首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heme-propionates of horseradish peroxidase (HRP) were esterified by p-nitrophenol, phenol and p-methylphenol to change its electron character and to increase its hydrophobicity. These synthetic hemes were inserted apo-HRP to give a novel HRP, respectively. Of the three reconstituted HRPs, reconstituted HRP with p-nitrophenol-modified heme derivative had a larger initial rate, affinity, catalytic efficiency and substrate-binding efficiency than native HRP in aqueous buffer and some solvents. The reconstituted HRPs showed higher thermostability and tolerance of DMF because of the increase of the hydrophobicity of the active site. Changing the electron character of the aromatic moieties linked at each terminal of the two heme-propionates can control activity and stability of HRP. The initial rate, affinity, catalytic efficiency and substrate-binding efficiency increased with the increases of electron-withdrawing efficiency of substituents at 4-position of the phenolic used to synthesize the heme derivatives, contrariwise, the stability decreased. The modifications resulted in the increase in the temperature (Tm) at the midpoint of thermal denaturation and the decreases in both enthalpy and entropy change at Tm. The changes of catalytic properties and stabilities are related to the changes of the conformation of HRP. The modification changed the environment of heme and tryptophan, increased α-helix content of HRP. The present work demonstrates that enhancement of the hydrophobicity and the electron-withdrawing efficiency of heme improves the activity and stability of HRP.  相似文献   

2.
Abstract

A new series of anti-bacterial and anti-fungal mono- and di-substituted triazoles (L1)–(L6) have been synthesized and characterized on the basis of their physical, spectral and analytical data. The ligands (L1)–(L6) on reaction with vanadyl(IV) sulphate led to the formation of vanadyl(IV) metal complexes (1)–(4). The structure of the complexes has been established on the basis of their physical, spectral and elemental analyses data. The synthesized ligands and their vanadyl(IV) complexes have been screened in vitro for anti-bacterial activity against six bacterial species such as, Escherichia coli (ATCC 25922), Shigella flexneri (ATCC 12022), Pseudomonas aeruginosa (ATCC 27853), Salmonella typhi (ATCC 14028), Staphylococcus aureus (ATCC 25923) and Bacillus subtilis (ATCC 6051) and for in vitro anti-fungal activity against six fungal strains, Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata. The screening results showed the vanadyl complexes to be more bactericidal/fungicidal against one or more bacterial/fungal species. The synthesized compounds were also subjected to brine shrimp bioassay for scrutinizing their cytotoxicity.  相似文献   

3.
Horseradish Peroxidase (HRP) is one of the most studied peroxidases and a great number of chemical modifications and genetic manipulations have been carried out on its surface accessible residues to improve its stability and catalytic efficiency necessary for biotechnological applications. Most of the stabilized derivatives of HRP reported to date have involved chemical or genetic modifications of three surface-exposed lysines (K174, K232 and K241). In this computational study, we altered these lysines to phenylalanine residues to model those chemical modifications or genetic manipulations in which these positively charged lysines are converted to aromatic hydrophobic residues. Simulation results implied that upon these substitutions, the protein structure becomes less flexible. Stability gains are likely to be achieved due to the increased number of stable hydrogen bonds, improved heme-protein interactions and more integrated proximal Ca2+ binding pocket. We also found a new persistent hydrogen bond between the protein moiety (F174) and the heme prosthetic group as well as two stitching hydrogen bonds between the connecting loops GH and F′F″ in mutated HRP. However, detailed analysis of functionally related structural properties and dynamical features suggests reduced reactivity of the enzyme toward its substrates. Molecular dynamics simulations showed that substitutions narrow the bottle neck entry of peroxide substrate access channel and reduce the surface accessibility of the distal histidine (H42) and heme prosthetic group to the peroxide and aromatic substrates, respectively. Results also demonstrated that the area and volume of the aromatic-substrate binding pocket are significantly decreased upon modifications. Moreover, the hydrophobic patch functioning as a binding site or trap for reducing aromatic substrates is shrunk in mutated enzyme. Together, the results of this simulation study could provide possible structural clues to explain those experimental observations in which the protein stability achieved concurrent with a decrease in enzyme activity, upon manipulation of charge/hydrophobicity balance at the protein surface.  相似文献   

4.
The aim of this work was to investigate the biochemical and histological effects of vanadyl sulfate on blood glucose, urea, and creatinine in serum and nonenzymatic glycosylation and glutathione levels in kidney tissue of normal and streptozotocin (65 mg/kg) diabetic rats. Vanadyl sulfate was administered by gavage at a dose of 100 mg/kg. After 60 d of treatment, serum urea, creatinine, and blood glucose levels significantly increased in the diabetic group but not so in the vanadyl sulfate, which showed significantly reduced serum urea and blood glucose levels and a nonsignificant reduction of serum creatinine levels. Nonenzymatic glycosylation was increased and the glutathione level was decreased in the kidney tissue of diabetic rats. Treatment with vanadyl sulfate reversed these effects. Degenerative changes were detected in diabetic animals by electron and light microscopy. Although there are individual differences in diabetic animals given vanadium, some reduction of degenerative changes were observed.  相似文献   

5.
M Sono 《Biochemistry》1990,29(6):1451-1460
The binding of a number of ligands to the heme protein indolamine 2,3-dioxygenase has been examined with UV-visible absorption and with natural and magnetic circular dichroism spectroscopy. Relatively large ligands (e.g., norharman) which do not readily form complexes with myoglobin and horseradish peroxidase (HRP) can bind to the dioxygenase. Except for only a few cases (e.g., 4-phenylimidazole) for the ferric dioxygenase, a direct competition for the enzyme rarely occurs between the substrate L-tryptophan (Trp) and the ligands examined. L-Trp and small heme ligands (CN-,N3-,F-) markedly enhance the affinity of each other for the ferric enzyme in a reciprocal manner, exhibiting positive cooperativity. For the ferrous enzyme, L-Trp exerts negative cooperativity with some ligands such as imidazoles, alkyl isocyanides, and CO binding to the enzyme. This likely reflects the proximity of the Trp binding site to the heme iron. Other indolamine substrates also exert similar but smaller cooperative effects on the binding of azide or ethyl isocyanide. The pH dependence of the ligand affinity of the dioxygenase is similar to that of myoglobin rather than that of HRP. These results suggest that indolamine 2,3-dioxygenase has the active-site heme pocket whose environmental structure is similar to, but whose size is considerably larger than, that of myoglobin, a typical O2-binding heme protein. Although the L-Trp affinity of the ferric cyanide and ferrous CO enzyme varies only slightly between pH 5.5 and 9.5, the unligated ferric and ferrous enzymes have considerably higher affinity for L-Trp at alkaline pH than at acidic pH. L-Trp binding to the ferrous dioxygenase is affected by an ionizable residue with a pKa value of 7.3.  相似文献   

6.
Horseradish peroxidase (HRP) is an important heme enzyme with enormous medical diagnostic, biosensing, and biotechnological applications. Thus, any improvement in the applicability and stability of the enzyme is potentially interesting. We previously reported that covalent attachment of an electron relay (anthraquinone 2-carboxylic acid) to the surface-exposed Lys residues successfully improves electron transfer properties of HRP. Here we investigated structural and functional consequences of this modification, which alters three accessible charged lysines (Lys-174, Lys-232, and Lys-241) to the hydrophobic anthraquinolysine residues. Thermal denaturation and thermoinactivation studies demonstrated that this kind of modification enhances the conformational and operational stability of HRP. The melting temperature increased 3 degrees C and the catalytic efficiency enhanced by 80%. Fluorescence and circular dichroism investigations suggest that the modified HRP benefits from enhanced aromatic packing and more buried hydrophobic patches as compared to the native one. Molecular dynamics simulations showed that modification improves the accessibility of His-42 and the heme prosthetic group to the peroxide and aromatic substrates, respectively. Additionally, the hydrophobic patch, which functions as a binding site or trap for reducing aromatic substrates, is more extended in the modified enzyme. In summary, this modification produces a new derivative of HRP with enhanced electron transfer properties, catalytic efficiency, and stability for biotechnological applications.  相似文献   

7.
The effects of solvent and reaction conditions on the catalytic activity of horseradish peroxidase (HRP) were investigated for oxidative polymerization of phenol in water/organic mixtures using hydrogen peroxide as an oxidant. Also, the structural changes of HRP were investigated by CD and absorption spectroscopy in these solvents. The results suggest that the yield of phenol polymer (the conversion of phenol to polymer) is strongly affected by the reaction conditions due to the structural changes of HRP, that is, the changes in higher structure of the apo-protein and dissociation or decomposition of the prosthetic heme. Optimum solvent compositions for phenol polymerization depend on the nature of the organic solvents owing to different effects of the solvents on HRP structure. In addition to initial rapid changes, slower changes of HRP structure occur in water/organic solvents especially at high concentrations of organic solvents. In parallel with these structural changes, catalytic activity of HRP decreases with time in these solvents. At higher reaction temperatures, the yield of the polymer decreases, which is also ascribed to modification of HRP structure. It is known that hydrogen peroxide is an inhibitor of HRP, and the yield of phenol polymer is strongly dependent on the manner of addition of hydrogen peroxide to the reaction solutions. The polymer yield decreases significantly when hydrogen peroxide was added to the reaction solution in a large amount at once. This is probably due to inactivation of HRP by excess hydrogen peroxide. From the CD and absorption spectra, it is suggested that excess hydrogen peroxide causes not only decomposition of the prosthetic heme but also modification of the higher structure of HRP.  相似文献   

8.
The effects of solvent and reaction conditions on the catalytic activity of horseradish peroxidase (HRP) were investigated for oxidative polymerization of phenol in water/organic mixtures using hydrogen peroxide as an oxidant. Also, the structural changes of HRP were investigated by CD and absorption spectroscopy in these solvents. The results suggest that the yield of phenol polymer (the conversion of phenol to polymer) is strongly affected by the reaction conditions due to the structural changes of HRP, that is, the changes in higher structure of the apo-protein and dissociation or decomposition of the prosthetic heme. Optimum solvent compositions for phenol polymerization depend on the nature of the organic solvents owing to different effects of the solvents on HRP structure. In addition to initial rapid changes, slower changes of HRP structure occur in water/organic solvents especially at high concentrations of organic solvents. In parallel with these structural changes, catalytic activity of HRP decreases with time in these solvents. At higher reaction temperatures, the yield of the polymer decreases, which is also ascribed to modification of HRP structure. It is known that hydrogen peroxide is an inhibitor of HRP, and the yield of phenol polymer is strongly dependent on the manner of addition of hydrogen peroxide to the reaction solutions. The polymer yield decreases significantly when hydrogen peroxide was added to the reaction solution in a large amount at once. This is probably due to inactivation of HRP by excess hydrogen peroxide. From the CD and absorption spectra, it is suggested that excess hydrogen peroxide causes not only decomposition of the prosthetic heme but also modification of the higher structure of HRP.  相似文献   

9.
Sequential addition of vanadyl sulfate to a phosphate-buffered solution of H2O2 released oxygen only after the second batch of vanadyl. Ethanol added to such reaction mixtures progressively decreased oxygen release and increased oxygen consumption during oxidation of vanadyl by H2O2. Inclusion of ethanol after any of the three batches of vanadyl resulted in varying amounts of oxygen consumption, a property also shared by other alcohols (methanol, propanol and octanol). On increasing the concentration of ethanol, vanadyl sulfate or H2O2, both oxygen consumption and acetaldehyde formation increased progressively. Formation of acetaldehyde decreased with increase in the ratio of vanadyl:H2O2 above 2:1 and was undetectable with ethanol at 0.1 mM. The reaction mixture which was acidic in the absence of phosphate buffer (pH 7.0), released oxygen immediately after the first addition of vanadyl and also in presence of ethanol soon after initial rapid consumption of oxygen, with no accompanying acetaldehyde formation. The results underscore the importance of some vanadium complexes formed during vanadyl oxidation in the accompanying oxygen-transfer reactions.  相似文献   

10.
Effects of vanadyl sulfate on liver of streptozotocin-induced diabetic rats   总被引:2,自引:0,他引:2  
The aim of this study was to investigate the microscopic and biochemical effects of vanadyl sulfate on liver tissue of normal and streptozotocin (65 mg/kg) diabetic rats. Vanadyl sulfate was administered by gavage at a dose of 100 mg/kg. Degenerative changes were observed in diabetic animals by light and transmission electron microscopes. Although there were individual differences in diabetic animals to which vanadium was given, some reduction of degenerative changes were detected. After 60 d of treatment, serum aspartate and alanine transaminase, alkaline phosphatase, blood glucose levels, liver lipid peroxidation, and nonenzymatic glycosylation significantly increased, but liver glutathione levels significantly decreased in the diabetic group. On the other hand, treatment with vanadyl sulfate reversed these effects. As a result, it might be concluded that vanadyl sulfate has a protective effect on damage of liver of streptozotocin-induced diabetic rats.  相似文献   

11.
Although the number of papers about "vanadium" has doubled in the last decade, the studies about "vanadium and actin" are scarce. In the present review, the effects of vanadyl, vanadate and decavanadate on actin structure and function are compared. Decavanadate (51)V NMR signals, at -516 ppm, broadened and decreased in intensity upon actin titration, whereas no effects were observed for vanadate monomers, at -560 ppm. Decavanadate is the only species inducing actin cysteine oxidation and vanadyl formation, both processes being prevented by the natural ligand of the protein, ATP. Vanadyl titration with monomeric actin (G-actin), analysed by EPR spectroscopy, reveals a 1:1 binding stoichiometry and a K(d) of 7.5 μM(-1). Both decavanadate and vanadyl inhibited G-actin polymerization into actin filaments (F-actin), with a IC(50) of 68 and 300 μM, respectively, as analysed by light scattering assays, whereas no effects were detected for vanadate up to 2 mM. However, only vanadyl (up to 200 μM) induces 100% of G-actin intrinsic fluorescence quenching, whereas decavanadate shows an opposite effect, which suggests the presence of vanadyl high affinity actin binding sites. Decavanadate increases (2.6-fold) the actin hydrophobic surface, evaluated using the ANSA probe, whereas vanadyl decreases it (15%). Both vanadium species increased the ε-ATP exchange rate (k = 6.5 × 10(-3) s(-1) and 4.47 × 10(-3) s(-1) for decavanadate and vanadyl, respectively). Finally, (1)H NMR spectra of G-actin treated with 0.1 mM decavanadate clearly indicate that major alterations occur in protein structure, which are much less visible in the presence of ATP, confirming the preventive effect of the nucleotide on the decavanadate interaction with the protein. Putting it all together, it is suggested that actin, which is involved in many cellular processes, might be a potential target not only for decavanadate but above all for vanadyl. By affecting actin structure and function, vanadium can regulate many cellular processes of great physiological significance.  相似文献   

12.
Activation of rabbit liver microsomal high affinity cAMP phosphodiesterase (Type IV PDE) by vanadyl-glutathione complexes was studied as a possible model of insulin stimulation of the enzyme in a cell-free system. The effect of VO.2GSH activation of PDE was a 21-fold decrease in the IC50 value for cGMP inhibition and a 2.6-fold increase in the Vmax of the higher affinity cAMP catalytic site. Cyclic AMP and cGMP substrate affinities and cGMP hydrolysis were unaffected by VO.2GSH activation. Selective Type IV PDE inhibitors and cGMP analogs indicated that VO.2GSH complexes activated the cGMP-inhibitable form of the Type IV PDE activities which co-localized in hepatic microsomes. The Type IV PDE activating complex appears to consist minimally of vanadyl ion and 2 oxidized electron donor compounds. The components of the electron donor required to achieve an enzyme activation complex are: 1) a free -SH group as the electron donor for vanadate reduction and 2) a minimum structure of cysteamine (NH2-CH2-CH2-SH). Maximal activation of the enzyme required near 2:1 molar ratios of either glutathione or cysteamine mixed with sodium orthovanadate. Active vanadyl-cysteamine complexes were isolated by reverse- phase high performance liquid chromatography. Tungsten, niobium, and tantalum, but not manganese, chromium, or molybdenum, substituted for vanadium to form enzyme-activating complexes with glutathione. VO.RSH complex activation occurred rapidly upon addition to microsomes and was reversible. We conclude from these studies that VO.RSH complexes and insulin activate the same form of Type IV PDE in rabbit liver microsomes; our findings are discussed with respect to the involvement of a possible electron transfer enzyme oxidation in the activation mechanism.  相似文献   

13.
The effect of 1R-camphor on the conformational stability of the heme active site of cytochrome P450cam has been investigated. The absorption spectra of the heme moiety showed the presence of two hitherto unknown intermediates formed at low urea concentrations or during small temperature perturbations. The corresponding thermodynamic parameters were obtained by global fitting of the experimental data to a generalized sequential unfolding model at different wavelengths, which showed that the active conformation of the enzyme is stabilized by binding of the substrate at the active site. Circular-dichroism spectra of the enzyme in the visible- and far-UV region were studied to identify the critical range of denaturant concentration and the temperature at which the tertiary structure around the heme center was affected with almost no change in the secondary structure of the enzyme. This critical range of urea concentration was 0–2.8 M in the presence of camphor and 0–1.5 M in the absence of camphor. The tertiary structure of the enzyme was found to undergo conformational change in the temperature range 20–60 °C in the presence of the substrate and 20–47 °C in its absence. The spectral assignments of the intermediate species of the heme active site with the intact secondary structure of the enzyme were made by deconvolution of the Soret absorption spectra, and the results were analyzed to determine stabilization of the heme active-site geometry by 1R-camphor. Results showed that subtle conformational changes due to melting of the tertiary contacts in the active site lead to formation of intermediates which are coordinatively similar to the native enzyme. Analogous intermediate species might be responsible for leakage in the redox catalytic cycle of the enzyme.  相似文献   

14.
Among vanadium's wide variety of biological functions, its insulin-mimetic effect is the most interesting and important. Recently, the vanadyl ion (+4 oxidation state of vanadium) and its complexes have been shown to normalize the blood glucose levels of streptozotocin-induced diabetic rats (STZ-rats). During our investigations to find more effective and less toxic vanadyl complexes, the vanadyl-methylpicolinate complex (VO-MPA) was found to exhibit higher insulin-mimetic activity and less toxicity than other complexes, as evaluated by both in vitro and in vivo experiments. Electron spin resonance (ESR) is capable of measuring the paramagnetic species in biological samples. We have developed the in vivo blood circulation monitoring-electron spin resonance (BCM-ESR) method to analyze the ESR signals due to stable organic radicals in real time. In the present investigation, we have applied this method to elucidate the relationship between the blood glucose normalizing effect of VO-MPA and the global disposition of paramagnetic vanadyl species. This paper describes the results of vanadyl species in the circulating blood of rats following intravenous administration of vanadyl compounds. ESR spectra due to the presence of vanadyl species were obtained in the circulating blood, and their pharmacokinetic parameters were estimated using compartment models. The results indicate that vanadyl species are distributed considerably to the peripheral tissues, as estimated by BCM-ESR, and eliminated from the body through the urine, as estimated by ESR at 77 K. The exposure of vanadyl species in the blood was found to be enhanced by VO-MPA treatment. Given these results, we concluded that the pharmacokinetic character of vanadyl species is closely related with the structure and antidiabetic activity of the vanadyl compounds.  相似文献   

15.
Twenty hydroxylated and acetoxylated 3-phenylcoumarins were synthesized, and the structure-activity relationships were investigated by evaluating the ability of these compounds to modulate horseradish peroxidase (HRP) catalytic activity and comparing the results to four flavonoids (quercetin, myricetin, kaempferol and galangin), previously reported as HRP inhibitors. It was observed that 3-phenylcoumarins bearing a catechol group were as active as quercetin and myricetin, which also show this substituent in the B-ring. The presence of 6,2'-dihydroxy group or 6,7,3',4'-tetraacetoxy group in the 3-phenylcoumarin structure also contributed to a significant inhibitory effect on the HRP activity. The catechol-containing 3-phenylcoumarin derivatives also showed free radical scavenger activity. Molecular modeling studies by docking suggested that interactions between the heme group in the HRP active site and the catechol group linked to the flavonoid B-ring or to the 3-phenyl coumarin ring are important to inhibit enzyme catalytic activity.  相似文献   

16.
Novel bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione (curcumin) complexes with the formula, ML(3), where M is Ga(III) or In(III), or of the formula, ML(2) where M is [VO](2+), have been synthesized and characterized by mass spectrometry, infrared and absorption spectroscopies, and elemental analysis. A new ligand, bis[4-acetyl-3-hydroxyphenyl]-1,6-heptadiene-3,5-dione (diacetylbisdemethoxycurcumin, DABC) was similarly characterized; an X-ray structure analysis was performed. Vanadyl complexes tested in an acute i.p. testing protocol in STZ-diabetic rats showed a lack of insulin enhancing potential. Vanadyl complexes were, however, more cytotoxic than were the ligands alone in standard MTT (3-[4,5-dimethylthiazole-2-yl]ate, -2,5-diphenyl-tetrazolium bromide) cytotoxicity testing, using mouse lymphoma cells. With the exception of DABC, that was not different from VO(DABC)(2), the complexes were not significantly different from one another, with IC(50) values in the 5-10 microM range. Gallium and indium curcumin complexes had IC(50) values in the same 5-10 microM range; whereas Ga(DAC)(3) and In(DAC)(3) (where DAC=diacetylcurcumin) were much less cytotoxic (IC(50)=20-30 microM). Antioxidant capacity was decreased in VO(DAC)(2), Ga(DAC)(3), and In(DAC)(3), compared to vanadyl, gallium and indium curcumin, corroborating the importance of curcumin's free phenolic OH groups for scavenging oxidants, and correlated with reduced cytotoxic potential.  相似文献   

17.
Chen YR  Deterding LJ  Tomer KB  Mason RP 《Biochemistry》2000,39(15):4415-4422
Previous studies established that the cyanyl radical ((*)CN), detected as 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/(*)CN by the electron spin resonance (ESR) spin-trapping technique, can be generated by horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H(2)O(2)) and by mitochondrial cytochrome c oxidase (CcO) in the absence of H(2)O(2). To investigate the mechanism of inhibition by cyanyl radical, we isolated and characterized the iron protoporphyrin IX and heme a from the reactions of CN(-) with HRP and CcO, respectively. The purified heme from the reaction mixture of HRP/H(2)O(2)/KCN was unambiguously identified as cyanoheme by the observation of the protonated molecule, (M + H)(+), of m/z = 642.9 in the matrix-assisted laser desorption/ionization (MALDI) mass spectrum. The proton NMR spectrum of the bipyridyl ferrous cyanoheme complex revealed that one of the four meso protons was missing and had been replaced with a cyanyl group, indicating that the single, heme-derived product was meso-cyanoheme. The holoenzyme of HRP from the reconstitution of meso-cyanoheme with the apoenzyme of HRP (apoHRP) showed no detectable catalytic activity. The Soret peak of cyanoheme-reconstituted apoHRP was shifted to 411 nm from the 403 nm peak of native HRP. In contrast, the heme a isolated from partially or fully inhibited CcO did not show any change in the structure of the protoporphyrin IX as indicated by its MALDI mass spectrum, which showed an (M + H)(+) of m/z = 853.6, and by its pyridine hemochromogen spectrum. However, a protein-centered radical on the CcO can be detected in the reaction of CcO with cyanide and was identified as the thiyl radical(s) based on inhibition of its formation by N-ethylmaleimide pretreatment, suggesting that the protein matrix rather than protoporphyrin IX was attacked by the cyanyl radical. In addition to the difference in heme structures between HRP and CcO, the available crystallographic data also suggested that the distinct heme environments may contribute to the different inhibition mechanisms of HRP and CcO by cyanyl radical.  相似文献   

18.
The role of the aminophospholipid, phosphatidylethanolamine (PE), has been well established to act as a non-protein molecular chaperone in the folding and assembly of polytopic membrane proteins. However, such studies with soluble proteins have not been done so far and in particular with the heme proteins. We have used the heme enzyme, horseradish peroxidase (HRP), as the model heme protein and studied the effect of different phospholipids on its refolding from denatured state. Dimyristoylphosphatidylethanolamine (DMPE), a bilayer-forming PE, was able to increase the reactivation yield of denatured HRP upon 30min refolding at 25 degrees C. However, dioleoylphosphatidylethanolamine (DOPE), containing one double bond in the fatty acid chains, which does not favour bilayer organization, did not support proper refolding. The phospholipids with N-methylated head groups, phosphatidylcholines, e.g., DMPC and DOPC showed differential effects when DMPC remained mostly non-supportive while DOPC on the contrary led to inhibition of the refolding of the denatured heme enzyme. Fluorescence spectroscopic studies also indicated changes in the microenvironments of the heme moiety and the single tryptophan residue of HRP in presence of the aminophospholipid.  相似文献   

19.
Poly(A) specific ribonuclease (PARN), which contains a catalytic domain and two RNA-binding domains (R3H and RRM), acts as a key enzyme in eukaryotic organisms to regulate the stability of mRNA by degrading the 3' poly-(A) tail. In this research, the activity, structure and stability were compared between the full-length 74kDa PARN, the proteolytic 54kDa fragment with half of the RRM, and a truncated 46kDa form completely missing the RRM. The results indicated that the 46kDa one had the lowest activity and substrate binding affinity, the most hydrophobic exposure in the native state and the least stability upon denaturation. The dissimilarity in the activity, structure and stability of the three PARNs revealed that the entire RRM domain not only contributed to the substrate binding and efficient catalysis of PARN, but also stabilized the overall structures of the protein. Spectroscopic experiments suggested that the RRM domain might be structurally adjacent to the R3H domain, and thus provide a basis for the cooperative binding of poly(A) by the two RNA-binding domains as well as the catalytic domain.  相似文献   

20.
A novel vanadyl curcumin complex (VO(cur)2) has been synthesized and and its physicochemical properties characterized. Biological characterization included in vitro testing for anti-rheumatic activity in synoviocytes, angiogenesis inhibition in smooth muscle cells and anti-cancer potential in mouse lymphoma cells; as well as in vivo testing for hypoglycemic activity by oral gavage in streptozotocin (STZ)-diabetic rats. VO(cur)2 was more effective as an anti-cancer agent, compared to uncomplexed curcumin or vanadyl ion alone, was more than twice as effective as curcumin alone as an anti-arthritic agent, and was more than four times as effective as curcumin alone in inhibiting smooth muscle cell proliferation. In both acute and chronic screening tests, VO(cur)2 was ineffective as an insulin mimetic agent; however, it also proved to be exceptionally non-toxic, with no evidence of negative symptomatology during a month-long treatment period, at doses up to and including 2.0 mmol kg(-1) day(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号