首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of novel 1-methyl-3-substituted quinazoline-2,4-dione derivatives were designed, synthesized, and characterized by 1H NMR, 13C NMR and MS spectral data. Their inhibition against chitin synthase (CHS) and antifungal activities were evaluated in vitro. Results showed compounds 5b, 5c, 5e, 5f, 5j, 5k, 5l, and 5o had strong inhibitory potency against CHS. Compound 5c, which has the highest potency among these compounds, had a half-inhibition concentration (IC50) of 0.08 mmol/L, while polyoxin B as positive drug had IC50 of 0.18 mmol/L. These IC50 values of compounds 5i, 5m, 5n, and 5s were greater than 0.75 mmol/L, which revealed that those compounds had weak inhibition activity against CHS. Moreover, most of these compounds exhibited moderate to excellent antifungal activities. In detail, to Candida albicans, the activities of compound 5g and 5k were 8-fold stronger than that of fluconazole and 4-fold stronger than that of polyoxin B; to Aspergillus flavus, the activities of 5g, 5l and 5o were16-fold stronger than that of fluconazole and 8-fold stronger than that of polyoxin B; to Cryptococcus neoformans, the minimum-inhibition-concentration (MIC) values of compounds 5c, 5d, 5e and 5l were comparable to those of fluconazole and polyoxin B. The antifungal activities of these compounds were positively correlated to their IC50 values against CHS. Furthermore, these compounds had negligible actions to bacteria. Therefore, these compounds were promising selective antifungal agents.  相似文献   

2.
To discover more potential antifungal agents, 17 novel trichodermin derivatives were designed and synthesized by modification of 3 and 4a. The structures of all the synthesized compounds were confirmed by 1H NMR, ESI-MS and HRMS. Their antifungal activities against Ustilaginoidea oryzae and Pyricularia oryzae were evaluated. Most of the target compounds showed potent inhibitory activity, in which 4g showed superior inhibitory effects than 4a and commercial fungicide prochloraz. Furthermore, 4h demonstrated comparable inhibitory activity to 4a. Moreover, 4i and 4l exhibited excellent inhibitory activity for Pyricularia oryzae. Additionally, compound 9 was found to be more active against all tested fungal strains than 3, with EC50 values of 0.47 and 3.71 mg L−1, respectively.  相似文献   

3.
This study described the synthesis and in vitro evaluation of eight new derivatives of uridine as antifungal agents and inhibitors of chitin synthase. Dimeric uridinyl derivatives synthesized by us did not exhibit significant activity. One of the studied monomeric derivative, 5′-(N-succinyl)-5′-amino-5′-deoxyuridine methyl ester (compound 7) showed activities against several fungal strains (MIC range 0.06–1.00 mg/mL) and inhibited chitin synthase from Saccharomyces cerevisiae (IC50 = 0.8 mM). Moreover compound 7 exhibited synergistic interaction with caspofungin against Candida albicans (FIC index = 0.28).  相似文献   

4.
A variety of substituted 3-arylcoumarin derivatives were synthesised through microwave radiation heating. The method has characteristics of environmental friendliness, economy, simple separation, and purification process, less by-products and high reaction yield. Those 3-arylcoumarin derivatives were screened for antioxidant, α-glucosidase inhibitory and advanced glycation end-products (AGEs) formation inhibitory. Most compounds exhibited significant antioxidant and AGEs formation inhibitory activities. Anti-diabetic activity studies showed that compounds 11 and 17 were equipotent to the standard drug glibenclamide in vivo. According to the experimental results, the target compound 35 can be used as a lead compound for the development of new anti-diabetic drugs. The whole experiment showed that anti-diabetic activity is prevalent in 3-arylcoumarins, which added a new natural skeleton to the development of anti-diabetic active drugs.  相似文献   

5.
A novel series of pyridazinone analogs has been developed as potent β-1,3-glucan synthase inhibitors through structure-activity relationship study of the lead 5-[4-(benzylsulfonyl)piperazin-1-yl]-4-morpholino-2-phenyl-pyridazin-3(2H)-one (1). The effect of changes to the core structure is described in detail. Optimization of the sulfonamide moiety led to the identification of important compounds with much improved systematic exposure while retaining good antifungal activity against the fungal strains Candida glabrata and Candida albicans.  相似文献   

6.
5-Carbamoyl-2-phenylpyrimidine derivative 2 has been identified as a phosphodiesterase 4 (PDE4) inhibitor with moderate PDE4B inhibitory activity (IC50 = 200 nM). Modification of the carboxylic acid moiety of 2 gave N-neopentylacetamide derivative 10f, which had high in vitro PDE4B inhibitory activity (IC50 = 8.3 nM) and in vivo efficacy against lipopolysaccharide (LPS)-induced pulmonary neutrophilia in mice (ID50 = 16 mg/kg, ip). Furthermore, based on the X-ray crystallography of 10f bound to the human PDE4B catalytic domain, we designed 7,8-dihydro-6H-pyrido[4,3-d]pyrimidin-5-one derivative 39 which has a fused bicyclic lactam scaffold. Compound 39 exhibited excellent inhibitory activity against LPS-induced tumor necrosis factor alpha (TNF-α) production in mouse splenocytes (IC50 = 0.21 nM) and in vivo anti-inflammatory activity against LPS-induced pulmonary neutrophilia in mice (41% inhibition at a dose of 1.0 mg/kg, i.t.).  相似文献   

7.
Using a rational approach to the design of antifungal agents, a series of azole agents with 1,3,4-oxadiazole side chains were designed and synthesized. The results of preliminary in vitro antifungal tests with eight human pathogenic compounds showed that all of the title compounds exhibited excellent activities against all of the tested fungi except Aspergillus fumigatus. Compounds 11e and 11f were found to be the most effective, with a minimum inhibitory concentration of 0.0039 μg/mL, followed by voriconazole, which has a MIC of 0.0625 μg/mL. The 1,3,4-oxadiazole side chain is not the major contributor but plays a role in eliciting the observed antifungal activity.  相似文献   

8.
We report the synthesis of 3-phenethylazetidine derivatives 2 and their biological activities against 5-HT, NE and DA transporters as well as microsomal stability, CYP inhibition, and hERG inhibition profiles. Compound 2at showed most potent triple reuptake inhibitor with good selectivity as a candidate for depression.  相似文献   

9.
A series of novel 2,3-dihydro-4H-1-benzoselenin-4-one (thio)semicarbazone derivatives were designed and synthesized by using molecular hybridization approach. All the target compounds were characterized by HRMS and NMR and evaluated in vitro antifungal activity against five pathogenic strains. In comparison with precursor selenochroman-4-ones, the hybrid molecules in this study showed significant improvement in antifungal activities. Notably, compound B8 showed significant antifungal activity against other strains excluding Aspergillus fumigatus (0.25 μg/mL on Candida albicans, 2 μg/mL on Cryptococcus neoformans, 8 μg/mL on Candida zeylanoides and 2 μg/mL on fluconazole-sensitive strains of Candida albicans). Moreover, compounds B8, B9 and C2 also displayed most potent activities against four fluconazole-resistance strains. Especially the MIC values of the hybrid molecule B8 against fluconazole-resistant strains were in the range of 0.5–2 μg/mL. Therefore, the molecular hybridization approach in this study provided new ideas for the development of antifungal drug.  相似文献   

10.
HDAC inhibitors and BRD4 inhibitors were considered to be potent anti-cancer agents. Recent studies have demonstrated that HDAC and BRD4 participate in the regulation of some signal paths like PI3K-AKT. In this work, a series of indole derivatives that combine the inhibitory activities of BRD4 and HDAC into one molecule were designed and synthesized through the structure-based design method. Most compounds showed potent HDAC inhibitory activity and moderate BRD4 inhibitory activity. In vitro anti-proliferation activities of the synthesized compounds were also evaluated. Among them, 19f was the most potent inhibitor against HDAC3 with IC50 value of 5 nM and BRD4 inhibition rate of 88% at 10 μM. It was confirmed that 19f could up-regulate the expression of Ac-H3 and reduce the expression of c-Myc by western blot analysis. These results indicated that 19f was a potent dual HDAC/BRD4 inhibitor and deserved further investigation.  相似文献   

11.
Glycogen synthase kinase 3 (GSK-3) has become known for its multifactorial involvement in the pathogenesis of Alzheimer’s disease. In this study, a benzothiazole- and benzimidazole set of 1-aryl-3-(4-methoxybenzyl)ureas were synthesised as proposed Cys199-targeted covalent inhibitors of GSK-3β, through the incorporation of an electrophilic warhead onto their ring scaffolds. The nitrile-substituted benzimidazolylurea 2b (IC50 = 0.086 ± 0.023 µM) and halomethylketone-substituted benzimidazolylurea 9b (IC50 = 0.13 ± 0.060 µM) displayed high GSK-3β inhibitory activity, in comparison to reference inhibitor AR-A014418 (1, IC50 = 0.072 ± 0.043) in our assay. The results suggest further investigation of 2b and 9b as potential covalent inhibitors of GSK-3β, since a targeted interaction might provide improved kinase-selectivity.  相似文献   

12.
A new series of triazol-3-one derivatives bearing 4-methyl-4H-thieno[3',2': 5,6]thiopyrano[4,3-d][1,3]thiazolyl or 4-(thiophene-3-yl) thiazolyl moiety at 4-position and alkyl substitution at 2-position are synthesized. All the synthesized compounds are characterized by elemental analysis, IR, (1)H NMR, (13)C NMR, and mass spectral data. The newly synthesized compounds are screened for antifungal and antibacterial activities.  相似文献   

13.
A series of novel pyrimidinedione derivatives were designed and evaluated for in vitro dipeptidyl peptidase-4 (DPP-4) inhibitory activity and in vivo anti-hyperglycemic efficacy. Among them, the representative compounds 11, 15 and 16 showed excellent inhibitory activity of DPP-4 with IC50 values of 64.47?nM, 188.7?nM and 65.36?nM, respectively. Further studies revealed that compound 11 was potent in vivo hypoglycemic effect. The structure–activity relationships of these pyrimidinedione derivatives had been discussed, which would be useful for developing novel DPP-4 inhibitors as treating type 2 diabetes.  相似文献   

14.
Thirty-one 4-oxoquinoline-3-carboxamides derivatives were synthesized and evaluated for their anti-fibrotic activities by the inhibition of TGF-β1-induced total collagen accumulation and anti-inflammatory activities by the inhibition of LPS-stimulated TNF-α production. Among them, three compounds (10a, 10l and 11g) exhibited potent inhibitory effects on both TGF-β1-induced total collagen accumulation and LPS-stimulated TNF-α production. Furthermore, oral administrations of 10l at a dose of 20 mg/kg/day for 4 weeks effectively alleviated lung inflammation and injury, and decreased lung collagen accumulation in bleomycin-induced pulmonary fibrosis model. Histopathological evaluation of lung tissue confirmed 10l as a potential, orally active agent for the treatment of pulmonary fibrosis.  相似文献   

15.
New potent glycogen synthase kinase-3 (GSK-3) inhibitors, 8-amino-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one derivatives, were designed by modeling, synthesized and evaluated in vitro. Compound 17c showed good potency in enzyme and cell-based assays (IC50 = 111 nM, EC50 = 1.78 μM). Moreover, it has demonstrated desirable water solubility, PK profile, and moderate brain penetration.  相似文献   

16.
Herpesvirus-associated Ubiquitin-Specific Protease (HAUSP, also called USP7) interacts with and stabilizes Mdm2, and represents one of the first examples that deubiquitinases oncogenic proteins. USP7 has been regarded as a potential drug target for cancer therapy. Inhibitors of USP7 have been recently shown to suppress tumor cell growth in vitro and in vivo. Based on leading USP7 inhibitors P5091 and P22077, we designed and synthesized a series of thiazole derivatives. The results of in vitro assays showed that the thiazole compounds exhibited low micromolar inhibition activity against both USP7 enzyme and cancer cell lines. The compounds induced cell death in a p53-dependent and p53-independent manner. Taken together, this study may provide thiazole compounds as a new class of USP7 inhibitors.  相似文献   

17.
Based on the analysis of the squalene cyclooxygenase (SE) and 14α-demethylase (CYP51) inhibitors pharmacophore feature and the dual-target active sites, a series of compounds with amide-pyridine scaffolds have been designed and synthesized to treat the increasing incidence of drug-resistant fungal infections. In vitro evaluation showed that these compounds have a certain degree of antifungal activity. The most potent compounds 11a, 11b with MIC values in the range of 0.125–2 μg/ml had a broad-spectrum antifungal activity and exhibited excellent inhibitory activity against drug-resistant pathogenic fungi. Preliminary mechanism studies revealed that the compound 11b might play an antifungal role by inhibiting the activity of SE and CYP51. Notably compounds did not show the genotoxicity through plasmid binding assay. Finally, this study of molecular docking, ADME/T prediction and the construction of 3D QSAR model were performed. These results can point out the direction for further optimization of the lead compound.  相似文献   

18.
Various 3-substituted 4-anilino-coumarin derivatives have been designed, synthesized and their anti-proliferative properties have been studied. The in vitro cytotoxicity screening was performed against MCF-7, HepG2, HCT116 and Panc-1 cancer cell lines by MTT assay. Most of the synthesized compounds exhibited comparable anti-proliferative activity to the positive control 5-Fluorouracil against these four tested cancer cell lines. Among the different substituents at C-3 position of coumarin scaffold, 3-trifluoroacetyl group showed the most promising results. Especially, compounds 33d (IC50 = 16.57, 5.45, 4.42 and 5.16 μM) and 33e (IC50 = 20.14, 6.71, 4.62 and 5.62 μM) showed excellent anti-proliferative activities on MCF-7, HepG2, HCT116 and Panc-1 cell lines respectively. In addition, cell cycle analysis and apoptosis activation revealed that 33d induced G2/M phase arrest and apoptosis in MCF-7 cells in a dose-dependent manner. Low toxicity of compounds 33d and 33e was observed against human umbilical vein endothelial cells (HUVECs), suggesting their acceptable safety profiles in normal cells. Furthermore, the results of in silico ADME studies indicated that both 33d and 33e exhibited good pharmacokinetic properties.  相似文献   

19.
Given that receptor tyrosine kinases (RTKs) have emerged as key regulators of all aspects of cancer development, including proliferation, invasion, angiogenesis and metastasis, the RTK family represents an important therapeutic target for anti-cancer drug development. Oxindole structure has been used in RTK inhibitors such as SU4984 and intedanib. In this study, two series of new heterocyclic compounds containing oxindole scaffold have been designed and synthesized, and their inhibitory activity against the proliferation of nine cancer cell lines has been evaluated. Among them, compounds 9a and 9b displayed the strongest anti-proliferative activity with the IC50s below 10 μM. Flow cytometric analysis showed that the compounds 9a and 9b dose-dependently arrested the cell cycle at G0/G1 phase. Although the leading compounds SU4984 and intedanib targets FGFR1, the kinase activity test revealed that these compounds only showed slight inhibitory activity on FGFR1 kinase. Further enzymatic test aided by molecular docking simulation in the ATP-binding site demonstrated that 9a and 9b are potent inhibitors of c-Kit kinase. These compounds are worthy of further evaluation as anticancer agents.  相似文献   

20.
Preparation for the N-alkylated derivatives of enantiomerically pure (2S)-4-fluoroproline and (2S)-4-fluoropyrrolidine-2-acetic acid is described. The final compounds were evaluated as potential GAT-1 uptake inhibitors via cultured cell lines expressing mouse GAT-1. Compared with their corresponding 4-hydroxy compounds, these derivatives exhibited slight improvement on their inhibitory potency, but still much weaker than their corresponding compounds with no substituents at the C-4 of the pyrrolidine moiety, with the most potent affinity being about 1/15 fold as that of Tiagabine. The drastic decrease of their affinity may arise from sharp reduction of their basicity due to strong inductive effect of the 4-fluorine. However the configuration of the C-4 linking fluorine did not have much influence on their affinity for GAT-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号