共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Effects of phthalic anhydride modification on horseradish peroxidase stability and activity 总被引:5,自引:0,他引:5
Phthalic anhydride (PA) modification stabilizes horseradish peroxidase (HRP) by reversal of the positive charge on two of HRP's six lysine residues. Native and PA-HRP had half-inactivation temperatures of 51 and 65 degrees C and half-lives at 65 degrees C of 4 and 17 min, respectively. PA-HRP was more resistant to dimethylformamide at room temperature and tetrahydrofuran at 60 degrees C and to unfolding by heat, guanidine chloride, EDTA, and the reducing agent tris(2-carboxyethyl)phosphine hydrochloride. Binding of the hydrophobic probe Nile Red to the native enzyme and to PA-HRP was similar. The kinetics of both HRPs with the substrates ABTS, ferrocyanide, ferulic acid, and indole-3-propionic acid were measured, as was binding of the inhibitor benzhydroxamic acid. Small improvements in the catalytic properties were detected. 相似文献
4.
The effect of surfactants, lipids and fatty acid salts isolated from cow milk on the activity of hemecontaining horseradish
peroxidase in solution was studied. As the surfactant concentration increases, the rate of the enzymic reaction successively
decreases, increases, and again decreases, down to zero in the case of the fatty acid salts. The initial deceleration of the
reaction rate results from the enzyme inhibition. The subsequent increase is caused by an improved accessibility for the substrate
and the enhanced activity of the catalytic site of the enzyme due to its immobilization in the surfactant aggregates. A shielding
of the protein by these aggregates can explain the secondary deceleration of the enzymic reaction rate. The general character
of the dependence is similar and does not depend on the surfactant structure for a series of fatty acid salts and phospholipids;
however, it is quite different in the case of cholesterol and sphingomyelin.
For communication III, see [1]. 相似文献
5.
Portaccio M De Luca P Durante D Grano V Rossi S Bencivenga U Lepore M Mita DG 《Bioelectromagnetics》2005,26(2):145-152
A study of the influence of electromagnetic fields (EMF) of various frequencies, from 50 up to 400 Hz, on the catalytic activity of soluble and insoluble horseradish peroxidase (POD) was carried out. To simulate the conditions in which the enzyme operates in vivo, the POD was immobilized by entrapment on a gelatin membrane or by covalent attachment on a nylon graft membrane. The rate of inactivation of the soluble POD was found to exhibit positive and negative interactions with the 1 mT applied magnetic field, with an optimum positive effect at 130 Hz. The immobilized PODs, on the contrary, do not exhibit negative interactions, but show a maximum positive interaction at 150 Hz when entrapped and at 170 Hz when covalently attached. At 50 Hz and at frequencies higher than 250 Hz no effects were observed with insoluble POD. The optimum frequency of positive interaction between the EMF and the catalytic activity of the insoluble enzymes is shifted with respect to that of the soluble enzymes towards higher frequencies, the size of the shifts being dependent on the intensity of the physical forces involved in the immobilization process. 相似文献
6.
Monika Jurgas-Grudzinska 《Biocatalysis and Biotransformation》2013,31(3-4):293-298
The activities of horseradish peroxidase (HRP) and lactoperoxidase (LPO) entrapped in reverse micelles of Igepal CO-520 in cyclohexane were studied. When the molar ratio of water to surfactant, w0 was ≥13, the activity of HRP encapsulated in the water pool of the reverse micelle was comparable with that measured in buffer. For LPO, however, lower activity was observed after its incorporation into the same system.The activity of the investigated peroxidases was also measured in an aqueous solution of Igepal CO-720 or after incubation with this surfactant. The enzymes became inactivated in an aqueous micellar solution of Igepal CO-720, although this process was reversible.The stability of HRP and LPO at 37 or 50°C was lower in the micellar systems than in buffer with the exception for HRP in reverse micelles at 50°C. 相似文献
7.
The activities of horseradish peroxidase (HRP) and lactoperoxidase (LPO) entrapped in reverse micelles of Igepal CO-520 in cyclohexane were studied. When the molar ratio of water to surfactant, w 0 was ≥13, the activity of HRP encapsulated in the water pool of the reverse micelle was comparable with that measured in buffer. For LPO, however, lower activity was observed after its incorporation into the same system.
The activity of the investigated peroxidases was also measured in an aqueous solution of Igepal CO-720 or after incubation with this surfactant. The enzymes became inactivated in an aqueous micellar solution of Igepal CO-720, although this process was reversible.
The stability of HRP and LPO at 37 or 50°C was lower in the micellar systems than in buffer with the exception for HRP in reverse micelles at 50°C. 相似文献
The activity of the investigated peroxidases was also measured in an aqueous solution of Igepal CO-720 or after incubation with this surfactant. The enzymes became inactivated in an aqueous micellar solution of Igepal CO-720, although this process was reversible.
The stability of HRP and LPO at 37 or 50°C was lower in the micellar systems than in buffer with the exception for HRP in reverse micelles at 50°C. 相似文献
8.
Sandeep Modi 《Biometals》1995,8(3):218-222
The interaction of aromatic substrates with horseradish peroxidase (HRP) was studied. Chemical modification of HRP was performed using diethylpyrocarbonate (DEPC) and for the first time the amino acid involved in binding with these substrates has been identified. The kinetic parameters for this interaction have been calculated and the role of heme iron in the oxidation of aromatic substrates by HRP has been discussed. 相似文献
9.
Hamoun Anbari Amir Maghsoudi Mohammadreza Hosseinpour Fatemeh Yazdian 《Engineering in Life Science》2022,22(2):58
Curcumin is a polyphenolic molecule with antibacterial, antioxidant, anti‐inflammatory, and antimicrobial properties. This study aimed to prepare nanocurcumin by encapsulating in biopolymers to improve its stability, bioavailability, water‐solubility, antibacterial efficiency against methicillin‐resistant Staphylococcus aureus. Three effective variables of curcumin concentration, polymer concentration, and water volume on curcumin‐loaded polymer nanoparticles, were optimized. The average size of polyacrylic acid (PAA), polyvinyl alcohol (PVA), and polyethyleneimine (PEI) nanoparticles were obtained 75.2, 77.1, 86.4 nm, respectively. The nanoparticles had a spherical shape, a smooth and uniform surface morphology. The MIC of PAA, PVA, and PEI nanoparticles was 0.480, 0.390, and 0.340 mg/mL, respectively and the MIC of PAA, PVA, and PEI combined with methicillin was 0.330, 0.260, and 0.200 mg/mL, respectively. According to the results, curcumin‐loaded PEI nanoparticles had the highest inhibitory effect against methicillin‐resistant S. aureus among the synthesized nanoparticles. The results showed that solvent volume, polymer concentration and curcumin concentration had a significant effect on particle size. The inhibitory properties of curcumin nanoparticles significantly increased due to the smaller particle size and increased penetration into the bacterium. Curcumin‐loaded nanoparticles can be promising drug carriers for the treatment of infections, cancer, and other diseases. 相似文献
10.
Srivastava PK Sharma VK Kalonia DS Grant DF 《Archives of biochemistry and biophysics》2004,427(2):164-169
Human soluble epoxide hydrolase (hsEH) has been shown to play a role in regulating blood pressure and inflammation. HsEH consists of an N-terminal phosphatase and a C-terminal epoxide hydrolase domain. In the present study, we examined the effects of polymorphisms in the hsEH gene on phosphatase activity, enzyme stability, and protein quaternary structure. The results showed that mutants Lys55Arg, Arg103Cys, Cys154Tyr, Arg287Gln, and the Arg103Cys/Arg287Gln (double mutant) have significantly lower phosphatase activity compared to the most frequent allele (MFA) of hsEH. In addition, the Lys55Arg, Arg103Cys, Cys154Tyr, Arg287Gln, and the double mutant have significantly lower kcat/Km values. The stabilities at 37 degrees C of purified Arg287Gln and Arg103Cys/Arg287Gln mutants were also significantly reduced compared to the MFA. HPLC size-exclusion studies showed that the MFA exists predominantly as a dimer. However, the Arg287Gln and Arg103Cys/Arg287Gln mutants show increased concentration of the monomer. We conclude that the Arg287Gln polymorphism disrupts putative intra- and inter-monomeric salt-bridges responsible for dimerization. 相似文献
11.
In vitro studies of the influence of ELF electromagnetic fields on the activity of soluble and insoluble peroxidase 总被引:2,自引:0,他引:2
Portaccio M De Luca P Durante D Rossi S Bencivenga U Canciglia P Lepore M Mattei A De Maio A Mita DG 《Bioelectromagnetics》2003,24(7):449-456
The influence of an extremely low frequency (ELF) magnetic field (50 Hz and 1 mT, EMF) on the activity of a soluble and insoluble horseradish peroxidase (E.C. 1.11.17) has been studied as a function of time. Insoluble derivatives were obtained by enzyme entrapment into two different gelatin membranes or by covalent attachment of the enzyme on two nylon membranes, differently preactivated. Results have shown that the field affects the inactivation rate of the soluble enzyme, while no effects are observed with insoluble derivatives. Since in vivo enzymes are immobilised into the biomembrane bilayer or entrapped into the cytoplasmic mixture, one might speculate that our experimental conditions do not reflect the catalytic activity of the enzymes in vivo. 相似文献
12.
The role of quaternary interactions on the stability and activity of ascorbate peroxidase. 总被引:1,自引:0,他引:1 下载免费PDF全文
D. Mandelman F. P. Schwarz H. Li T. L. Poulos 《Protein science : a publication of the Protein Society》1998,7(10):2089-2098
Point mutations at the dimer interface of the homodimeric enzyme ascorbate peroxidase (APx) were constructed to assess the role of quaternary interactions in the stability and activity of APx. Analysis of the APx crystal structure shows that Glu112 forms a salt bridge with Lys20 and Arg24 of the opposing subunit near the axis of dyad symmetry between the subunits. Two point mutants, E112A and E112K, were made to determine the effects of a neutral (alanine) and repulsive (lysine) mutation on dimerization, stability, and activity. Gel filtration analysis indicated that the ratio of the monomer to dimer increased as the dimer interface interactions went from attractive to repulsive. Differential scanning calorimetry (DSC) data exhibited a decrease in both the transition temperature (Tm) and enthalpy of unfolding (deltaHc) with Tm = 58.3 +/- 0.5 degrees C, 56.0 +/- 0.8 degrees C, and 53.0 +/- 0.9 degrees C and deltaHc = 245 +/- 29 kcal/mol, 199 +/- 38 kcal/mol, and 170 +/- 25 kcal/mol for wild-type APx, E112A, and E112K, respectively. Similar changes were observed based on thermal melting curves obtained by absorption spectroscopy. No change in enzyme activity was found for the E112A mutant, and only a 25% drop in activity was observed for the E112K mutant which demonstrates that the non-Michaelis Menten kinetics of APx is not due to the APx oligomeric structure. The cryogenic crystal structures of the wild-type and mutant proteins show that mutation induced changes are limited to the dimer interface including an alteration in solvent structure. 相似文献
13.
Horacio A. Tigier Miguel A. Quesada Antonio Heredia Victoriano Valpuesta 《Physiologia plantarum》1991,83(1):144-148
An anionic isoperoxidase (EC 1.11.1.7) purified from peach seeds ( Prunus persica L. Batsch cv. Merry) was partially deglycosylated by glycopeptidase F (EC 3.2.2.18) treatment. A 40% deglycosylation resulted in an activity loss of 50% when assayed with o -dianisidine. 60% with guaiacol and 78% with 2,2'-azino-bis(3-ethyl)benzethiozoline-6-sulfonic acid (ABTS) as substrate. The indole-3-acetic acid oxidase activity loss was close to 55%. The partially deglycosylated isoperoxidase also showed a higher Km value for H2 O2 and higher values for Arrhenius activation energy and enthalpy of activation. There was a decrease in enzyme stability at 4°C after deglycosylation. Native and partially deglycosylated isoperoxidase reacted equally well in an enzyme-linked immunosorbent assay (ELISA) with rabbit polyclonal antibodies raised against the native enzyme. The carbohydrate moiety of this peach seed isoperoxidase appears to be important for enzyme activity and stability. 相似文献
14.
The present study characterizes the unfolding and folding processes of recombinant manganese peroxidase. This enzyme contains five disulfide bonds, two calcium ions, and one heme prosthetic group. Circular dichroism in the far UV was used to monitor global changes of the protein secondary structure, whereas UV-visible spectroscopy of the Soret band provided information about local changes in the heme cavity. The effects of reducing agents, oxidizing agents, and denaturants on this process were investigated. In addition to affecting the secondary structure content, these factors also affect the binding of the heme and the calcium ions, both of which have a significant effect on the folding process. Our results also show that denaturants induce irreversible changes, which are most likely due to the inability of the denatured protein to rebind either calcium or the heme. Breaking of disulfide bonds by 30 mM dithiothreitol causes complete unfolding of recombinant manganese peroxidase. The unfolding process was also studied at low and high pH, where the protein reaches the final unfolded state through two different intermediate states. The data also indicate that only the acidic folding-unfolding process is reversible. Our results indicate a complex synergistic relationship between the secondary structure content, the tertiary structure arrangement, and the binding of the heme and the calcium ions and disulfide bridge formation. 相似文献
15.
The effect of chitooligosaccharides on hydrogen peroxide production and anionic peroxidase activity in wheat coleoptiles 总被引:2,自引:0,他引:2
Z. R. Yusupova I. E. Akhmetova R. M. Khairullin I. V. Maksimov 《Russian Journal of Plant Physiology》2005,52(2):209-212
We studied the effects of chitooligosaccharides (ChOS) with a mol wt of 5 kD, the degree of acetylation of 65%, and the concentrations from 0.01 to 100 mg/l on the content of hydrogen peroxide in incubation medium and the activity of anionic peroxidase (pI 3.5) in the segments of wheat (Triticum aestivum) coleoptiles. H2O2 production and peroxidase activity were found to be dependent on the ChOS concentration. After 3 h of incubation, the highest H2O2 level in medium was observed at 0.01 mg/l ChOS, whereas after 6h, at 1 mg/l. After 3 h of incubation, ChOS suppressed peroxidase activity. After 6 h of incubation, high ChOS concentrations enhanced peroxidase activity. IAA favored H2O2 accumulation in medium and suppressed anionic peroxidase. The involvement of ChOS in the control of the level of reactive oxygen species and anionic peroxidase activity in plant cells is suggested.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 238–242.Original Russian Text Copyright © 2005 by Yusupova, Akhmetova, Khairullin, Maksimov.This revised version was published online in April 2005 with a corrected cover date. 相似文献
16.
Tyrosine hydroxylase is phosphorylated at four serine residues in its amino-terminus by multiple kinases. Phosphorylation of serine 40 by cAMP-dependent protein kinase results in alleviation of dopamine inhibition [J. Biol. Chem. 267 (1992) 12639]. The other serines are at positions 8, 19, and 31. The effect of phosphorylation at these serines has been investigated using mutated forms of tyrosine hydroxylase containing glutamates at the positions of the serines. The S8E, S19E, and S31E tyrosine hydroxylase variants have similar steady-state kinetic parameters and similar binding affinity for catecholamines to wild-type enzyme. The S8E, S19E, S31E, and S40E variants differ in stability at elevated temperatures. The S40E variant is the least stable, while the others are all more stable than wild-type enzyme. The increased stability of S8E, S19E, and S31E tyrosine hydroxylases may be one of the physiological effects of phosphorylation. It may also have implications for the interpretation of activities of heterogeneous mixtures of tyrosine hydroxylase which have been phosphorylated. 相似文献
17.
In heme peroxidases, a distal His residue plays an essential role in the initial two electron oxidation of resting state enzyme to compound I by hydrogen peroxide. A distal Arg residue assists in this process. The contributions of the charge, H-bonding capacity, size, and mobility of this Arg residue to Coprinus cinereus peroxidase (CIP) reactivity and stability have been examined by substituting Arg51 with Gln (retains H-bond donor at N epsilon position), Asn (small size, H-bond donor and acceptor), Leu (similar to Asn, but hydrophobic), and Lys (charge and H-bond donor, but at N zeta position). UV-visible spectroscopy was used to monitor pH-linked heme changes, compound I formation and reduction, fluoride binding, and thermostability. (1)H NMR spectroscopy enabled heme pocket differences in both resting and cyanide-ligated states of the enzymes to be evaluated and compared with wild-type CIP. We found that the H-bonding capacity of distal Arg is key to fast compound I formation and ligand binding to heme, whereas charge is important for lowering the pK(a) of distal His and for the binding and stabilisation of anionic ligands at heme iron. The properties of the distal Arg residue in CIP, cytochrome c peroxidase (CCP) and horseradish peroxidase (HRP) differ significantly in their pH induced transitions and dynamics. 相似文献
18.
R-环是由一个RNA:DNA杂交体和一条单链状态的DNA分子共同组成的三链核酸结构。其中, RNA:DNA杂交体的形成起因于基因转录所合成的RNA分子不能与模板分开, 或RNA分子重新与一段双链DNA分子中的一条链杂交。在基因转录过程中, 当转录泡遇到富含G碱基的非模板链区或位于某些与人类疾病有关的三核苷酸卫星DNA时, 转录泡后方累积的负超螺旋可促进R环形成。同时, 新生RNA分子未被及时加工、成熟或未被快速转运到细胞质等因素也会催生R环。研究表明, 细胞拥有多种管理R环的方法, 可以有效地管理R环的形成和处理已经形成的R环, 以尽量避免R环对DNA复制、基因突变和同源重组产生不利影响。文章重点分析了R-环的形成机制及R环对DNA复制、基因突变和同源重组的影响, 并针对R-环诱导的DNA复制在某些三核苷酸重复扩增有关的神经肌肉退行性疾病发生过程中的作用进行了分析和讨论。 相似文献
19.
Csiszár J Szabó M Erdei L Márton L Horváth F Tari I 《Journal of plant physiology》2004,161(6):691-699
Auxin autotrophic and heterotrophic tobacco callus lines were grown on MS medium with or without 100 mmol/L NaCl and growth and some of the stress-related activities, such as GPX, SOD, CAT, GST, GSH-PX, as well as the concentration of ethylene and H2O2, were measured and compared with each other. The auxin autotrophic calli grew slower, however, on the NaCl-containing medium the growth rate was higher than that of the heterotrophic cultures after two weeks of culturing. The stress-related ethylene production was lower in the autotrophic cultures and, contrary to the heterotrophic tissues, its level did not change significantly upon NaCl treatment. The guaiacol peroxidase (GPX) activities were higher in the autotrophic tissues in all cell fractions regardless of the presence of NaCl. Treated with NaCl, the GPX activities elevated in the soluble and covalently-bound fractions in the heterotrophic calli, but were not further increased in the autotrophic line. SOD and CAT activities were higher in the heterotrophic tissues, and were increased further by 100 mmol/L NaCl treatment. The GST and GSH-PX activities were higher in the autotrophic line, which might explain their enhanced stress tolerance. In the autotrophic tissues, the elevated antioxidant activities led to reduced levels of H2O2 and malondialdehyde; under mild NaCl stress, these levels decreased further. The lower growth rate and the effective protection against NaCl stress-induced oxidative damage of the autotrophic line can be explained by the cell wall-bound peroxidase and GSH-PX activities in the auxin autotrophic tissues. Their maintained growth rate indicates that the autotropic cultures were more resistant to exogenous H2O2. 相似文献
20.
Ageing and vision: structure, stability and function of lens crystallins 总被引:25,自引:0,他引:25
Bloemendal H de Jong W Jaenicke R Lubsen NH Slingsby C Tardieu A 《Progress in biophysics and molecular biology》2004,86(3):407-485
The -, β- and γ-crystallins are the major protein components of the vertebrate eye lens, -crystallin as a molecular chaperone as well as a structural protein, β- and γ-crystallins as structural proteins. For the lens to be able to retain life-long transparency in the absence of protein turnover, the crystallins must meet not only the requirement of solubility associated with high cellular concentration but that of longevity as well. For proteins, longevity is commonly assumed to be correlated with long-term retention of native structure, which in turn can be due to inherent thermodynamic stability, efficient capture and refolding of non-native protein by chaperones, or a combination of both. Understanding how the specific interactions that confer intrinsic stability of the protein fold are combined with the stabilizing effect of protein assembly, and how the non-specific interactions and associations of the assemblies enable the generation of highly concentrated solutions, is thus of importance to understand the loss of transparency of the lens with age. Post-translational modification can have a major effect on protein stability but an emerging theme of the few studies of the effect of post-translational modification of the crystallins is one of solubility and assembly. Here we review the structure, assembly, interactions, stability and post-translational modifications of the crystallins, not only in isolation but also as part of a multi-component system. The available data are discussed in the context of the establishment, the maintenance and finally, with age, the loss of transparency of the lens. Understanding the structural basis of protein stability and interactions in the healthy eye lens is the route to solve the enormous medical and economical problem of cataract. 相似文献