首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human epidermal growth factor receptor (EGFR) has become a well-established target for the treatment of patients with non-small cell lung cancer (NSCLC). However, a large number of somatic mutations in such protein have been observed to cause drug resistance or sensitivity during pathological progression, limiting the application of reversible EGFR tyrosine kinase inhibitor therapy in NSCLC. In the current work, we describe an integration of in silico analysis and in vitro assay to profile six representative EGFR inhibitors against a panel of 71 observed somatic mutations in EGFR tyrosine kinase domain. In the procedure, the changes in interaction free energy of inhibitors with EGFR upon various mutations were calculated one by one using a rigorous computational scheme, which was pre-optimized based on a set of structure-solved, affinity-known samples to improve its performance in characterizing the EGFR-inhibitor system. This method was later demonstrated to be effective in inferring drug response to the classical L858R and G719S mutations that confer constitutive activation for the EGFR kinase. It is found that the Staurosporine, a natural product isolated from the bacterium Streptomyces staurosporeus, exhibits selective inhibitory activity on the T790M and T790M/L858R mutants. This finding was subsequently solidified by in vitro kinase assay experiment; the inhibitory IC50 values of Staurosporine against wild-type, T790M and T790M/L858R mutant EGFR were measured to be 937, 12 and 3 nM, respectively.  相似文献   

2.
EGFR基因在非小细胞肺癌、乳腺癌中突变的研究   总被引:3,自引:0,他引:3  
表皮生长因子受体(EGFR)基因酪氨酸激酶域体细胞突变与非小细胞肺癌(NSCLC)患者对酪氨酸激酶抑制剂吉非替尼敏感性密切相关。文章分析和检测本院75例非小细胞肺癌、10例乳腺癌患者石蜡包埋标本EGFR基因突变状况。采用PCR技术进行EGFR基因19和21外显子突变分析。结果显示:75例NSCLC患者中有13例(13/75,17.33%)酪氨酸激酶域存在体细胞突变。其中7例(7/75,9.33%)为19外显子缺失突变,6例(6/75,8%)为21外显子替代突变(2573T>G,L858R)。病理分型显示,腺癌突变率高于其他几种类型NSCLC。乳腺癌患者均为免疫组化HER-2阳性女性,EGFR基因的19、21外显子中未见突变发生。中国非小细胞肺癌患者总突变率高于高加索人种,女性患者较男性患者突变率高,提示肺腺癌的患者突变率高可能在吉非替尼的治疗中获益。  相似文献   

3.
EGFR and other ErbB-family tyrosine kinases are overexpressed in many human tumors, and their aberrant expression and mutational activation is associated with the development, progression and aggressiveness of a number of malignancies. Thus the EGFR kinase has long been recognized as a potential drug target in oncology, and small-molecule inhibitors have been under development for more than two decades. As a result of their effectiveness in treating non-small cell lung cancers (NSCLCs) driven by somatic mutations in the EGFR kinase, gefitinib and erlotinib were the first EGFR tyrosine kinase inhibitors (TKIs) approved for clinical use. Ironically, these drugs found their target against mutant forms of the EGFR kinase, which have altered enzyme active sites, and not against the wild type (WT) kinase against which their potency and selectivity was carefully honed. Here we review recent structural and enzymological studies that explore the exquisite sensitivity of a subset of these lung cancer mutants to gefitinib and erlotinib. We discuss available structural evidence for the mechanisms of activation of the EGFR kinase by these mutants, and compare it to physiologic activation of the kinase by ligand-induced dimerization. Finally, we consider the mechanisms by which the secondary T790M “gatekeeper” mutation confers resistance to gefitinib and erlotinib.  相似文献   

4.
The epidermal growth factor receptor (EGFR) serves as a molecular target for novel cancer therapeutics such as tyrosine kinase inhibitors (TKI) and EGFR Abs. Recently, specific mutations in the EGFR kinase domain of lung cancers were identified, which altered the signaling capacity of the receptor and which correlated with clinical response or resistance to TKI therapy. In the present study, we investigated the impact of such EGFR mutations on antitumor cell activity of EGFR Abs. Thus, an EGFR-responsive cell line model was established, in which cells with tumor-derived EGFR mutations (L858R, G719S, delE746-A750) were significantly more sensitive to TKI than wild-type EGFR-expressing cells. A clinically relevant secondary mutation (T790M) abolished TKI sensitivity. Significantly, antitumor effects of EGFR Abs, including signaling and growth inhibition and Ab-dependent cellular cytotoxicity, were not affected by any of these mutations. Somatic tumor-associated EGFR kinase mutations, which modulate growth inhibition by TKI, therefore do not impact the activity of therapeutic Abs in vitro.  相似文献   

5.
The existence of an in-frame deletion mutant correlates with the sensitivity of lung cancers to EGFR (epidermal growth factor receptor)-targeted tyrosine kinase inhibitors. We reported previously that the in-frame 15-bp deletional mutation (delE746-A750 type deletion) was constitutively active in cells. Kinetic parameters are important for characterizing an enzyme; however, it remains unclear whether the kinetic parameters of deletion mutant EGFR are similar to those of wild-type EGFR. We analysed autophosphorylation in response to ATP and inhibition of gefitinib for deletion mutant EGFR and wild-type EGFR. Kinetic studies, examining autophosphorylation, were carried out using EGFR fractions extracted from 293-pDelta15 and 293-pEGFR cells transfected with deletion mutant EGFR and wild-type EGFR respectively. We demonstrated the difference in activities between unstimulated wild-type (K(m) for ATP=4.0+/-0.3 microM) and mutant EGFR (K(m) for ATP=2.5+/-0.2 microM). There was no difference in K(m) values between EGF-stimulated wild-type EGFR (K(m) for ATP=1.9+/-0.1 microM) and deletion mutant EGFR (K(m) for ATP=2.2+/-0.2 microM). These results suggest that mutant EGFR is active without ligand stimulation. The K(i) value for gefitinib of the deletion mutant EGFR was much lower than that of wild-type EGFR. These results suggest that the deletion mutant EGFR has a higher affinity for gefitinib than wild-type EGFR.  相似文献   

6.
Human epidermal growth factor receptor 2 (HER2) has become a well-established target for the treatment of HER2-positive lung cancer. However, a frequently observed in-frame mutation that inserts amino acid quadruplex Tyr776-Val777-Met778-Ala779 at G776 (G776YVMA) in HER2 kinase domain can cause drug resistance and sensitivity, largely limiting the application of reversible tyrosine kinase inhibitors in lung cancer therapy. A systematic investigation of the intermolecular interactions between the HER2YVMA mutant and clinical small-molecule inhibitors would help to establish a complete picture of drug response to HER2 G776YVMA insertion in lung cancer, and to design new tyrosine kinase inhibitors with high potency and selectivity to target the lung cancer-related HER2YVMA mutant. Here, we combined homology modeling, ligand grafting, structure minimization, molecular simulation and binding affinity analysis to profile a number of tyrosine kinase inhibitors against the G776YVMA insertion in HER2. It is found that the insertion is far away from HER2 active pocket and thus cannot contact inhibitor ligand directly. However, the insertion is expected to induce marked allosteric effect on some regions around the pocket, including A-loop and hinges connecting between the N- and C-lobes of HER2 kinase domain, which may exert indirect influence to inhibitor binding. Most investigated inhibitors exhibit weak binding strength to both wild-type and mutant HER2, which can be attributed to steric hindrance that impairs ligand compatibility with HER2 active pocket. However, the cognate inhibitor lapatinib and the non-cognate inhibitor bosutinib were predicted to have low affinity for wild-type HER2 but high affinity for HER2YVMA mutant, which was confirmed by subsequent kinase assay experiments; the inhibitory potencies of bosutinib against wild-type and mutant HER2 were determined to be IC50?>?1000 and =27?nM, respectively, suggesting that the bosutinib might be exploited as a selective inhibitor for mutant over wild-type HER2. Structural examination revealed that formation of additional non-bonded interactions such as hydrogen bonds and hydrophobic contacts with HER2 A-loop region due to G776YVMA insertion is the primary factor to improve bosutinib affinity upon the mutation.  相似文献   

7.
EGFR mutation-induced drug resistance has become a major threat to the treatment of non-small-cell lung carcinoma. Essentially, the resistance mechanism involves modifications of the intracellular signaling pathways. In our work, we separately investigated the EGFR and ErbB-3 heterodimerization, regarded as the origin of intracellular signaling pathways. On one hand, we combined the molecular interaction in EGFR heterodimerization with that between the EGFR tyrosine kinase and its inhibitor. For 168 clinical subjects, we characterized their corresponding EGFR mutations using molecular interactions, with three potential dimerization partners (ErbB-2, IGF-1R and c-Met) of EGFR and two of its small molecule inhibitors (gefitinib and erlotinib). Based on molecular dynamics simulations and structural analysis, we modeled these mutant-partner or mutant-inhibitor interactions using binding free energy and its components. As a consequence, the mutant-partner interactions are amplified for mutants L858R and L858R_T790M, compared to the wild type EGFR. Mutant delL747_P753insS represents the largest difference between the mutant-IGF-1R interaction and the mutant-inhibitor interaction, which explains the shorter progression-free survival of an inhibitor to this mutant type. Besides, feature sets including different energy components were constructed, and efficient regression trees were applied to map these features to the progression-free survival of an inhibitor. On the other hand, we comparably examined the interactions between ErbB-3 and its partners (EGFR mutants, IGF-1R, ErbB-2 and c-Met). Compared to others, c-Met shows a remarkably-strong binding with ErbB-3, implying its significant role in regulating ErbB-3 signaling. Moreover, EGFR mutants corresponding to poor clinical outcomes, such as L858R_T790M, possess lower binding affinities with ErbB-3 than c-Met does. This may promote the communication between ErbB-3 and c-Met in these cancer cells. The analysis verified the important contribution of IGF-1R or c-Met in the drug resistance mechanism developed in lung cancer treatments, which may bring many benefits to specialized therapy design and innovative drug discovery.  相似文献   

8.
In recent years, the epidermal growth factor receptor (EGFR) has been recognized as a central player and regulator of cancer cell proliferation, apoptosis and angiogenesis and, therefore, as a potentially relevant therapeutic target. Several strategies for EGFR targeting have been developed, the most succesful being represented by monoclonal antibodies, that directly interfere with ligand-receptor binding and small molecule tyrosine kinase inhibitors, that interfere with activation/phosphorylation of EGFR. These agents have been authorized in advanced chemorefractory cancers, including colorectal cancer, non-small-cell lung cancer and head and neck cancer. However, evidence of resistance to these drugs has been described and extensive studies have been performed to investigate whether resistance to EGFR-targeted therapy is primary or secondary. Cellular levels of EGFR do not always correlate with response to the EGFR inhibitors. Indeed, in spite of the over expression and efficient inhibition of EGFR, resistance to EGFR inhibitors may occur. Moreover, given the genetic instability of cancer cells, genetic modifications could enable them to acquire a resistant phenotype to anti-EGFR therapies. Taken together, these findings support the importance of understanding the molecular mechanisms affecting cancer cell sensitivity or resistance to such inhibitors. This review will focus on the most relevant mechanisms contributing to the acquisition of sensitivity/resistance to EGFR inhibitors.  相似文献   

9.
Microdeletions at exon 19 are the most frequent genetic alterations affecting the Epidermal Growth Factor Receptor (EGFR) gene in non-small cell lung cancer (NSCLC) and they are strongly associated with response to treatment with tyrosine kinase inhibitors. A series of 116 NSCLC DNA samples investigated by Sanger Sequencing (SS), including 106 samples carrying exon 19 EGFR deletions and 10 without deletions (control samples), were subjected to deep next generation sequencing (NGS). All samples with deletions at SS showed deletions with NGS. No deletions were seen in control cases. In 93 (88%) cases, deletions detected by NGS were exactly corresponding to those identified by SS. In 13 cases (12%) NGS resolved deletions not accurately characterized by SS. In 21 (20%) cases the NGS showed presence of complex (double/multiple) frameshift deletions producing a net in-frame change. In 5 of these cases the SS could not define the exact sequence of mutant alleles, in the other 16 cases the results obtained by SS were conventionally considered as deletions plus insertions. Different interpretative hypotheses for complex mutations are discussed. In 46 (43%) tumors deep NGS showed, for the first time to our knowledge, subpopulations of DNA molecules carrying EGFR deletions different from the main one. Each of these subpopulations accounted for 0.1% to 17% of the genomic DNA in the different tumors investigated. Our findings suggest that a region in exon 19 is highly unstable in a large proportion of patients carrying EGFR deletions. As a corollary to this study, NGS data were compared with those obtained by immunohistochemistry using the 6B6 anti-mutant EGFR antibody. The immunoreaction was E746-A750del specific. In conclusion, NGS analysis of EGFR exon 19 in NSCLCs allowed us to formulate a new interpretative hypothesis for complex mutations and revealed the presence of subpopulations of deletions with potential pathogenetic and clinical impact.  相似文献   

10.
11.
Small molecule kinase inhibitors of the epidermal growth factor receptor (EGFR) have recently been found to exhibit clinical efficacy in the setting of non-small cell lung cancers that harbor activating EGFR mutations. However, the remissions induced by these drugs (Iressa and Tarceva) are typically short-lived, presumably due to acquired drug resistance. We recently reported findings demonstrating that a distinct class of EGFR inhibitors may overcome some mechanisms of secondary drug resistance in these tumors and may therefore be useful in treating lung cancer patients that initially responded to Iressa or Tarceva and eventually relapsed.  相似文献   

12.
Activating mutations in the kinase domain of the epidermal growth factor receptor (EGFR) in non-small cell lung cancers (NSCLCs) correlate with responsiveness to EGFR kinase inhibitors. In vitro cell culture studies have demonstrated that EGFR kinase domain mutants but not wild type (wt) EGFR are transforming and essential for cancer cell survival. We and others have recently demonstrated that the induction of EGFR kinase domain mutants specifically in murine lung epithelium in vivo led to development of adenocarcinoma with bronchioloalveolar carcinoma (BAC) features. These tumors depend completely on the sustained expression of EGFR kinase domain mutants for tumor maintenance. The murine tumors with EGFR kinase domain mutations are sensitive to EGFR targeted therapy similarly to NSCLC patients whose tumors harbor EGFR mutations. In contrast, initial results suggest that over-expression of wt EGFR in murine lungs does not seem to be transforming. We therefore divide EGFR targeted therapy in NSCLC patients into two parts: “EGFR mutant targeted therapy” and “wt EGFR targeted therapy”. The “EGFR mutant targeted therapy” targets the oncogene essential for tumor initiation and maintenance and is frequently correlated with effective clinical outcome. In contrast, “wt EGFR targeted therapy” likely targets the proto-oncogene product wt EGFR, which is not directly involved in tumor initiation and maintenance, and in these cases, the response has been considerably less dramatic.  相似文献   

13.
The sensitivity of only a few tumors to anti-epidermal growth factor receptor EGFR tyrosine kinase inhibitors (TKIs) can be explained by the presence of EGFR tyrosine kinase (TK) domain mutations. In addition, such mutations were rarely found in tumor types other than lung, such as pancreatic and head and neck cancer. In this study we sought to elucidate mechanisms of resistance to EGFR-targeted therapies in tumors that do not harbor TK sensitizing mutations in order to identify markers capable of guiding the decision to incorporate these drugs into chemotherapeutic regimens. Here we show that EGFR activity was markedly decreased during the evolution of resistance to the EGFR tyrosine kinase inhibitor (TKI) erlotinib, with a concomitant increase of mitogen-inducible gene 6 (Mig6), a negative regulator of EGFR through the upregulation of the PI3K-AKT pathway. EGFR activity, which was more accurately predicted by the ratio of Mig6/EGFR, highly correlated with erlotinib sensitivity in panels of cancer cell lines of different tissue origins. Blinded testing and analysis in a prospectively followed cohort of lung cancer patients treated with gefitinib alone demonstrated higher response rates and a marked increased in progression free survival for patients with a low Mig6/EGFR ratio (approximately 100 days, P = 0.01).  相似文献   

14.
Mutations within the epidermal growth factor receptor (EGFR/erbB1/Her1) are often associated with tumorigenesis. In particular, a number of EGFR mutants that demonstrate ligand-independent signaling are common in non–small cell lung cancer (NSCLC), including kinase domain mutations L858R (also called L834R) and exon 19 deletions (e.g., ΔL747-P753insS), which collectively make up nearly 90% of mutations in NSCLC. The molecular mechanisms by which these mutations confer constitutive activity remain unresolved. Using multiple subdiffraction-limit imaging modalities, we reveal the altered receptor structure and interaction kinetics of NSCLC-associated EGFR mutants. We applied two-color single quantum dot tracking to quantify receptor dimerization kinetics on living cells and show that, in contrast to wild-type EGFR, mutants are capable of forming stable, ligand-independent dimers. Two-color superresolution localization microscopy confirmed ligand-independent aggregation of EGFR mutants. Live-cell Förster resonance energy transfer measurements revealed that the L858R kinase mutation alters ectodomain structure such that unliganded mutant EGFR adopts an extended, dimerization-competent conformation. Finally, mutation of the putative dimerization arm confirmed a critical role for ectodomain engagement in ligand-independent signaling. These data support a model in which dysregulated activity of NSCLC-associated kinase mutants is driven by coordinated interactions involving both the kinase and extracellular domains that lead to enhanced dimerization.  相似文献   

15.
EGFR is a target protein for the treatment of non small cell lung cancer (NSCLC). The mutations associated with the activation of EGFR kinase activity, such as L858R and G719S, destabilize the inactive conformation of EGFR and are closely linked with the development of NSCLC. The additional T790M mutation reportedly causes drug resistance against the commercially available EGFR inhibitors, gefitinib and erlotinib. In this study, we searched for novel G719S/T790M EGFR inhibitors by a new in silico screening strategy, using two datasets. The results of in silico screening using protein-ligand docking are affected by the selection of 3D structure of the target protein. As the first strategy, we chose the 3D structures for in silico screening by test dockings using the G719S/T790M crystal structure, its molecular dynamics snapshots, and known inhibitors of the drug-resistant EGFR. In the second strategy, we selected the 3D structures by test dockings using all of the EGFR structures, regardless of the mutations, and all of the known EGFR inhibitors. Using each of the 3D structures selected by the strategies, 1000 compounds were chosen from the 71,588 compounds. Kinase assays identified 15 G719S/T790M EGFR inhibitors, including two compounds with novel scaffolds. Analyses of their structure-activity relationships revealed that interactions with the mutated Met790 residue specifically increase the inhibitory activity against G719S/T790M EGFR.  相似文献   

16.
17.
Mutation screening in 90 unrelated ADPKD1 patients was carried out on some of the exons in the single copy area (37, 38, 39, 44, 45) using genomic PCR and SSCP. Four novel mutations were found: a 15 bp in-frame deletion in exon 39 [nt11449 (del 15)], a 2 bp deletion in exon 44 [nt12252 (del 2)], a G insertion in exon 44 [nt12290 (Ins G)], and a GTT in-frame deletion in exon 45 [nt12601 (del 3)].  相似文献   

18.
Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR) mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs). However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11-18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11-18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11-18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2) or BIBW2992 (pan-TKI of EGFR family proteins). Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance.  相似文献   

19.
We have developed a simultaneous detection method for two common mutations in the epidermal growth factor receptor gene based on the fluorescence quenching phenomenon caused by aggregation of CdSe quantum dots. For detection of the in-frame deletion in exon 19 and the L858R point mutation in exon 21, water-soluble CdSe quantum dots with two sizes were functionalized using four different types of probe oligonucleotides. Addition of target oligonucleotides with the deletion mutation in exon 19 into the suspensions caused crosslinking-induced aggregation of green-emitting quantum dots, followed by the fluorescence quenching while that with the L858R point mutation resulted in aggregation of yellow-emitting quantum dots. In addition, targets with both deletion and point mutations caused aggregation of both green- and yellow-emitting quantum dots. This method allows a simultaneous detection of mutations in exon 19 and 21 of EGFR gene in a single experiment. We found that minimum mutant concentration that could be detected by this method was as low as 2% for deletion mutation, and 5% for point mutation. PCR products of EGFR gene were also used to confirm that our method could be used to detect mutation in amplified DNA fragments.  相似文献   

20.
Ran Friedman 《Proteins》2017,85(11):2143-2152
Fms‐like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is a drug target for leukemias. Several potent inhibitors of FLT3 exist, and bind to the inactive form of the enzyme. Unfortunately, resistance due to mutations in the kinase domain of FLT3 limits the therapeutic effects of these inhibitors. As in many other cases, it is not straightforward to explain why certain mutations lead to drug resistance. Extensive fully atomistic molecular dynamics (MD) simulations of FLT3 were carried out with an inhibited form (FLT‐quizartinib complex), a free (apo) form, and an active conformation. In all cases, both the wild type (wt) proteins and two resistant mutants (D835F and Y842H) were studied. Analysis of the simulations revealed that impairment of protein‐drug interactions cannot explain the resistance mutations in question. Rather, it appears that the active state of the mutant forms is perturbed by the mutations. It is therefore likely that perturbation of deactivation of the protein (which is necessary for drug binding) is responsible for the reduced affinity of the drug to the mutants. Importantly, this study suggests that it is possible to explain the source of resistance by mutations in FLT3 by an analysis of unbiased MD simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号