephropathy by preserving podocyte function. We recommend clinical trials to determine whether nicorandil may benefit diabetic nephropathy or other conditions associated with podocyte dysfunction.  相似文献   

8.
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, a complication of diabetes in the kidney. NADPH oxidases of the Nox family are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current understanding of the roles of Nox catalytic and regulatory subunits in the processes that control mesangial cell, podocyte, and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin–angiotensin system and transforming growth factor-β. The role of the Nox isoform Nox4 in the redox processes that alter renal biology in diabetes is highlighted.  相似文献   

9.
Podocyte injury contributes to glomerular injury and is implicated in the pathogenesis of diabetic nephropathy. Formyl peptide receptor (FPR) 1 is abundantly expressed in neutrophils and mediates intracellular transport of Ca 2+. Intracellular Ca 2+ regulates pathological process in renal podocyte and plays a role in diabetic nephropathy. However, the role of formyl peptide receptor 1 in podocyte injury of diabetic nephropathy has not been reported yet. Firstly, a rat model with diabetic nephropathy was established by streptozotocin injection, and a cell model was established via high glucose treatment of mouse podocytes (MPC5). Formyl peptide receptor 1 was enhanced in streptozotocin-induced rats and high glucose-treated MPC5. Secondly, streptozotocin injection promoted the glomerular injury with decreased nephrin and podocin. However, tail injection with adenovirus containing shRNA for silencing of formyl peptide receptor 1 attenuated streptozotocin-induced glomerular injury and the decrease in nephrin and podocin. Moreover, silencing of formyl peptide receptor 1 repressed cell apoptosis of podocytes in diabetic rats and high glucose-treated MPC5. Lastly, protein expression levels of p-p38, p-ERK, and p-JNK protein were up-regulated in streptozotocin-induced rats and high glucose-treated MPC5. Silencing of formyl peptide receptor 1 attenuated high glucose-induced increase in p-p38, p-ERK, and p-JNK in MPC5, and over-expression of formyl peptide receptor 1 aggravated high glucose-induced increase in p-p38, p-ERK, and p-JNK. In conclusion, inhibition of formyl peptide receptor 1 preserved glomerular function and protected against podocyte dysfunction in diabetic nephropathy.  相似文献   

10.
Toll like receptor (TLR) 4 has been reported to promote inflammation in diabetic nephropathy. However the role of TLR4 in the complicated pathophysiology of diabetic nephropathy is not understood. In this study, we report elevated expression of TLR4, its endogenous ligands and downstream cytokines, chemokines and fibrogenic genes in diabetic nephropathy in WT mice with streptozotocin (STZ) diabetes. Subsequently, we demonstrated that TLR4−/− mice were protected against the development of diabetic nephropathy, exhibiting less albuminuria, inflammation, glomerular hypertrophy and hypercellularity, podocyte and tubular injury as compared to diabetic wild-type controls. Marked reductions in interstitial collagen deposition, myofibroblast activation (α-SMA) and expression of fibrogenic genes (TGF-β and fibronectin) were also evident in TLR4 deficient mice. Consistent with our in vivo results, high glucose directly promoted TLR4 activation in podocytes and tubular epithelial cells in vitro, resulting in NF-κB activation and consequent inflammatory and fibrogenic responses. Our data indicate that TLR4 activation may promote inflammation, podocyte and tubular epithelial cell injury and interstitial fibrosis, suggesting TLR4 is a potential therapeutic target for diabetic nephropathy.  相似文献   

11.
C3aR是补体C3裂解产物C3a的受体.最近的一些研究提示C3aR通路可能参与了糖尿病肾病(DN)的病理过程,但有关C3aR通路在DN中的确切病理作用及有关机制远未清楚.需要特别指出的是,现有的有关C3aR参与DN肾组织损伤的证据主要来自一些动物模型的研究,临床上尚缺乏较为系统全面的对DN患者肾组织C3aR通路与肾组织损伤关系的观察分析.为此,本文首次以较大的样本量分析了不同病理时期DN患者肾组织C3aR和C3a的表达变化情况及其与DN患者肾组织损伤的相关性.在此基础上,进而利用体外细胞模型,对高糖环境下C3aR活化致肾小球足细胞损伤的作用及机制进行了探讨.结果显示:a.与正常对照组相比,DN患者肾组织C3a和C3aR的表达水平随DN的进展而升高,C3aR在DN患者肾组织中的表达上调主要见于肾小管上皮细胞和肾小球足细胞;b.DN患者肾组织C3aR和C3a水平与患者肾组织损伤程度,特别是小管和小管间质损伤程度、肾小球足细胞损伤程度具有显著相关性;c.外加C3a激活C3aR可使高糖环境中的足细胞的细胞骨架发生明显改变、足细胞标记分子表达下调、足细胞通透性增加.这些结果说明:a.DN患者肾组织中确实存在C3a/C3aR轴过度活化的现象;b.C3a/C3aR轴的过度活化很可能在DN患者肾组织损伤,特别是小管和小管间质损伤、肾小球足细胞损伤中具有重要作用;c.可能通过破坏成熟足细胞特有的细胞骨架,改变足细胞标记分子表达,增加足细胞的通透性,C3a/C3aR轴过度活化参与DN足细胞损伤过程.本文不仅为C3a/C3aR通路参与DN病理过程提供了新的必不可少的临床证据,也增加了对C3a/C3aR通路过度活化致DN患者肾组织损伤机制,特别是肾小球足细胞损伤机制的了解,这对于拓展对DN病理机制的认识,发展DN防治新思路,无疑都是有益的.  相似文献   

12.
G protein‐coupled receptors (GPCRs) constitute the largest family of cell surface receptors that mediate numerous cell signaling pathways, and are targets of more than one‐third of clinical drugs. Thanks to the advancement of novel structural biology technologies, high‐resolution structures of GPCRs in complex with their signaling transducers, including G‐protein and arrestin, have been determined. These 3D complex structures have significantly improved our understanding of the molecular mechanism of GPCR signaling and provided a structural basis for signaling‐biased drug discovery targeting GPCRs. Here we summarize structural studies of GPCR signaling complexes with G protein and arrestin using rhodopsin as a model system, and highlight the key features of GPCR conformational states in biased signaling including the sequence motifs of receptor TM6 that determine selective coupling of G proteins, and the phosphorylation codes of GPCRs for arrestin recruitment. We envision the future of GPCR structural biology not only to solve more high‐resolution complex structures but also to show stepwise GPCR signaling complex assembly and disassembly and dynamic process of GPCR signal transduction.  相似文献   

13.
14.
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related to the understanding of the role of Nox enzymes in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-β. The nature of the upstream modulators of Nox enzymes as well as the downstream targets of the Nox NADPH oxidases implicated in the propagation of the redox processes that alter renal biology in diabetes will be highlighted.  相似文献   

15.
Ubiquitin is covalently attached to substrate proteins in the form of a single ubiquitin moiety or polyubiquitin chains and has been generally linked to protein degradation, however, distinct types of ubiquitin linkages are also used to control other critical cellular processes like cell signaling. Over forty mammalian G protein‐coupled receptors (GPCRs) have been reported to be ubiquitinated, but despite the diverse and rich complexity of GPCR signaling, ubiquitin has been largely ascribed to receptor degradation. Indeed, GPCR ubiquitination targets the receptors for degradation by lysosome, which is mediated by the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery, and the proteasome. This has led to the view that ubiquitin and ESCRTs primarily function as the signal to target GPCRs for destruction. Contrary to this conventional view, studies indicate that ubiquitination of certain GPCRs and canonical ubiquitin‐binding ESCRTs are not required for receptor degradation and revealed that diverse and complex pathways exist to regulate endo‐lysosomal sorting of GPCRs. In other studies, GPCR ubiquitination has been shown to drive signaling and not receptor degradation and further revealed novel insight into the mechanisms by which GPCRs trigger the activity of the ubiquitination machinery. Here, we discuss the diverse pathways by which ubiquitin controls GPCR endo‐lysosomal sorting and beyond.   相似文献   

16.
Radix puerariae, a traditional Chinese herbal medication, has been used successfully to treat patients with early stage of diabetic nephropathy. However, the underlined mechanism of this renal protective effect has not been determined. In the current study, we investigated the effects and the mechanism of puerarin in Streptozotocin (STZ)-induced diabetic rats. We treated STZ-rats with either puerarin or losartan, an angiotensin II receptor blocker, as compared to those treated with vehicle. We found that both puerarin and losartan attenuated kidney hypertrophy, mesangial expansion, proteinuria, and podocyte foot process effacement in STZ rats. In addition, both puerarin and losartan increased expression of podocyte slit diaphragm proteins such as nephrin and podocin. Interestingly, we found that puerarin treatment induced a more pronounced suppression of oxidative stress production and S-nitrosylation of proteins in the diabetic kidneys as compared to losartan treatment. Furthermore, we found that matrix metalloproteinase-9 (MMP-9), which is known to be activated by oxidative stress and S-nitrosylation of proteins, was also suppressed more extensively by puerarin than losartan. In conclusion, these data provide for the first time the potential mechanism to support the use of puerarin in the treatment of early diabetic nephropathy.  相似文献   

17.
为了探究雷帕霉素对糖尿病肾病大鼠足细胞生物学行为及哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路的影响,采用链脲霉素腹腔注射构建糖尿病肾病大鼠模型,将正常大鼠体内取出的足细胞设为对照组,模型大鼠体内取出的足细胞设为糖尿病肾病模型组(DN组),取2 mg·kg-1雷帕霉素干预DN组足细胞,并将其设为雷帕霉素组(RAPA组)。采用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐[3-(4,5-dimethylthiahiazo-z-y1)-2,5-diphenytetrazoliumromide,MTT]法检测足细胞增殖水平,Transwell检测细胞迁移和侵袭能力,流式细胞术检测细胞凋亡水平,Western blot法检测上皮-间充质转化标志物[E-钙黏蛋白(E-cadherin)、N-钙黏蛋白(N-cadherin)、波形纤维蛋白(vimentin)]、mTOR和核糖体S6激酶1(S6K1)蛋白表达水平。结果显示,与对照组相比,DN组细胞增殖水平显著被抑制,细胞迁移、侵袭水平显著升高,细胞凋亡率显著增加,上皮-间充转标志物E-cadherin表达显著下调,N-cadherin和Vimentin表达显著上调,mTOR/S6K1信号通路被显著活化(P<0.05)。与DN组相比,RAPA组细胞增殖水平显著升高,细胞迁移、侵袭水平显著降低,细胞凋亡率显著降低,E-cadherin表达显著上调,N-cadherin和Vimentin表达显著下调,mTOR和S6K1的蛋白表达显著被抑制(P<0.05)。结果表明,雷帕霉素通过抑制mTOR信号通路,促进足细胞体外增殖,抑制细胞迁移、侵袭、凋亡和上皮-间充质转化,发挥对糖尿病肾病大鼠足细胞的保护作用。  相似文献   

18.
Despite the recent attention focused on the important role of autophagy in maintaining podocyte homeostasis, little is known about the changes and mechanisms of autophagy in podocyte dysfunction under diabetic condition. In this study, we investigated the role of autophagy in podocyte biology and its involvement in the pathogenesis of diabetic nephropathy. Podocytes had a high basal level of autophagy. And basal autophagy inhibition either by 3-methyladenenine (3-MA) or by Beclin-1 siRNA was detrimental to its architectural structure. However, under diabetic condition in vivo and under high glucose conditions in vitro, high basal level of autophagy in podocytes became defective and defective autophagy facilitated the podocyte injury. Since the dynamics of endoplasmic reticulum(ER) seemed to play a vital role in regulating the autophagic flux, the results that Salubrinal/Tauroursodeoxycholic acid (TUDCA) could restore defective autophagy further indicated that the evolution of autophagy may be mediated by the changes of cytoprotective output in the ER stress. Finally, we demonstrated in vivo that the autophagy of podocyte was inhibited under diabetic status and TUDCA could improve defective autophagy. Taken together, these data suggested that autophagy might be interrupted due to the failure of ER cytoprotective capacity upon high glucose induced unmitigated stress, and the defective autophagy might accelerate the irreparable progression of diabetic nephropathy.  相似文献   

19.
G protein-coupled receptors (GPCRs) play critical roles in transmitting a variety of extracellular signals into the cells and regulate diverse physiological functions. Naturally occurring mutations that result in dysfunctions of GPCRs have been known as the causes of numerous diseases. Significant progresses have been made in elucidating the pathophysiology of diseases caused by mutations. The multiple intracellular signaling pathways, such as G protein-dependent and β-arrestin-dependent signaling, in conjunction with recent advances on biased agonism, have broadened the view on the molecular mechanism of disease pathogenesis. This review aims to briefly discuss biased agonism of GPCRs (biased ligands and biased receptors), summarize the naturally occurring GPCR mutations that cause biased signaling, and propose the potential pathophysiological relevance of biased mutant GPCRs associated with various endocrine diseases.  相似文献   

20.
Podocyte injury is an important factor in the pathogenesis of diabetic nephropathy. Podocytes are characterized by large numbers of mitochondria. However, mitochondrial dysfunction as it relates to kidney pathology remains poorly understood. The present study found that podocyte mitochondria in different animal models of diabetes mellitus became elongated with the development of albuminuria, suggesting a change in mitochondrial dynamics. We then treated cells with a combination of glucose, fatty acids, and angiotensin II (GFA) to mimic the diabetic milieu. Cultured podocytes exposed to GFA showed megamitochondria formation and decreased autophagosome degradation. We also found that GFA treatment decreased the binding of the autophagosome to the lysosome. Our results suggest that megamitochondria are common in podocytes during diabetic nephropathy and that insufficient autophagy flux may underlie this effect. These findings have expanded our understanding of the pathogenesis of diabetic nephropathy and identified a potential pharmacological target for treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号