首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
High-dose ascorbic acid (AsA) treatment, known as pharmacological AsA, has been shown to exert carcinostatic effects in many types of cancer cells and in vivo tumour models. Although pharmacological AsA has potential as a complementary and alternative medicine for anticancer treatment, its effects on human tongue carcinoma have not yet been elucidated. In this study, we investigated the effect of AsA treatment on human tongue carcinoma HSC-4 cells compared with non-tumourigenic tongue epithelial dysplastic oral keratinocyte (DOK) cells. Our results show that treatment with 1 and 3?mM of AsA for 60?min preferentially inhibits the growth of human tongue carcinoma HSC-4 over DOK cells. Furthermore, AsA-induced effects were accompanied by increased intracellular oxidative stress and were repressed by treatment with a hydrogen peroxide (H2O2) scavenger catalase and a superoxide anion radical (O2?) scavenger, tempol. Time-lapse observation and thymidine analog EdU incorporation revealed that AsA treatment induces not only cell death but also suppression of DNA synthesis and cell growth. Moreover, the growth arrest was accompanied by abnormal cellular morphologies whereby cells extended dendrite-like pseudopodia. Taken together, our results demonstrate that AsA treatment can induce carcinostatic effects through induction of cell death, growth arrest, and morphological changes mediated by H2O2 and O2? generation. These findings suggest that high-dose AsA treatment represents an effective treatment for tongue cancer as well as for other types of cancer cells.  相似文献   

2.
Abstract

Exogenous hydrogen peroxide (H2O2) can easily penetrate into biological membranes and enhance the formation of other reactive oxygen species (ROS). In the present study, we have investigated the neuroprotective effects of insulin on H2O2-induced toxicity of retinoic acid (RA)-differentiated SH-SY5Y cells. To measure the changes in the cell viability of SH-SY5Y cells at different concentrations of H2O2 for 24?h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT)-based assay was used and a 100?µM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 24?h of 100?µM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), nitric oxide (NO), ROS, and calcium ion (Ca2+) in neuronal cells, but insulin can effectively diminish the H2O2-induced oxidative damages to these cells. Moreover, cells treated with insulin increased H2O2-induced suppression of glutathione levels and exerted an apparent suppressive effect on oxidative products. The results of insulin treatment with SH-SY5Y cells increased the Bcl-2 levels and decreased the Akt levels. The treatment of insulin had played a protective effect on H2O2-induced oxidative stress related to the Akt/Bcl-2 pathways.  相似文献   

3.
Feng B  Ye WL  Ma LJ  Fang Y  Mei YA  Wei SM 《Life sciences》2012,90(11-12):424-431
AimsRecent studies have shown that dermal fibroblasts possess multiple types of voltage-dependent K+ channels, and the activation of these channels induces apoptosis. In the present study, we aimed to investigate whether hydrogen peroxide (H2O2), an oxidative stress inducer, could modulate these channels or induce human dermal fibroblasts injury.Main methodsThe effects of H2O2 on K+ currents were studied using a whole-cell recording. Intracellular PKC levels were measured with a direct human PKC enzyme immunoassay kit. Cell viability was assessed using PI staining and apoptotic nuclei were detected with TdT-mediated digoxigenin-dUTP nick-end labelling assay (TUNEL) assay.Key findingsTreatment of cells with 100 μM H2O2 resulted in a partially reversible increase in non-inactivating outward K+ currents and an alteration in the steady-state activation property of the channels. The H2O2-induced increase in K+ currents was mimicked by a PKC activator, and was blocked by the PKC inhibitor or the large conductance Ca2+-activited K+ (BK) channel blockers. The intracellular PKC levels were significantly enhanced by H2O2 treatment in a concentration-dependent manner. After exposure to H2O2, evaluation of fibroblasts survival rate and damaged cell number with TUNEL-positive nuclei revealed an increased cell injury. Blocking the K+ channels with blockers significantly decreased the H2O2-induced human dermal fibroblasts injury.SignificanceOur results revealed that H2O2 could enhance BK currents by PKC pathway. Increased K+ currents might be related to H2O2-induced human dermal fibroblasts injury. The results reported here contribute to our understanding of the mechanism underlying H2O2-induced human dermal fibroblasts injury.  相似文献   

4.
Abstract

Hydrogen peroxide (H2O2) plays an important role in various biological processes in numerous organisms. Depending on the concentration and the distribution within the cell, it can act as stressor or redox signalling molecule. To analyse the effects of H2O2 and its diffusion within the cell we developed the new genetically encoded photosensitizer KillerRed-SOD1 which enables a light-induced spatially and temporally controlled generation of H2O2 in living cells. The KillerRed-SOD1 is a fusion protein of the photosensitizer KillerRed (KR) and the cytosolic superoxide dismutase isoform 1 (SOD1) connected by a helix-forming peptide linker. Light irradiation at a wavelength of 560?nm induced superoxide radical formation at the KR domain which was transformed to H2O2 at the SOD1 domain. H2O2 was specifically detected under live cell conditions using the fluorescent sensor protein HyPer. Genetically encoded photosensitizers have the advantage that appropriate tag sequences can determine the localisation of the protein within the cell. Herein, it was exemplarily shown that the peroxisomal targeting sequence 1 directed the photosensitizer KR-SOD1 to the peroxisomes and enabled H2O2 formation specifically in these organelles. In summary, with the photosensitizer KR-SOD1 a new valuable tool was established which allows a controlled intracellular H2O2 generation for the analysis of H2O2 effects on a subcellular level.  相似文献   

5.
Ginsenosides, the active components of the famous Chinese herb ginseng, have been suggested to possess cardiovascular-protective effects. The mechanism of ginsenosides is believed to be associated with their ability to prevent cellular oxidative stress. The purpose of this study was to explore the cytoprotective effects of the ginsenoside protopanaxatriol (PPT) on hydrogen peroxide (H2O2)-induced endothelial cell injury and cell death. Pretreatment of human umbilical vein endothelial cells (HUVECs) with PPT for 24 h was able to protect the cells against H2O2-induced injury. In addition to cell death, pretreatment with PPT could also reduce H2O2-induced DNA damage, overactivation of the DNA repair enzyme PARP-1, and concomitant depletion of the intracellular substrate NAD+. Furthermore, PPT could reverse the decrease in ATP/ADP ratio caused by H2O2. The metabolism of glutathione was also changed. H2O2 could induce a significant decrease in GSH level resulting in a decrease in the GSH/GSSG ratio. This could be prevented by pretreatment with PPT. The action was associated with increasing activities of the GSH-metabolizing enzymes glutathione reductase and glutathione peroxidase. These findings suggest that the ginsenoside PPT could protect HUVECs against H2O2-induced cell death via its action against oxidative stress, which may be responsible for the cardiovascular-protective action of ginseng.  相似文献   

6.
Standardized extract from the leaves of the Ginkgo biloba tree, labeled EGb761, is one of the most popular herbal supplements, taken for its multivalent properties. In this study, dosage effects of EGb761 on hydrogen peroxide (H2O2)-induced apoptosis of human neuroblastoma SH-SY5Y cells were investigated. It was found that H2O2-induced apoptotic cell death in SH-SY5Y cells, which was revealed in DNA fragmentation, mitochondrial membrane potential depolarization, and activation of Akt, c-Jun N-terminal kinases (JNK) and caspase 3. Low doses of EGb761 (50–100 μg/ml) inhibited H2O2-induced cell apoptosis via inactivation of Akt, JNK and caspase 3 while high doses of EGb761 (250–500 μg/ml) enhanced H2O2 toxicities via inactivation of Akt and enhancement of activation of JNK and caspase 3. Additional experiments revealed that H2O2 decreased intracellular GSH content, which was also inhibited by low concentrations of EGb761 but enhanced after high concentrations of EGb761 treatment. This further suggests to us that dosage effects of EGb761 on apoptotic signaling proteins may be correlated with regulation of cell redox state. Therefore, treatment dosage may be one of the vital factors that determine the specific action of EGb761 on oxidative stress-induced cell apoptosis. To understand the mechanisms of dosage effects of EGb761 may have important clinical implications.  相似文献   

7.
Distinguishing the multiple effects of reactive oxygen species (ROS) on cancer cells is important to understand their role in tumour biology. On one side, ROS can be oncogenic by promoting hypoxic conditions, genomic instability and tumorigenesis. Conversely, elevated levels of ROS‐induced oxidative stress can induce cancer cell death. This is evidenced by the conflicting results of research using antioxidant therapy, which in some cases promoted tumour growth and metastasis. However, some antioxidative or ROS‐mediated oxidative therapies have also yielded beneficial effects. To better define the effects of oxidative stress, in vitro experiments were conducted on 4T1 and splenic mononuclear cells (MNCs) under hypoxic and normoxic conditions. Furthermore, hydrogen peroxide (H2O2; 10–1,000 μM) was used as an ROS source alone or in combination with hyaluronic acid (HA), which is frequently used as drug delivery vehicle. Our result indicated that the treatment of cancer cells with H2O2 + HA was significantly more effective than H2O2 alone. In addition, treatment with H2O2 + HA led to increased apoptosis, decreased proliferation, and multiphase cell cycle arrest in 4T1 cells in a dose‐dependent manner under normoxic or hypoxic conditions. As a result, migratory tendency and the messenger RNA levels of vascular endothelial growth factor, matrix metalloproteinase‐2 (MMP‐2), and MMP‐9 were significantly decreased in 4T1 cells. Of note, HA treatment combined with 100–1,000 μM H2O2 caused more damage to MNCs as compared to treatment with lower concentrations (10–50 μM). Based on these results, we propose to administer high‐dose H2O2 + HA (100–1000 μM) for intratumoural injection and low doses for systemic administration. Intratumoural route could have toxic and inhibitory effects not only on the tumour but also on residential myeloid cells defending it, whereas systemic treatment could stimulate peripheral immune responses against the tumour. More in vivo research is required to confirm this hypothesis.  相似文献   

8.
Studies indicate that leptin is involved in not only energy expenditure and food intake, but also in protection against apoptosis, in inflammation and in stimulation of proliferation in many cell types. However, leptin treatment increases the oxidative stress in many cell culture studies. This contradiction evoked a question of whether leptin acts as an oxidant or antioxidant on glial cells. We investigated the effect of leptin on glial cell survival and hydrogen peroxide (H2O2)-induced toxicity in vitro. The survival rate of the cells was determined by using 3-(4,5-D-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, thyazolyl blue (MTT) method. The cells obtained from the whole brain of 1–3 day-old rat were treated with 1, 10, 100 and 1000 ng/mL leptin for 24 or 72 h. Either the pretreatment of leptin alone for 5 h or leptin combined simultaneously with H2O2 or well known antioxidant glutathione (GSH) were applied to the cells. Malondialdehyde (MDA) levels were measured in cell lysates to which leptin was added for 24 h. The 100 and 1000 ng/mL leptin treatment for 72 h increased the glial viability by 19% and 36%, respectively. The dose of H2O2 that killed 75% of the cells was determined as 100 μM. GSH at different doses was applied as a positive control to the cells and the dose of 500 μM completely eliminated toxic effect of 100 μM H2O2. Either the pretreatment of leptin alone for 5 h or leptin combined simultaneously with H2O2 could not eliminate H2O2-caused toxicity. Furthermore, respective leptin doses did not change the glia MDA level. We suggest that leptin can increase glia survival dose dependently, but can not eliminate H2O2-induced oxidation in primary mixed glial cell culture.  相似文献   

9.
This study was designed to isolate new genes related to apoptosis in rat pheochromocytoma (PC12) cells treated with hydrogen peroxide (H2O2), and to characterize the roles of the genes using both in vitro and in vivo models of oxidative injury. cDNA libraries were prepared from H2O2-treated and -untreated PC12 cells, and a ribosomal protein S9 (RPS9) clone was isolated by a differential screening method. Increase of RPS9 expression in both H2O2-treated PC12 and neuroblastoma (Neuro-2A) cells was shown by Northern blot analysis. Viability of the antisense-transfected Neuro-2A (RPS9-AS) cells following H2O2 treatment was significantly reduced in a dose-dependent manner. In an in vivo model of transient forebrain ischemia, an increase in RPS9 expression was prominent by 1 day postischemia in the granule cell layer neurons of the dentate gyrus. Both activation of caspase-3 and significant recovery of viability following pretreatment with cycloheximide were shown in RPS9-AS cells treated with H2O2. These data suggest that RPS9 plays a protective role in oxidative injury of neuronal cells.  相似文献   

10.
《Free radical research》2013,47(6):718-725
Abstract

Rat granulosa cells (GCs) were treated with human chorionic gonadotropin (hCG), 8-bromo-adenosine 3′,5′-cyclic monophosphate (8-Br-cAMP), forskolin, phorbol 12-myristate 13-acetate (PMA), A23187 or pregnenolone in the absence or presence of hydrogen peroxide (H2O2). Different doses of trilostane were applied to GCs treated with steroidogenic precursors, that is, 25-hydroxy-cholesterol (25-OH-C) in the absence or presence of H2O2. Results showed that all of the chemicals stimulated the progesterone (PG) release from rat GCs, but the stimulatory effects were inhibited by H2O2 dose-dependently. 25-OH-C stimulated the PG release, which was inhibited by H2O2 in the presence of trilostane. H2O2 attenuated steroidogenic acute regulatory (StAR) protein expression, but did not alter the expression of cytochrome P450 side chain cleavage (P450scc) in Western blotting. This study indicated that H2O2 inhibited PG production by GCs via cAMP pathway, protein kinase C (PKC) and the activities of intracellular calcium, P450scc and StAR protein.  相似文献   

11.
Hydrogen peroxide (H2O2) is upregulated in tumour microenvironments and may contribute to effects on metastatic cancer cells. This study demonstrates that treatment of lung carcinoma and melanoma cells with H2O2 for 14 days results in an induction of anoikis resistance and growth in an anchorage‐independent condition. H2O2 exposure increased the Cav‐1 (caveolin‐1) level through an increase of Cav‐1 mRNA with minimal effect on protein degradation. Upregulation of Cav‐1 induced anoikis resistance and facilitated growth in a detached manner. The findings show a novel role of hydrogen peroxide in the regulation of metastatic potential of cancer cells.  相似文献   

12.
ABSTRACT

Reactive oxygen species and nitric oxide (NO?) concomitantly play essential roles in guard cell signaling. Studies using catalase mutants have revealed that the inducible and constitutive elevations of intracellular hydrogen peroxide (H2O2) have different roles: only the inducible H2O2 production transduces the abscisic acid (ABA) signal leading stomatal closure. However, the involvement of inducible or constitutive NO? productions, if exists, in this process remains unknown. We studied H2O2 and NO? mobilization in guard cells of catalase mutants. Constitutive H2O2 level was higher in the mutants than that in wild type, but constitutive NO? level was not different among lines. Induced NO? and H2O2 levels elicited by ABA showed a high correlation with each other in all lines. Furthermore, NO? levels increased by exogenous H2O2 also showed a high correlation with stomatal aperture size. Our results demonstrate that ABA-induced intracellular H2O2 accumulation triggers NO? production leading stomatal closure.  相似文献   

13.
Objectives: Reactive oxygen species, which are implicated in the process of carcinogenesis, are also responsible for cell death during chemotherapy (CHT). Therefore, the aim of the study was to evaluate exhaled H2O2 levels in non-small cell lung cancer (NSCLC) patients before and after CHT.

Methods: Thirty patients (age 61.3?±?9.3 years) with advanced NSCLC (stage IIIB–IV) and 15 age-matched healthy cigarette smokers were enrolled into the study. Patients received four cycles of cisplatin or carboplatin with vinorelbine every three weeks. Before and after the first, second, and fourth cycle, the concentration of H2O2 in exhaled breath condensate was measured with respect to treatment response.

Results: At the baseline, NSCLC patients exhaled 3.8 times more H2O2 than the control group (0.49?±?0.14 vs. 0.13?±?0.03?µmol/L, P?2O2 levels independent of the treatment response (partial remission vs. progressive disease). Pre- and post-CHT cycles of H2O2 levels generally correlated positively.

Discussion: The study demonstrated the occurrence of oxidative stress in the airways of advanced NSCLC patients. Exhaled H2O2 level was not affected by CHT and independent of treatment results and changes in the number of circulating neutrophils.  相似文献   

14.
15.
Hydrogen peroxide (H2O2) is an incompletely reduced metabolite of oxygen that has a diverse array of physiological and pathological effects within living cells depending on the extent, timing, and location of its production. Characterization of the cellular functions of H2O2 requires measurement of its concentration selectively in the presence of other oxygen metabolites and with spatial and temporal fidelity in live cells. For the measurement of H2O2 in biological fluids, several sensitive methods based on horseradish peroxidase and artificial substrates (such as Amplex Red and 3,5,3’5’-tetramethylbenzidine) or on ferrous oxidation in the presence of xylenol orange (FOX) have been developed. For measurement of intracellular H2O2, methods based on dihydro compounds such as 2’,7’-dichlorodihydrofluorescein that fluoresce on oxidation are used widely because of their sensitivity and simplicity. However, such probes react with a variety of cellular oxidants including nitric oxide, peroxynitrite, and hypochloride in addition to H2O2. Deprotection reaction-based probes (PG1 and PC1) that fluoresce on H2O2-specific removal of a boronate group rather than on nonspecific oxidation have recently been developed for selective measurement of H2O2 in cells. Furthermore, a new class of organelle-targetable fluorescent probes has been devised by joining PG1 to a substrate of SNAP-tag. Given that SNAP-tag can be genetically targeted to various subcellular organelles, localized accumulation of H2O2 can be monitored with the use of SNAP-tag bioconjugation chemistry. However, given that both dihydro- and deprotection-based probes react irreversibly with H2O2, they cannot be used to monitor transient changes in H2O2 concentration. This drawback has been overcome with the development of redox-sensitive green fluorescent protein (roGFP) probes, which are prepared by the introduction of two redox-sensitive cysteine residues into green fluorescent protein; the oxidation of these residues to form a disulfide results in a conformational change of the protein and altered fluorogenic properties. Such genetically encoded probes react reversibly with H2O2 and can be targeted to various compartments of the cell, but they are not selective for H2O2 because disulfide formation in roGFP is promoted by various cellular oxidants. A new type of H2O2-selective, genetically encoded, and reversible fluorescent probe, named HyPer, was recently prepared by insertion of a circularly permuted yellow fluorescent protein (cpYFP) into the bacterial peroxide sensor protein OxyR.  相似文献   

16.
Coupled rat heart mitochondria produce externally hydrogen peroxide at the rates which correspond to about 0.8 and 0.3% of the total oxygen consumption at State 4 with succinate and glutamate plus malate as the respiratory substrates, respectively. Stimulation of the respiratory activities by ADP (State 4–State 3 transition) decreases the succinate- and glutamate plus malate-supported H2O2 production 8- and 1.3-times, respectively. NH4+ strongly stimulates hydrogen peroxide formation with either substrate without any effect on State 4 and/or State 3 respiration. Rotenone-treated, alamethicin-permeabilized mitochondria catalyze NADH-supported H2O2 production at a rate about 10-fold higher than that seen in intact mitochondria under optimal (State 4 succinate-supported respiration in the presence of ammonium chloride) conditions. NADH-supported hydrogen peroxide production by the rotenone-treated mitochondria devoid of a permeability barrier for H2O2 diffusion by alamethicin treatment are only partially (~ 50%) sensitive to the Complex I NADH binding site-specific inhibitor, NADH-OH. The residual activity is strongly (~ 6-fold) stimulated by ammonium chloride. NAD+ inhibits both Complex I-mediated and ammonium-stimulated H2O2 production. In the absence of stimulatory ammonium about half of the total NADH-supported hydrogen peroxide production is catalyzed by Complex I. In the presence of ammonium about 90% of the total hydrogen peroxide production is catalyzed by matrix located, ammonium-dependent enzyme(s).  相似文献   

17.
The Na+ and Ca2+-permeable melastatin related transient receptor potential (TRPM2) cation channels can be gated either by ADP-ribose (ADPR) in concert with Ca2+ or by hydrogen peroxide (H2O2), an experimental model for oxidative stress, and binding to the channel’s enzymatic Nudix domain. Since the mechanisms that lead to TRPM2 inhibiting in response to ADPR and H2O2 are not understood, I reviewed the effects of various inhibitors such as flufenamic acid and PARP inhibitors on ADPR, NAD+ and H2O2-induced TRPM2 currents. In our experimental study, TRPM2 cation channels in chinese hamster ovary transected cells were gated both by ADPR and NAD+. In addition, H2O2 seems to activate TRPM2 by changing to the hydroxyl radical in the intracellular space after passing the plasma membrane. Experimental studies with respect to patch-clamp and Ca2+ imaging, inhibitor roles of antioxidants are also summarized in the review.  相似文献   

18.
Reactive oxygen species produce oxidized bases, deoxyribose lesions and DNA strand breaks in mammalian cells. Previously, we demonstrated that aldehydic DNA lesions (ADLs) were induced in mammalian cells by 10 mM hydrogen peroxide (H2O2). Interestingly, a bimodal H2O2 dose–response relationship in cell toxicity has been reported for Escherichia coli deficient in DNA repair as well as Chinese hamster ovary (CHO) cells. Furthermore, it has been demonstrated that H2O2 causes single-strand breaks in purified DNA in the presence of iron and induces mitochondrial DNA damage in CHO cells with a biphasic dose–response curve. Here we show that H2O2 produces ADLs at concentrations as low as 0.06 mM in HeLa cells and that lower concentrations of H2O2 were much more efficient at inducing ADLs than higher concentrations. This dose–response curve is strikingly similar to that for cell killing effects in E.coli deficient in DNA repair exposed to H2O2. Interestingly, serial treatment of submillimolar levels of H2O2 induced a massive accumulation of ADLs. The toxicity arising from H2O2 determined by intracellular NAD(P)H in cells correlated well with the formation of ADLs. The addition of dipyridyl, an iron (II)-specific chelator, significantly protected against DNA damage and cell toxicity from submillimolar, but not millimolar, amounts of H2O2. These results suggest that ADLs induced by submillimolar levels of H2O2 may be due to a Fenton-type reaction between H2O2 and intracellular iron ions in mammalian cells.  相似文献   

19.
Hydrogen peroxide (H2O2) is a reactive oxygen species that signals between cells, and H2O2 signaling is essential for diverse cellular processes, including stress response, defense against pathogens, and the regulation of programmed cell death in plants. Although plasma membrane intrinsic proteins (PIPs) have been known to transport H2O2 across cell membranes, the permeability of each family member of PIPs toward H2O2 has not yet been determined in most plant species. In a recent study, we showed that certain isoforms of Arabidopsis thaliana AtPIPs, including AtPIP2;2, AtPIP2;4, AtPIP2;5, and AtPIP2;7, are permeable for H2O2 in yeast cells. Since the expression of PIPs is differently modulated in Arabidopsis by abiotic stress or H2O2 treatment, it is important to investigate the integrated regulation of aquaporin expression and their physiological significance in H2O2 transport and plant response to diverse abiotic stresses.  相似文献   

20.
《Free radical research》2013,47(3):347-356
Abstract

Oxidative stress is induced by excess accumulation of reactive oxygen and nitrogen species (RONS). Astrocytes are metabolically active cells in the brain and understanding astrocytic responses to oxidative stress is essential to understand brain pathologies. In addition to direct oxidative stress, exogenous hydrogen peroxide (H2O2) can penetrate biological membranes and enhance formation of other RONS. The present study was carried out to examine the role of insulin in H2O2-induced oxidative stress in rat astrocytic cells. To measure changes in the viability of astrocytes at different concentrations of H2O2 for 3 h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)-based assay was used and 500 μM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 3 h of 500 μM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS) and calcium ion (Ca2+) in C6 cells, with insulin able to effectively diminish H2O2-induced oxidative damage to C6 cells. Western blotting studies showed that insulin treatment of astrocytes increased the levels of phosphorylated Akt and magnified the decrease in total Bcl-2 protein. The protective effect of insulin treatment on H2O2-induced oxidative stress in astrocytes by reducing apoptosis may relate to the PI3K/Akt pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号