首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetic nephropathy (DN) is a progressive kidney disease due to glomerular capillary damage in diabetic patients, with inflammation and oxidative stress implicated as crucial pathogenic factors. There is an urgent need to develop effective therapeutic drug. Natural medicines are rich resources for active lead compounds. They would provide new opportunities for the treatment of DN. The present study was designed to investigate the protective effects of Schisandrin B (SchB) on DN and to delineate the underlying mechanism. Oral administration of SchB in the diabetic mouse model significantly alleviated hyperglycemia-induced renal injury, which was accompanied by maintenance of urine creatinine and albumin levels at similar to those of control non-diabetic mice. Histological examination of renal tissue indicated that both development of fibrosis and renal cell apoptosis were dramatically inhibited by SchB. The protective effect of SchB on DN associated with suppression of inflammatory response and oxidative stress. These results strongly suggested that SchB could be a potential therapeutic agent for treatment of DN. Moreover, our findings provided a fuller understanding of the regulatory role of NF-κB and Nrf2 in DN, indicating that they could be important therapeutic targets.  相似文献   

2.
Hyperglycaemia-induced myocardial injury promotes the induction of heart failure in diabetic patients. Impaired antioxidant capability and sustained chronic inflammation play a vital role in the progression of diabetic cardiomyopathy (DCM). Costunolide (Cos), a natural compound with anti-inflammatory and antioxidant properties, has exhibited therapeutic effects in various inflammatory diseases. However, the role of Cos in diabetes-induced myocardial injury remains poorly understood. In this study, we investigated the effect of Cos on DCM and explored the potential mechanisms. C57BL/6 mice were administered intraperitoneal streptozotocin for DCM induction. Cos-mediated anti-inflammatory and antioxidation activities were examined in heart tissues of diabetic mice and high glucose (HG)-stimulated cardiomyocytes. Cos markedly inhibited HG-induced fibrotic responses in diabetic mice and H9c2 cells, respectively. The cardioprotective effects of Cos could be correlated to the reduced expression of inflammatory cytokines and decreased oxidative stress. Further investigations demonstrated Cos reversed diabetes-induced nuclear factor-κB (NF-κB) activation and alleviated impaired antioxidant defence system, principally via activation of nuclear factor-erythroid 2 p45-related factor-2 (Nrf-2). Cos alleviated cardiac damage and improved cardiac function in diabetic mice by inhibiting NF-κB-mediated inflammatory responses and activating the Nrf-2-mediated antioxidant effects. Therefore, Cos could be a potential candidate for the treatment of DCM.  相似文献   

3.
Obesity is a serious medical condition, defined as excessive accumulation of fat. Abdominal fat is recognized as the major risk for obesity related diseases such as: hypertension, dyslipidemia, type 2 diabetes mellitus, coronary heart disease, stroke, non-alcoholic fatty liver disease etc. Fat accumulation is also related to pro-oxidant and pro-inflammatory states. Recently published articles suggest that oxidative stress may be a link between obesity and related complications. Adiposity leads to increased oxidative stress via several multiple biochemical processes such as superoxide generation through the action of NADPH oxidase, glyceraldehyde auto-oxidation, oxidative phosphorylation, protein kinase C (PKC) activation, and polyol and hexosamine pathways. On the other hand, oxidative stress plays a causative role in the development of obesity, by stimulating the deposition of adipose tissue, including preadipocyte proliferation, adipocyte differentiation and growth. Exercise-induced weight loss can improve the redox state by modulating both oxidative stress and antioxidant promoters, which reduce endothelial dysfunction and inflammation.  相似文献   

4.
Corynoline has been reported to have anti-inflammatory and antioxidative effects. In the present study, the potential protective effects of corynoline against zearalenone (ZEA)-induced liver injury were investigated. ZEA was administered daily for 5 days. Then, liver tissues were used for subsequent experiments. Corynoline attenuated liver histopathological changes induced by ZEA. The production of tumor necrosis factor-α and interleukin-1β in liver tissues, as well as aspartate aminotransferase and alanine aminotransferase in serum, was also inhibited by corynoline. Meanwhile, ZEA-induced MPO activity and MDA content were both attenuated by corynoline. ZEA-induced NF-κB p65 and IκBα phosphorylation were inhibited by corynoline. Furthermore, SIRT1, Nrf2, and HO-1 expression were increased by corynoline. In addition, the protective effects of corynoline against liver injury were reversed by the SIRT1 inhibitor EX-527. Taken together, corynoline protected against ZEA-induced liver injury by activating the SIRT1/Nrf2 signaling pathway.  相似文献   

5.
Ryu B  Himaya SW  Qian ZJ  Lee SH  Kim SK 《Peptides》2011,32(4):639-647
Two new peptides derived from seaweed pipefish Syngnathus schlegeli, SPP-1(QLGNLGV) and SPP-2 (SVMPVVA) were assessed for their ability to prevent hydrogen peroxide induced oxidative stress in human dermal fibroblasts (HDFs). Both peptides showed a significant hydroxyl radical scavenging activity when tested by ESR technique. And also the peptides effectively suppressed the hydrogen peroxide induced ROS production and DNA damage in HDF cells. Furthermore the two peptides increase the protein expression levels of intracellular antioxidant enzymes SOD1, GSH and catalase in hydrogen peroxide stressed HDF cells. At the cellular signaling level, SPPs block the NF-κB activation which may lead to the reduction of oxidative stress mediated damage of HDF cells. These finding indicate the potential antioxidant effects of SPPs as response to H2O2 stimulation.  相似文献   

6.
Obesity is associated with chronic diseases such as fatty liver, type 2 diabetes, cardiovascular disease, and severe metabolic syndrome. Obesity causes metabolic impairment including excessive lipid accumulation and fibrosis in the hepatic tissue as well as the increase in oxidative stress. In order to investigate the effect of mulberry leaf (Morus alba L.) extract (MLE) on obesity-induced oxidative stress, lipogenesis, and fibrosis in liver, MLE has been gavaged for 12 weeks in high-fat diet (HFD)-induced obese mice. MLE treatment significantly ameliorated LXRα-mediated lipogenesis and hepatic fibrosis markers such as α-smooth muscle actin, while MLE up-regulated lipolysis-associated markers such as lipoprotein lipase in the HFD-fed mice. Moreover, MLE normalized the activities of antioxidant enzymes including heme oxygenase-1 and glutathione peroxidase in accordance with protein levels of 4-hydroxynonenal in the HFD-fed mice. MLE has beneficial effects on obesity-related fatty liver disease by regulation of hepatic lipid metabolism, fibrosis, and antioxidant defense system. MLE supplementation might be a potential therapeutic approach for obesity-related disease including non-alcoholic fatty liver disease.  相似文献   

7.
Obesity is a risk factor for many chronic diseases, and is associated with increased incidence rate of type 2 diabetes, hypertension, dyslipidemia and cardiovascular diseases. Adipocyte differentiation play critical role during development of obesity. Latexin (LXN), a mammalian carboxypeptidase inhibitor, plays important role in the proliferation and differentiation of stem cells, and highlights as a differentiation-associated gene that was significantly downregulated in prostate stem cells and whose expression increases through differentiation. However, it is unclear whether LXN is involved in adipocyte differentiation. The aim of this study was to evaluate the role of LXN on adipocyte differentiation, as well as its effects on high fat-induced obesity and metabolic disorders. In this study, we determine the expression of LXN in adipose tissue of lean and fat mice by Western blot, qPCR and immunohistochemistry. We found that LXN in fat tissues was continuous increased during the development of diet-induced obesity. We fed wild-type (WT) and LXN−/−mice with high-fat diet (HFD) to study the effects of LXN on obesity and related metabolic functions. We found that mice deficient in LXN showed resistance against high-fat diet (HFD)-induced obesity, glucose tolerance, insulin tolerance and hepatic steatosis. In vitro studies indicated that LXN was highly induced during adipocyte differentiation, and positively regulated adipocyte differentiation and adipogenesis in 3T3-L1 cells and primary preadipocytes. Functional analysis revealed that the expression of LXN was positively regulated by mTOR/RXR/PPARɤ signaling pathway during the differentiation of adipocytes, while LXN deletion decreased the protein level of PPARɤ in adipocyte through enhancing FABP4 mediated ubiquitination, which led to impaired adipocyte differentiation and lipogenesis. Collectively, our data provide evidence that LXN is a key positive regulator of adipocyte differentiation, and therapeutics targeting LXN could be effective in preventing obesity and its associated disorders in clinical settings.Subject terms: Metabolic disorders, Mechanisms of disease  相似文献   

8.
《Phytomedicine》2014,21(2):141-147
Cryptotanshinone from Salvia miltiorrhiza Bunge was investigated for hepatoprotective effects in d-galactosamine (GalN)/lipopolysaccharide (LPS)-induced fulminant hepatic failure. Cryptotanshinone (20 or 40 mg/kg) was orally administered 12 and 1 h prior to GalN (700 mg/kg)/LPS (10 μg/kg) injection. The increased mortality and TNF-α levels by GalN/LPS were declined by cryptotanshinone pretreatment. In addition, cryptotanshinone attenuated GalN/LPS-induced apoptosis, characterized by the blockade of caspase-3, -8, and -9 activation, as well as the release of cytochrome c from the mitochondria. In addition, cryptotanshinone significantly suppressed JNK, ERK and p38 phosphorylation induced by GalN/LPS, and phosphorylation of TAK1 as well. Furthermore, cryptotanshinone significantly inhibited the activation of NF-κB and suppressed the production of proinflammatory cytokines. These findings suggested that hepatoprotective effect of cryptotanshinone is likely associated with its anti-apoptotic activity and the down-regulation of MAPKs and NF-κB associated at least in part with suppressing TAK1 phosphorylation.  相似文献   

9.
Consumption of a high-fat diet (HFD) is associated with white adipose tissue (WAT) inflammation, which contributes to key components of the metabolic syndrome, including insulin resistance (IR) and hepatic steatosis (HS). To determine the differential effects of exercise training (EX), low-fat diet (LFD), and their combination on WAT inflammation, Balb/cByJ male mice (n = 34) were fed an HFD for 12 wks before they were randomized into one of four intervention groups: HFD-EX, LFD-EX, HFD-sedentary (SED), or LFD-SED. EX mice performed 12 wks of exercise training on a motorized treadmill (1 h/d, 5 d/wk, 12 m/min, 5% grade, 65% VO2 max), while SED mice remained sedentary in their home cages. WAT gene expression of adipokines was assessed using rt-PCR. IR was measured using HOMA-IR, and HS via hepatic triglyceride content. EX significantly reduced (53%) WAT gene expression of MCP-1, and LFD significantly reduced (50%) WAT gene expression of the macrophage specific marker, F4/80 as well as the adipocytokine IL-1ra (25%). EX independently improved IR, while both EX and LFD improved HS. These findings suggest that both diet and exercise have unique beneficial effects on WAT inflammatory markers and the mechanism by which each treatment improves metabolic complications associated with chronic consumption of an HFD may be different.  相似文献   

10.
11.
12.
Aberrant regulation in mesangial cell proliferation, extracellular matrix (ECM) accumulation, oxidative stress, and inflammation under hyperglycemic condition contributes significantly to the occurrence and development of diabetic nephropathy (DN). However, the mechanisms underlying the hyperglycemia-induced dysregulations have not been clearly elucidated. Here, we reported that high mobility group box 1 (HMGB1) was highly elevated in high glucose (HG)-treated mesangial cells, and induced the phosphorylation, nuclear translocation, and DNA binding activity of NF-κB via toll-like receptor 4 (TLR4). Function assays showed that inhibition of HMGB1 mitigated HG-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells via TLR4/NF-κB pathway. Increasing evidence has shown that circRNA, a large class of noncoding RNAs, functions by binding with miRNAs and terminating regulation of their target genes. We further investigated whether HMGB1 is involved in circRNA–miRNA–mRNA regulatory network. First, HMGB1 was identified and confirmed to be the target of miR-205, and miR-205 played a protective role against HG-induced cell injure via targeting HMGB1. Then circLRP6 was found to be upregulated in HG-treated mesangial cells, and regulate HG-induced mesangial cell injure via sponging miR-205. Besides, overexpression of miR-205 or knockdown of circLRP6 inhibited the NF-κB signaling pathway. Collectively, these data suggest that circLRP6 regulates HG-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells via sponging miR-205, upregulating HMGB1 and activating TLR4/NF-κB pathway. These findings provide a better understanding for the pathogenesis of DN.  相似文献   

13.
Osteoporosis is a devastating disease that features reduced bone quantity and microstructure, which causes fragility fracture and increases mortality, especially in the aged population. Due to the long-term side-effects of current drugs for osteoporosis, it is of importance to find other safe and effective medications. Ellagic acid (EA) is a phenolic compound found in nut galls, plant extracts, and fruits, and exhibits antioxidant and antineoplastic effects. Here, we showed that EA attenuated the formation and function of osteoclast dose-dependently. The underlying mechanism was further discovered by western blot, immunofluorescence assay, and luciferase assay, which elucidated that EA suppressed osteoclastogenesis and bone resorption mainly through attenuating receptor activator of nuclear factor-κB (NF-κB) ligand-induced NF-κB activation and extracellular signal-regulated kinase signaling pathways, accompanied by decreased protein expression of nuclear factor of activated T-cells calcineurin-dependent 1 and c-Fos. Moreover, EA inhibits osteoclast marker genes expression including Dc-stamp, Ctsk, Atp6v0d2, and Acp5. Intriguingly, we also found that EA treatment could significantly protect ovariectomy-induced bone loss in vivo. Conclusively, this study suggested that EA might have the therapeutic potentiality for preventing or treating osteoporosis.  相似文献   

14.
S-Allylcysteine (SAC), the most abundant organosulfur compound in aged garlic extract, has multifunctional activity via different mechanisms and neuroprotective effects that are exerted probably via its antioxidant or free radical scavenger action. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse has been the most widely used model for assessing neuroprotective agents for Parkinson's disease. 1-Methyl-4-phenylpyridinium (MPP+) is the stable metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and it causes nigrostriatal dopaminergic neurotoxicity. Previous studies suggest that oxidative stress, via free radical production, is involved in MPP+-induced neurotoxicity. Here, we report on the neuroprotective effect of SAC against oxidative stress induced by MPP+ in the striatum of C57BL/6J mice. Mice were pretreated with SAC (125 mg/kg ip) daily for 17 days, followed by administration of MPP+ (0.72 mg/kg icv), and were sacrificed 24 h later to evaluate lipid peroxidation, different antioxidant enzyme activities, spontaneous locomotor activity and dopamine (DA) content. MPP+ administration resulted in a significant decrease in DA levels in the striatum. Mice receiving SAC (125 mg/kg ip) had significantly attenuated MPP+-induced loss of striatal DA levels (32%). The neuroprotective effect of SAC against MPP+ neurotoxicity was associated with blocked (100% of protection) of lipid peroxidation and reduction of superoxide radical production — indicated by an up-regulation of Cu-Zn-superoxide dismutase activity — both of which are indices of oxidative stress. Behavioral analyses showed that SAC improved MPP+-induced impairment of locomotion (35%). These findings suggest that in mice, SAC attenuates MPP+-induced neurotoxicity in the striatum and that an antioxidant effect against oxidative stress may be partly responsible for its observed neuroprotective effects.  相似文献   

15.
The present study was aimed at investigating the hepatoprotective effect of pyrroloquinoline quinone (PQQ) against acute alcoholic liver injury in mice. Acute alcoholic liver injury model was established in mice, and they were administrated with PQQ to investigate its hepatoprotective effect. Our results shows that PQQ can significantly ameliorate acute alcoholic liver injury by decreasing the hepatic marker enzymes, including serum alanine transaminase (ALT) and aspartate transaminase (AST), and increasing the levels of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in the liver. And PQQ can also significantly reduce the content of hepatic triglyceride (TG) and malondialdehyde (MDA). Moreover, PQQ attenuated alcohol-induced oxidative damage by activating NF-E2-related factor 2 (Nrf2)-mediated signaling pathway, and inhibiting Toll-like receptor 4 (TLR4)-mediated nuclear factor-kappa B (NF-κB) signaling pathway. Our findings have elucidated the liver protection mechanism of PQQ, which would encourage the further exploitation of PQQ as a hepatoprotective functional food.  相似文献   

16.
Chicoric acid is polyphenol of natural plant and has a variety of bioactivity. Caused by various kinds of stimulating factors, acute liver injury has high fatality rate. The effect of chicoric acid in acute liver injury induced by Lipopolysaccharide (LPS) and d -galactosamine (d -GalN) was investigated in this study. The results showed that CA decreased the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum and reduced the mortality induced by LPS/d -GalN. CA can restrain mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) to alleviate inflammation. Meanwhile, the results indicated CA can active nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway with increasing the level of AMP-activated protein kinase (AMPK). And with the treatment of CA, protein levels of autophagy genes were obvious improved. The results of experiments indicate that CA has protective effect in liver injury, and the activation of AMPK and autophagy may make sense.  相似文献   

17.
目的: 研究冷暴露介导小鼠回肠机械屏障损伤及其机制。方法: 将20只小鼠随机分为对照组和冷暴露组,每组10只。对照组和冷暴露组均置于(24±2)℃,湿度为40%的气候室内,冷暴露组小鼠每日移至(4±2)℃的气候室内3 h,连续冷暴露三周。三周后采集小鼠回肠组织,通过苏木素伊红染色、Masson染色观察小鼠回肠组织结构变化,通过Western blot检测回肠组织紧密连接、炎症细胞因子、核因子-κB通路的相关蛋白表达水平。结果: 与对照组相比,冷暴露小鼠回肠组织环形肌层变薄,大量的炎症细胞浸润、绒毛长度变短,隐窝深度增大,出现组织纤维化;与对照组比较,冷暴露小鼠的回肠紧密连接相关蛋白表达水平均显著下调(P<0.05),白细胞介素-1β、白细胞介素-6、p-p65蛋白表达水平均显著上调(P<0.05)。结论: 冷暴露能够损伤小鼠回肠组织紧密连接,破坏机械屏障的完整性,其机制与激活NF-κB信号通路,促进炎症反应的发生有关。  相似文献   

18.
Mastitis is a common and serious bacterial infection of the mammary gland. Saikosaponin A (SSA) is a triterpenoid saponin isolated from Bupleurum falcatum that has the ability to treat various diseases. However, little is known about the role of SSA in achieving mastitis remission. Here, we found that SSA alleviated Staphylococcus aureus (S. aureus)-induced mastitis by attenuating inflammation and maintaining blood-milk barrier integrity. Furthermore, S. aureus activated nuclear factor kappa B (NF-κB) pathway by upregulated p-p65 and p-IκB. S. aureus also induced ferroptosis in mammary gland in mice, mainly characterized by excessive iron accumulation, mitochondrial morphological changes and impaired antioxidant production. However, S. aureus-induced NF-κB activation and ferroptosis were prevented by SSA. Moreover, SAA could upregulate the expression of SIRT1, Nrf2, HO-1 and GPX4. And the inhibitory effects of SAA on inflammation and ferroptosis were reversed by SIRT1 inhibitor EX-527. In conclusion, SAA protected S. aureus-induced mastitis through suppressing inflammation and ferroptosis by activating SIRT1/Nrf2 pathway.  相似文献   

19.
《Cytotherapy》2014,16(6):764-775
Background aimsStem cells may be a promising therapy for acute respiratory distress syndrome. Recent in vivo and in vitro studies suggested that the mesenchymal stromal cells (MSCs) have anti-oxidative stress properties. We hypothesized that intravenous injection of bone marrow–derived mesenchymal stem cells (MSCs) could attenuate Escherichia coli–induced acute lung injury (ALI) in mice by controlling the oxidative stress status.MethodsEighty mice were randomly divided into four groups: group 1 (control group) received 25 μL of saline as a vehicle; group 2 contained E coli–induced ALI mice; group 3 included mice that received MSCs before induction of ALI; group 4 included mice that received MSCs after induction of ALI. Lung samples were isolated and assayed for oxidative stress variables and histopathologic analysis. Total anti-oxidant capacity was measured in broncho-alveolar lavage.ResultsPre- and post-injury MSC injection increased survival, reduced pulmonary edema and attenuated lung injuries in ALI mice. Histologically, MSCs exhibited a considerable degree of preservation of the pulmonary alveolar architecture. An increase of anti-oxidant enzyme activities and a decrease of myeloperoxidase activity and malondialdehyde levels in the MSC recipient groups versus the ALI group were found. Furthermore, the total anti-oxidant capacity and reduced glutathione levels were significantly increased in MSCs recipient groups versus the ALI group. Weak +ve inducible nitric oxide synthase immuno-expression in groups that received MSCs was detected. Pre-injury MSC injection showed better effects than did post-injury MSC injection.ConclusionsSystemic bone marrow–derived MSC injection was effective in modulating the oxidative stress status in E coli–induced acute lung injury in mice.  相似文献   

20.
Obesity is a global health problem that is often related to cardiovascular and metabolic diseases. Chronic low-grade inflammation in white adipose tissue (WAT) is a hallmark of obesity. Previously, during a search for differentially expressed genes in WAT of obese mice, we identified glycoprotein nonmetastatic melanoma protein B (GPNMB), of which expression was robustly induced in pathologically expanded WAT. Here, we investigated the role of GPNMB in obesity-related metabolic disorders utilizing GPNMB-deficient mice. When fed a high-fat diet (HFD), GPNMB-deficient mice showed body weight and adiposity similar to those of wild-type (WT) mice. Nonetheless, insulin and glucose tolerance tests revealed significant obesity-related metabolic disorders in GPNMB-KO mice compared with WT mice fed with HFD. Chronic WAT inflammation was remarkably worsened in HFD-fed GPNMB-KO mice, accompanied by a striking increase in crown-like structures, typical hallmarks for diseased WAT. Macrophages isolated from GPNMB-KO mice were observed to produce more inflammatory cytokines than those of WT mice, a difference abolished by supplementation with recombinant soluble GPNMB extracellular domain. We demonstrated that GPNMB reduced the inflammatory capacity of macrophages by inhibiting NF-κB signaling largely through binding to CD44. Finally, we showed that macrophage depletion by addition of clodronate liposomes abolished the worsened WAT inflammation and abrogated the exacerbation of metabolic disorders in GPNMB-deficient mice fed on HFD. Our data reveal that GPNMB negatively regulates macrophage inflammatory capacities and ameliorates the WAT inflammation in obesity; therefore we conclude that GPNMB is a promising therapeutic target for the treatment of metabolic disorders associated with obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号