共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Developmental regulation and tissue-specific localization of calmodulin mRNA in the protochordate Ciona intestinalis 总被引:1,自引:0,他引:1
Anna Di Gregorio † ‡ Maria Grazia Villani ‡ Annamaria Locascio Filomena Ristoratore Francesco Aniello Margherita Branno 《Development, growth & differentiation》1998,40(4):387-394
3.
4.
5.
This paper describes a study of the apical region of the spermatozoon of Ciona intestinalis before and during its binding to the vitelline coat of the egg. A combination of the techniques of thin sectioning, negative staining, and freeze fracture has revealed that in the apical-most region, where a small acrosomal vesicle lies on the flat tip of the nucleus, there is a cap-like region almost completely free of particles on the P face of the plasma membrane. The particle-free area is surrounded by two circlets of orderly arranged particles. Upon binding to the vitelline coat the particles of the distal circlet show a partial displacement, while the particles of the apical circlet remain unaltered. The relationship between the apical circlet and the binding process is discussed. The final step of the acrosome reaction, which occurs in only a few of the bound spermatozoa, consists in the fusion of the plasma membrane with the acrosomal membrane, in the dehiscence of the acrosomal contents and finally in the formation of membrane tubules. 相似文献
6.
Philips A Blein M Robert A Chambon JP Baghdiguian S Weill M Fort P 《Biology of the cell / under the auspices of the European Cell Biology Organization》2003,95(5):295-302
GTPases of the Rho family are evolutionarily conserved proteins that control cell shape dynamics during physiological processes as diverse as cell migration and polarity, axon outgrowth and guidance, apoptosis and phagocytosis. In mammals, 18 Rho proteins are distributed in 7 subfamilies. Rho, Rac and Cdc42 are the best-characterized ones, benefiting from the use of worm and drosophila, which only express these 3 subfamilies. An additional model would therefore help understand the physiological role of other mammalian subfamilies. We identified in genome databases the complete Rho family of two ascidians, Ciona intestinalis and Ciona savignyi, and showed that these families contain single ancestors of most mammalian Rho subfamilies. In Ciona intestinalis, all Rho genes are expressed and display specific developmental variations of mRNA expression during tadpole formation. Although C. intestinalis expresses five additional Rac compared to the closely related Ciona savignyi, only two appeared fully active in functional assays. Last, we identified in Ciona intestinalis database more than 50 Rho regulators (RhoGEFs and RhoGAPs) and 20 effector targets, whose analysis further supports the notion that Rho signaling components are of comparable complexity in mammals and ascidians. Since the tadpole of ascidians combines vertebrate-like developmental features with reduced cell number, particularly adapted to evolutionary and developmental biology studies, our data advocate this model for physiological studies of Rho signaling pathways. 相似文献
7.
Summary Calcitonin-like immunoreactivity has been found with the peroxidase-anti-peroxidase (PAP) method in cells of the epithelium of the alimentary tract as well as in nerve cells and nerve fibers in the connective tissue underlying the epithelium of the alimentary tract of Ciona intestinalis L. The nature of these cells is discussed with reference to endocrine-like cells found in the alimentary tract of other protochordates and to the possible dual role of calcitonin occurring in the gastroenteropancreatic system, on the one hand, and in the nervous system, on the other. 相似文献
8.
The central and peripheral nervous systems (CNS and PNS) of the ascidian tadpole larva are comparatively simple, consisting of only about 350 cells. However, studies of the expression of neural patterning genes have demonstrated overall similarity between the ascidian CNS and the vertebrate CNS, suggesting that the ascidian CNS is sufficiently complex to be relevant to those of vertebrates. Recent progress in the Ciona intestinalis genome project and cDNA project together with considerable EST information has made Ciona an ideal model for investigating molecular mechanisms underlying the formation and function of the chordate nervous system. Here, we characterized 56 genes specific to the nervous system by determining their full-length cDNA sequences and confirming their spatial expression patterns. These genes included those that function in the nervous systems of other animals, especially those involved in photoreceptor-mediated signaling and neurotransmitter release. Thus, the nervous system-specific genes in Ciona larvae will provide not only probes for determining their function but also clues for exploring the complex network of nervous system-specific genes. 相似文献
9.
The key position of the Ciona intestinalis basal to the vertebrate phylogenetic tree brings up the question of which respiratory proteins are used by the tunicate to facilitate oxygen transport and storage. The publication of the Ciona draft genome sequence suggests that globin genes are completely missing and that-like some molluscs and arthropods-the sea squirt uses hemocyanin instead of hemoglobin for respiration. However, we report here the presence and expression of at least four distinct globin gene/protein sequences in Ciona. This finding is in agreement with the ancestral phylogeny of the vertebrate globins. Moreover, it seems likely that the Ciona hemocyanin-like sequences have enzymatic instead of respiratory functions. 相似文献
10.
One of challenges in the field of developmental biology is to understand how spatially and/or temporally coordinated expression of genes is controlled at the chromosomal level. It remains controversial whether genes expressed in a given tissue are randomly distributed throughout a given animal genome, or instead resolve into clusters. Here we used microarray analysis to identify more than 1,700 genes that are expressed preferentially in each of 11 organs of the chordate Ciona intestinalis adult, and determined the location of these genes on the 14 pairs of Ciona chromosomes. In spite of extensive mapped gene analysis, we only confirmed small clusters containing two or three genes. Our result indicates that organ-specific genes are distributed rather evenly all over chromosomes, suggesting that the notion of clustering of organ-specific genes in animal genomes is not generally applicable to this chordate. 相似文献
11.
12.
Eight nuclear polymorphic microsatellite markers were characterized from the ascidian Ciona intestinalis whole genome sequence. The behaviour of these loci was investigated against two geographically distinct populations: one from Plymouth, UK the other from the Fusaro Lagoon, Italy, both belonging to the type A Ciona cryptic species. The markers exhibited six to 29 alleles and average observed heterozygosity ranging from 0.06 to 0.73. These new microsatellite loci demonstrated to be valuable tools for both population genetic analysis at different scales and genetic identification of mutant phenotypes frequently encountered in Mediterranean populations of C. intestinalis. 相似文献
13.
Ana E. Jenike Katharine M. Jenike Kevin J. Peterson Bastian Fromm Marc K. Halushka 《Evolution & development》2023,25(3):226-239
The evolution of specialized cell-types is a long-standing interest of biologists, but given the deep time-scales very difficult to reconstruct or observe. microRNAs have been linked to the evolution of cellular complexity and may inform on specialization. The endothelium is a vertebrate-specific specialization of the circulatory system that enabled a critical new level of vasoregulation. The evolutionary origin of these endothelial cells is unclear. We hypothesized that Mir-126, an endothelial cell-specific microRNA may be informative. We here reconstruct the evolutionary history of Mir-126. Mir-126 likely appeared in the last common ancestor of vertebrates and tunicates, which was a species without an endothelium, within an intron of the evolutionary much older EGF Like Domain Multiple (Egfl) locus. Mir-126 has a complex evolutionary history due to duplications and losses of both the host gene and the microRNA. Taking advantage of the strong evolutionary conservation of the microRNA among Olfactores, and using RNA in situ hybridization, we localized Mir-126 in the tunicate Ciona robusta. We found exclusive expression of the mature Mir-126 in granular amebocytes, supporting a long-proposed scenario that endothelial cells arose from hemoblasts, a type of proto-endothelial amoebocyte found throughout invertebrates. This observed change of expression of Mir-126 from proto-endothelial amoebocytes in the tunicate to endothelial cells in vertebrates is the first direct observation of the evolution of a cell-type in relation to microRNA expression indicating that microRNAs can be a prerequisite of cell-type evolution. 相似文献
14.
Satou Y Yamada L Mochizuki Y Takatori N Kawashima T Sasaki A Hamaguchi M Awazu S Yagi K Sasakura Y Nakayama A Ishikawa H Inaba K Satoh N 《Genesis (New York, N.Y. : 2000)》2002,33(4):153-154
The genome of the basal choradate Ciona intestinalis contains a basic set of genes with less redundancy compared to the vertebrate genome. Extensive EST analyses, cDNA sequencing, and clustering yielded \"Ciona intestinalis Gene Collection Release 1,\" which contains cDNA clones for 13,464 genes, covering nearly 85% of the Ciona mRNA species. This release is ready for use in cDNA cloning, micro/macroarray analysis, and other comprehensive genome-wide analyses for further molecular studies of basal chordates. 相似文献
15.
In vertebrates, melanins produced in specialized pigment cells are required for visual acuity, camouflage, sexual display and protection from ultra violet (UV) radiation. There are three pigment cell types that are classified based on their distinct embryonic origins. Retinal pigment epithelium (RPE) cells originate from the outer layer of the optic cup. Pigment cells of the pineal organ are formed from the developing diencephalon. Melanocytes are derived from the neural crest unique to vertebrate embryos. Some of these pigment cells also play roles that are independent of the activity of tyrosinase, the key melanogenesis enzyme, or melanin: production of substrate(s) for catecholamine synthesis, maintenance of endolymph composition in the cochlea, maintenance of photoreceptor cells in the retina and retinoid metabolism essential for the visual cycle. To deduce the evolutionary origins of vertebrate pigment cells and a possible archetypal genetic circuitry, which may have been modified and utilized to generate multiple pigment cell types, comparison of developmental mechanisms of pigment cells between vertebrates and closely related invertebrate ascidians are proposed to provide useful information. The tadpole‐type larva of ascidians possesses two melanin‐containing pigment cells, termed the otolith and ocellus pigment cells, in the brain that are believed to be required for photo‐ and geotactic responses during swimming. In this review, current knowledge on the development of the two ascidian pigment cells is summarized, i.e. complete cell lineage, structure and expression of genes encoding two melanogenesis enzymes, and molecular developmental mechanisms involving BMP‐CHORDIN antagonism, and possible evolutionary relationships between ascidian and vertebrate pigment cells are discussed. 相似文献
16.
D'Aniello S D'Aniello E Locascio A Memoli A Corrado M Russo MT Aniello F Fucci L Brown ER Branno M 《Differentiation; research in biological diversity》2006,74(5):222-234
The tadpole larvae prosencephalon of the ascidian Ciona intestinalis contains a single large ventricle, along the inner walls of which lie two sensory organs: the otolith (a gravity-sensing organ) and the ocellus (a photo-sensing organ composed of a single cup-shaped pigment cell, about 20 photoreceptor cells, and three lens cells). Comparison has been drawn between the morphology and physiology of photoreceptor cells in the ascidian ocellus and the vertebrate eye. The development of vertebrate and invertebrate eyes requires the activity of several conserved genes and it is regulated by precise expression patterns and cell fate decisions common to several species. We have isolated a Ciona homeobox gene (Ci-Rx) that belongs to the paired-like class of homeobox genes. Rx genes have been identified from a variety of organisms and have been demonstrated to have a role in vertebrate eye formation. Ci-Rx is expressed in the anterior neural plate in the middle tailbud stage and subsequently in the larval stage in the sensory vesicle around the ocellus. Loss of Ci-Rx function leads to an ocellus-less phenotype that shows a loss of photosensitive swimming behavior, suggesting the important role played by Ci-Rx in basal chordate photoreceptor cell differentiation and ocellus formation. Furthermore, studies on Ci-Rx regulatory elements electroporated into Ciona embryos using LacZ or GFP as reporter genes indicate the presence of Ci-Rx in pigment cells, photoreceptors, and neurons surrounding the sensory vesicle. In Ci-Rx knocked-down larvae, neither basal swimming activity nor shadow responses develop. Thus, Rx has a role not only in pigment cells and photoreceptor formation but also in the correct development of the neuronal circuit that controls larval photosensitivity and swimming behavior. The results suggest that a Ci-Rx \"retinal\" territory exists, which consists of pigment cells, photoreceptors, and neurons involved in transducing the photoreceptor signals. 相似文献
17.
Understanding the relationship between reproductive isolation and time since divergence is critical to our understanding of speciation. One group for which we know little about the relationship between hybridization/introgression and time since divergence is the marine broadcast spawners. Here, we investigate the distribution of closely related cryptic species of marine broadcast spawners (Type A and B Ciona intestinalis) in areas of potential sympatry to determine whether these two types occur together and if so, whether they show evidence of hybridization and introgression. Then we combine our data with other studies to investigate general patterns of reproductive isolation versus divergence in marine broadcast spawners. We found that Type A and B C. intestinalis occurred sympatrically in 2007, and that 21 individuals show evidence of introgression in sympatry (out of approximately 500). Type A and B C. intestinalis are 12.4% divergent at mitochondrial COI (mtCOI), and in comparison with other marine broadcast spawning species at mtCOI, these two types may be near the upper limit of the range of divergence values in which introgression is still possible. However, introgression at divergence levels similar to those found in Ciona does exist, prompting questions about the strength of postmating prezygotic reproductive barriers in marine broadcast spawners. 相似文献
18.
Zucchetti I Marino R Pinto MR Lambris JD Du Pasquier L De Santis R 《Differentiation; research in biological diversity》2008,76(3):267-282
Abstract C-type lectins play an important role in the immune system and are part of a large superfamily that includes C-type lectin-like domain (CTLD)-containing proteins. Divergent evolution, acting on the CTLD fold, has generated the Ca2+ -dependent carbohydrate-binding lectins and molecules, as the lectin-like natural killer (NK) receptors that bind proteins, rather than sugars, in a Ca2+ -independent manner. We have studied ciCD94-1, a CTLD-containing protein from the tunicate Ciona intestinalis , which is a homolog of the CD94 vertebrate receptor that is expressed on NK cells and modulates their cytotoxic activity by interacting with MHC class I molecules. ciCD94-1 shares structural features with the CTLD-containing molecules that recognize proteins, suggesting that it could be located along the evolutionary pathway leading to the NK receptors.
ciCD94-1 was up-regulated in response to inflammation induced by lipopolysaccharide (LPS) acting on a blood cell type present in both the tunic and circulating blood. Furthermore, an anti-ciCD94-1 antibody specifically inhibited the phagocytic activity of these cells. ciCD94-1 was also expressed during development in the larva and in the early stages of metamorphosis in structures related to the nervous system, and loss of its function affected the correct differentiation of these territories. These findings suggest that ciCD94-1 has different roles in immunity and in development, thus strengthening the concept of gene co-option during evolution and of an evolutionary relationship between the nervous and the immune systems. 相似文献
ciCD94-1 was up-regulated in response to inflammation induced by lipopolysaccharide (LPS) acting on a blood cell type present in both the tunic and circulating blood. Furthermore, an anti-ciCD94-1 antibody specifically inhibited the phagocytic activity of these cells. ciCD94-1 was also expressed during development in the larva and in the early stages of metamorphosis in structures related to the nervous system, and loss of its function affected the correct differentiation of these territories. These findings suggest that ciCD94-1 has different roles in immunity and in development, thus strengthening the concept of gene co-option during evolution and of an evolutionary relationship between the nervous and the immune systems. 相似文献
19.
We report here characterization of five genes for novel components of the canonical Wnt/ β -catenin signaling pathway. These genes were identified in the ascidian Ciona intestinalis through a loss-of-function screening for genes required for embryogenesis with morpholinos, and four of them have counterparts in vertebrates. The five genes we studied are as follows: Ci-PGAP1 , a Ciona orthologue of human PGAP1 , which encodes GPI (glycosylphosphatidylinositol) inositol-deacylase, Ci-ZF278 , a gene encoding a C2H2 zinc-finger protein, Ci-C10orf11 , a Ciona orthologue of human C10orf11 that encodes a protein with leucine-rich repeats, Ci-Spatial/C4orf17 , a single counterpart for two human genes Spatial and C4orf17 , and Ci-FLJ10634 , a Ciona orthologue of human FLJ10634 that encodes a member of the J-protein family. Knockdown of each of the genes mimicked β -catenin knockdown and resulted in suppression of the expression of β -catenin downstream genes ( Ci-FoxD , Ci-Lhx3 , Ci-Otx and Ci-Fgf9/16/20 ) and subsequent endoderm formation. For every gene, defects in knockdown embryos were rescued by overexpression of a constitutively active form, but not wild-type, of Ci- β -catenin. Dosage-sensitive interactions were found between Ci-β-catenin and each of the genes. These results suggest that these five genes act upstream of or parallel to Ci- β -catenin in the Wnt/ β -catenin signaling pathway in early Ciona embryos. 相似文献
20.
The aims of the study were to outline the sequence of eventsthat gave rise to the vertebrate insulin-relaxin gene familyand the chromosomal regions in which they reside. We analyzedthe gene content surrounding the human insulin/relaxin geneswith respect to what family they belonged to and if the duplicationhistory of investigated families parallels the evolution ofthe insulin-relaxin family members. Markov Clustering and phylogeneticanalysis were used to determine family identity. More than 15%of the genes belonged to families that have paralogs in theregions, defining two sets of quadruplicate paralogy regions.Thereby, the localization of insulin/relaxin genes in humansis in accordance with those regions on human chromosomes 1,11, 12, 19q (insulin/insulin-like growth factors) and 1, 6p/15q,9/5, 19p (insulin-like factors/relaxins) were formed duringtwo genome duplications. We compared the human genome with thatof Ciona intestinalis, a species that split from the vertebratelineage before the two suggested genome duplications. Two insulin-likeorthologs were discovered in addition to the already describedCi-insulin gene. Conserved synteny between the Ciona regionshosting the insulin-like genes and the two sets of human paralogonsimplies their common origin. Linkage of the two human paralogons,as seen in human chromosome 1, as well as the two regions hostingthe Ciona insulin-like genes suggests that a segmental duplicationgave rise to the region prior to the genome doublings. Thus,preserved gene content provides support that genome duplication(s)in addition to segmental and single-gene duplications shapedthe genomes of extant vertebrates. 相似文献