首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twelve new compounds of 1,3,4-trisubstituted-pyrazole derivatives possessing two cyclooxygenase-2 (COX-2) pharmacophoric moieties (SO2Me or/and SO2NH2) 11a-c, 12a-c, 13a-c and 14a-c were designed and synthesized to be evaluated for their COX inhibition, anti-inflammatory activity, ulcerogenic liability. All compounds were more selective for COX-2 isozyme and showed good in vivo anti-inflammatory activity. The bisaminosulphonyl derivatives (14a-c) were the most COX-2 selective compounds (S.I. = 9.87, 9.50 and 9.22 respectively) and showed good anti-inflammatory potency (ED50 = 15.06, 42.51 and 50.43 μmol/kg respectively) in comparison with celecoxib (COX-2 S.I. = 8.61, ED50 = 82.2 μmol/kg). Also, compounds 14a-c were less ulcerogenic (ulcer indexes = 2.72–3.72) than ibuprofen (ulcer index = 20.25) and comparable to celecoxib (ulcer index = 2.93). In addition, to explain the preferential (COX-2) inhibitory and selectivity, the designed compounds were subjected to molecular docking studies. It was found that compound 14c with the highest COX-2 activity and selectivity exhibited a binding pattern and interactions similar to that of celecoxib with formation of more hydrogen-bond features.  相似文献   

2.
Twelve new derivatives of benzothiazole bearing benzenesulphonamide and carboxamide were synthesised and investigated for their in vivo anti-inflammatory, analgesic and ulcerogenic activities. Molecular docking showed an excellent binding interaction of the synthesised compounds with the receptors, with 17c showing the highest binding energy (–12.50?kcal/mol). Compounds 17c and 17i inhibited carrageenan-induced rat paw oedema at 72, 76, and 80% and 64, 73, and 78% at 1?h, 2?h, and 3?h, respectively. In the analgesic activity experiment, compounds 17c, 17?g, and 17i had ED50 (µM/kg) of 96, 127, and 84 after 0.5?h; 102, 134, and 72 after 1?h and 89, 156, and 69 µM/kg after 2?h, respectively, which were comparable with 156, 72, and 70 µM/kg for celecoxib. The ulcerogenic index of the most active derivatives 17c and 17i were 0.82 and 0.89, respectively, comparable to 0.92 for celecoxib. The physicochemical studies of the new derivatives showed that they will not have oral bioavailability problems.  相似文献   

3.
Two new series of 4,6-diaryl-3-cyanopyridine 4a-r and 1,3,5-triaryl-2-pyrazolines 6a-f and were prepared. The new compounds were evaluated for their in vitro COX-2 selectivity and in vivo anti-inflammatory activity. Compounds 4o,r and 6d,f had moderate to high selectivity index (S.I.) compared to celecoxib (selectivity indexes of 4.5, 3.14, 4.79 and 3.21, respectively) and also, showed in vivo anti-inflammatory activity approximately equal to or higher than celecoxib (edema inhibition % = 60.5, 64.5, 59.3 and 59.3, after 3 h, respectively) and the effective anti-inflammatory doses were (ED50 = 10.1, 7.8, 8.46 and 10.7 mg/kg respectively, celecoxib ED50 = 10.8 mg/kg) and ulcerogenic liability were determined for these compounds which showed promising activity by being more potent than celecoxib with nearly negligible ulcerogenic liability compared to celecoxib (reduction in ulcerogenic liability versus celecoxib = 85, 82, 74 and 67%, respectively).  相似文献   

4.
A new series of substituted-N-(3,4-dimethoxyphenyl)-benzoxazole derivatives 13a13p was synthesized and evaluated in vitro for their COX (I and II) inhibitory activity, in vivo anti-inflammatory and ulcerogenic potential. Compounds 13d, 13h, 13k, 13l and 13n exhibited significant COX-2 inhibitory activity and selectivity towards COX-2 over COX-1. These selected compounds were screened for their in vivo anti-inflammatory activity by carrageenan induced rat paw edema method. Among these compounds, 13d was the most promising analogs of the series with percent inhibition of 84.09 and IC50 value of 0.04?µM and 1.02?µM (COX-2 and COX-1) respectively. Furthermore, ulcerogenic study was performed and tested compounds (13d, 13h, 13k, 13l) demonstrated a significant gastric tolerance than ibuprofen. Molecular docking study was also performed with resolved crystal structure of COX-2 to understand the binding mechanisms of newly synthesized inhibitors in the active site of COX-2 enzyme and the results were found to be concordant with the biological evaluation studies of the compounds. These newly synthesized inhibitors also showed acceptable pharmacokinetic profile in the in silico ADME/T analyses.  相似文献   

5.
A new series of NSAID thioesters were synthesized and evaluated for their in vitro antitumor effects against a panel of four human tumor cell lines, namely: HepG2, MCF-7, HCT-116 and Caco-2, using the MTT assay. Compared to the reference drugs 5-FU, afatinib and celecoxib, compounds 2b, 3b, 6a, 7a, 7b and 8a showed potent broad-spectrum antitumor activity against the selected tumour cell lines. Accordingly, these compounds were selected for mechanistic studies about COX inhibition and kinase assays. In vitro COX-1/COX-2 enzyme inhibition assay results indicated that compounds 2b, 3b, 6a, 7a, 7b, 8a and 8?b selectively inhibited the COX-2 enzyme (IC50?=?~0.20–0.69?μM), with SI values of (>72.5–250) compared with celecoxib (IC50?=?0.16?μM, COX-2 SI:?>?312.5); however, all the tested compounds did not inhibit the COX-1 enzyme (IC50?>?50?μM). On the other hand, EGFR, HER2, HER4 and cSrc kinase inhibition assays were evaluated at a 10?μM concentration. The selected candidates displayed limited activities against the various tested kinases; the compounds 2a, 3b, 6a, 7a, 7b and 8a showed no activity to weak activity (% inhibition?=?~0–10%). The molecular docking study revealed the importance of the thioester moiety for the interaction of the drugs with the amino acids in the active sites of COX-2. The aforementioned results indicated that thioester based on NSAID scaffolds derivatives may serve as new antitumor compounds.  相似文献   

6.
Abstract

Cyclic imides containing 3-benzenesulfonamide, oxime, and β-phenylalanine derivatives were synthesised and evaluated to elucidate their in vivo anti-inflammatory and ulcerogenic activity and in vitro cytotoxic effects. Most active anti-inflammatory agents were subjected to in vitro COX-1/2 inhibition assay. 3-Benzenesulfonamides (2–4, and 9), oximes (11–13), and β-phenylalanine derivative (18) showed potential anti-inflammatory activities with 71.2–82.9% oedema inhibition relative to celecoxib and diclofenac (85.6 and 83.4%, respectively). Most active cyclic imides 4, 9, 12, 13, and 18 possessed ED50 of 35.4–45.3?mg kg?1 relative to that of celecoxib (34.1?mg kg?1). For the cytotoxic evaluation, the selected derivatives 2–6 and 8 exhibited weak positive cytotoxic effects (PCE = 2/59–5/59) at 10?μM compared to the standard drug, imatinib (PCE = 20/59). Cyclic imides bearing 3-benzenesulfonamide (2–5, and 9), acetophenone oxime (11–14, 18, and 19) exhibited high selectivity against COX-2 with SI > 55.6–333.3 relative to that for celecoxib [SI > 387.6]. β-Phenylalanine derivatives 21–24 and 28 were non-selective towards COX-1/2 isozymes as indicated by their SI of 0.46–0.68.  相似文献   

7.
Nineteen new compounds containing tetrazole and/or cyanamide moiety have been designed and synthesised. Their structures were confirmed using spectroscopic methods and elemental analyses. Anti-inflammatory activity for all the synthesised compounds was evaluated in vivo. The most active compounds 4c, 5a, 5d–f, 8a and b and 9a and b were further investigated for their ulcerogenic liability and analgesic activity. Pyrazoline derivatives 9b and 8b bearing trimethoxyphenyl part and SO2NH2 or SO2Me pharmacophore showed equal or nearly the same ulcerogenic liability (UI: 0.5, 0.75, respectively), to celecoxib (UI: 0.50). Most of tested compounds showed potent central and/or peripheral analgesic activities. Histopathological investigations were done to evaluate test compounds effect on rat's gastric tissue. The obtained results were in consistent with the in vitro data on COX evaluation. Docking study was also done for all the target compounds inside COX-2-active site.  相似文献   

8.
Synthesis, characterization and investigation of in vivo anticonvulsant activities of 13 novel cyclopentanecarbaldehyde-based 2,4-disubstituted 1,3-thiazoles are presented. Their structures were determined using 1H and 13C NMR, FAB(+)-MS, HRMS and elemental analyses. The results of anticonvulsant screening reveal that seven intraperitoneally administered compounds: 3a, 3b, 3d, 3e, 3f, 3k and 3m containing F-, Cl-, Br-, CF3-, CH3- and adamantyl substituents demonstrated significant anticonvulsant activity in the pentylenetetrazole model with median effective doses (ED50)?≤?20?mg/kg, respectively, which was approximately seven-fold lower than that reported for the reference drug, ethosuximide. Noteworthy, none of these compounds impaired animals’ motor skills in the rotarod test.  相似文献   

9.
The present study aims at the synthesis of pyrazolines bearing benzothiazole and their evaluation as anti-inflammatory agents. The synthesized compounds were evaluated for their anti-inflammatory potential using carrageenan induced paw edema model. Two compounds 5a and 5d alleviated inflammation more than the standard drug celecoxib. Eight compounds 5b, 5c, 5e, 5g, 5h, 6b, 6e and 6f showed anti-inflammatory activity comparable to celecoxib. To understand the mode of action, COX-2 enzyme assay and TNF-α assay were carried out. All the active compounds were assessed for their cytotoxicity. The ulcerogenic risk evaluation was performed on the active compounds that were not found to be cytotoxic. Out of ten active compounds, two compounds (5d and 6f) were finally found to be the most potent anti-inflammatory agents attributing to the suppression of the COX-2 enzyme activity and TNF-α production without being either cytotoxic or ulcerogenic.  相似文献   

10.
Novel candidates of thiazolo[4,5-d]pyrimidines (9a-l) were synthesized and their structures were elucidated by spectral and elemental analyses. All the novel derivatives were screened for their cyclooxygenase inhibitory effect, anti-inflammatory activity and ulcerogenic liability. All the new compounds exhibited anti-inflammatory activity, especially 1-(4-[7-(4-nitrophenyl)-5-thioxo-5,6-dihydro-3H-thiazolo[4,5-d]pyrimidin-2-ylideneamino]phenyl)ethanone (9g) was the most active derivative with 57%, 88% and 88% inhibition of inflammation after 1, 3 and 5h, respectively. Furthermore, this derivative 9g recorded higher anti-inflammatory activity than celecoxib which showed 43%, 43% and 54% inhibition after 1, 3 and 5h, sequentially. Moreover, the target derivatives 9a-l demonstrated moderate to high potent inhibitory action towards COX-2 (IC50 = 0.87–3.78 µM), in particular, the derivatives 9e (IC50 = 0.92 µM), 9g (IC50 = 0.87 µM) and 9k (IC50 = 1.02 µM) recorded higher COX-2 inhibitory effect than the selective COX-2 inhibitor drug celecoxib (IC50 = 1.11 µM). The in vivo potent compounds (9e, 9g and 9k) caused variable ulceration effect (ulcer index = 5–12.25) in comparison to that of celecoxib (ulcer index = 3). Molecular docking was performed to the most potent COX-2 inhibitors (9e, 9g and 9k) to explore the binding mode of these derivatives with Cyclooxygenase-2 enzyme.  相似文献   

11.
A new series of 1,3,5-triaryl-4,5-dihydro-1H-pyrazole 10al was designed and synthesized via cyclization of chalcones 8af with 4-amino/methanesulfonylphenylhydrazine hydrochloride 9ab. All the synthesized compounds were evaluated for their cyclooxygenase (COX) inhibition, anti-inflammatory activity, ulcerogenic liability and analgesic activity. All compounds were more COX-2 inhibitors than COX-1. While most compounds showed good anti-inflammatory activity, the trimethoxy derivatives (10a, 10b, 10g and 10h) were the most potent derivatives (ED50 = 55.78, 53.99, 67.65 and 69.20 μmol/kg respectively) in comparison with celecoxib (ED50 = 82.15 μmol/kg). Compounds 10a, 10b, 10g and 10h (ulcer index = 2.68, 1.20, 2.63 and 2.66 respectively) showed less ulceration effect than celecoxib (ulcer index = 2.90). Also, Compounds 10a, 10b, 10g and 10h showed analgesic activity higher than celecoxib and comparable to that of ibuprofen. In addition, molecular docking studies were performed for compounds 10a, 10b, 10g and 10h and the results were in agreement with that obtained from the in vitro COX inhibition assays.  相似文献   

12.
The design and synthesis of novel pyrazole based derivatives has been carried out using the ligand based approach like pharmacophore and QSAR modelling of reported pyrazoles from the available literature to investigate the chemical features that are essential for the design of selective and potent COX-2 inhibitors. Both pharmacophore and QSAR models with good statistical parameters were selected for the design of the lead molecule. Also by exploiting the chemical structures of selective and marketed COX-2 inhibitors, celecoxib and SC-558 were used in designing the molecules which are used in the treatment of inflammation and related disorders. The therapeutic action of the Non-Steroidal Anti-inflammatory Agents (NSAIDs) is based primarily on the COX-2 inhibition. With this background we have synthesized some azomethine derivatives of 3-methyl-1-substituted-4-phenyl-6-[{(1E)-phenylmethylene}amino]-1,4-dihydro pyrano[2,3-c]pyrazole-5-carbonitrile 6(a-o) and were characterized by 1HNMR, 13CNMR and Mass spectral techniques. All the synthesized pyrazole derivatives were tested for in vitro membrane stability property in both COX-1 & COX-2 inhibition studies and in vivo anti-inflammatory activity by carrageenan induced rat paw edema model. Among them, compound 6k showed very good activity by in vivo anti-inflammatory activity with 0.8575 mmol/kg as ED50. Similarly compounds 6m, 6o, 6i and 6h exhibited comparable anti-inflammatory activity to standard drugs. Also the active compounds were further screened for ulcerogenic activity and were found be safer with less ulcer index compared to the marketed drugs like aspirin, ibuprofen and celecoxib.  相似文献   

13.
A new series of 1,2-diaryl-4-substituted-benzylidene-5-4H-imidazolone derivatives 10a-h was designed and synthesized for evaluation as selective COX-2 inhibitors, anti-inflammatory agents and as analgesic agents. All compounds were more selective for COX-2 isozyme and showed good in vivo anti-inflammatory activity. Compounds 10a, 10b, 10e and 10f were the most COX-2 selective compounds (S.I. = 10.76, 10.87, 8.69 and 9.14 respectively), the most potent anti-inflammatory derivatives (ED50 = 65.7, 60.2, 76.3 and 107.4 μmol/kg respectively) in comparison with Celecoxib (COX-2 S.I. = 8.61, ED50 = 82.2 μmol/kg) and were less ulcerogenic (ulcer indexes = 1.22–3.02) than Ibuprofen (ulcer index = 20.25) and comparable to Celecoxib (ulcer index = 2.93). The four derivatives (10a, 10b, 10e and 10f) showed considerable analgesic activities which are clearly parallel to their anti-inflammatory activities.  相似文献   

14.
Some derivatives containing pyrido[2,3-d:6,5d′]dipyrimidine-4,5-diones (9a-f), tetrahydropyrido[2,3-d]pyrimidine-6-carbonitriles (11a-c) and 6-(4-acetylphenyl)-2-thioxo-2,3,5,6,7,8-hexahydro-1H-pyrimido[4,5-d]pyrimidin-4-one (12) were synthesized from 6-amino-2-thioxo-2,3-dihydro-1H-pyrimidin-4-one (8). The anti-inflammatory effect of these candidates was determined and the ulcer indices were calculated for active compounds. 7-Amino-5-(3,4,5-trimethoxyphenyl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrido[2,3-d] pyrimidine-6-carbonitrile (11c) exhibited better edema inhibition than celecoxib. Moreover, compounds 9b, 9d and 11c revealed better COX-2 inhibitory activity in a range (IC50 = 0.25–0.89 µM) than celecoxib (IC50 = 1.11 µM). Regarding ulcerogenic liability, all of the compounds under the study were less ulcerogenic than indomethacin. Molecular docking studies had been carried on active candidates 9d and 11c to explore action mode of these candidates as leads for discovering other anti-inflammatory agents.  相似文献   

15.
Abstract

A series of novel (5-amino-3-substituted-1, 2, 4-triazin-6-yl) (2-(6-halo-substituted benzo[d]isoxazol-3-yl) pyrrolidin-1-yl) methanone 5a5r was synthesized. Their anticonvulsant activities were evaluated by the maximal electroshock (MES) test and neurotoxicity was evaluated by the rotorod test. The MES test showed that (5-amino-3-phenyl-1, 2, 4-triazin-6-yl)(2-(6-fluorobenzo[d]isoxazol-3-yl) pyrrolidin-1-yl) methanone 5c was found to be the most potent compound with ED50 value of 6.20?mg/kg (oral/rat) and a protective index (PI?=?ED50/TD50) value of >48.38, which was much higher than the PI of the reference drug phenytoin. To explain the possible mechanism of action of selected derivatives 5b, 5c, 5i and 5o, their influence on sodium channel was evaluated in vitro.  相似文献   

16.
Novel 3-substituted-1-aryl-5-phenyl-6-anilino-pyrazolo[3,4-d]pyrimidin-4-ones of pharmacological significance were synthesized by the reaction of ethyl-(5-amino-3-methylthio-1-aryl-5-phenyl-2H-pyrazole)-4-carboxylates 3ac with S-methyl diphenyl thiourea independently to produce 1-aryl-3-thiomethyl-5-phenyl-pyrazolo[3,4-d]pyrimidines 4ac in DMF with catalytic amount of K2CO3, which on further treatment with different aromatic amines independently under same reaction conditions generated for compounds 5al. The compounds were screened for the anti-inflammatory activity and evaluated for ulcerogenic potential. The compounds 5i exhibited superior anti-inflammatory activity in comparison with diclofenac sodium and comparable activity with celecoxib at a dose of 25 mg/kg. The other compounds 4c, 5c, 5f and 5l were found as active with inhibition of edema in the range of 35–39 after 3 h of administration of test compounds. The ulcerogenic potential of active compounds was observed to be quite lesser as compared to standard. COX-2 docking score of the active compound 5i was found to be better than standard celecoxib.  相似文献   

17.
Four pyrazolopyrimidine series were prepared with a substitution at position- 4 by Schiff base, triazole, oxadiazole and pyrazole moieties (7a-f, 8a,b, 9a-f, 10a,b and 13a,b), respectively. All the synthesized compounds were evaluated in vitro against COX-2 and in vivo against carrageenan-induced rat paw edema as anti-inflammatory agents. Regarding the anti-inflammatory activity (AI) compounds 7c, 7f, 8a, and 9a showed higher activity with respect to celecoxib. Compounds 9a, 7d, and 7f were closely selective to celecoxib. Also, 7c and 7d were safer than indomethacin and similar to celecoxib as resulted from the histopathological study. In addition, the docking study that showed the binding mode of prominent pyrazolopyrimidine compounds inside the COX-2 receptor. Formation of unexpected pyrazole 13a and 13b was briefly discussed using 2D NMR.  相似文献   

18.
A series of benzo[d]thiazole analogs were synthesized and evaluated for their anti-inflammatory and analgesic effects. Using an ear edema model, except for compounds 2k, 2m-2q and 3a, other compounds showed the anti-inflammatory effects. Among them, compounds 2c, 2d, and 2g showed the best anti-inflammatory activity (inhibition rate: 86.8%, 90.7% and 82.9%, respectively). By the acetic acid-induced abdominal writhing test, except for compounds 2e, 2l, 2m, 2o, 2p and 3a, other compounds showed the analgesic effects with inhibition rate values of 51.9–100% (2a-2r) and 68.6–100% (3a-3g). Next, compounds 2c, 2d, 2g, 3d, 3f, 3g that displayed the excellent anti-inflammatory and analgesic activities were evaluated for their inhibitory effect against ovine COX-1 and COX-2. Compounds 2c, 2d, 2g, 3d, 3f, 3g were weak inhibitors of the COX-1 isozyme but exhibited the moderate COX-2 isozyme inhibitory effects IC50 from 0.28 to 0.77 μM and COX-2 selectivity indexes (SI: 18.6 to 7.2). This benzo[d]thiazole moiety will be proved to be of great significance for developing more potent COX-2 inhibitors.  相似文献   

19.
Two series of new thiazolidin-4-one derivatives 4ac and 8ae were designed and prepared. All the synthesized compounds were evaluated for their in vitro COX-2 selectivity and anti-inflammatory activity in vivo. Compounds 8c and 8d showed the best overall in vitro COX-2 selectivity (selectivity indexes of 4.56 and 5.68 respectively) and in vivo activities (edema inhibition % = 61.8 and 67 after 3 h, respectively) in comparison with the reference drug celecoxib (S.I. = 7.29, edema inhibition % = 60 after 3 h). In addition, 8c and 8d were evaluated for their mean effective anti-inflammatory doses (ED50 = 27.7 and 18.1 μmol/kg respectively, celecoxib ED50 = 28.2 μmol/kg) and ulcerogenic liability (reduction in ulcerogenic potential versus celecoxib = 85%, 92% respectively. Molecular docking studies were performed and the results were in agreement with that obtained from the in vitro COX inhibition assays.  相似文献   

20.
2-Pyrazolins 14a–l and pyrazoles 15a–l were designed as celecoxib analogs for the evaluation of their in vitro COX-1/COX-2 inhibitory activity and the in vivo anti-inflammatory activity. Compounds 14i, 15a, 15d and 15f were the most COX-2 selective derivatives (S.I. = 5.93, 6.08, 5.03 and 5.27 respectively) while the pyrazoline derivatives 14g and 14i exhibited the highest AI activity (ED50 = 190.5 and 160.1 μmol/kg po, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号