首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guard cells sense and integrate environmental signals to modulate stomatal aperture in response to diverse conditions. In this study, the effect of vacuolar invertase on Arabidopsis stomatal opening was investigated. The technology of enzyme activity detection in situ was used to show that the vacuolar invertase activity was much higher in guard cells than in other epidermal cells. The stomatal aperture of T-DNA insertion mutant in At1g12240 (inv-7) was significantly lower than that in wild-type plants. Increased stomatal aperture was observed in the transgenic Arabidopsis overexpressing cotton vacuolar invertase gene. These results indicated that Arabidopsis stomatal aperture was correlated with vacuolar invertase, and that vacuolar invertase may play an important role in regulating Arabidopsis stomatal opening.  相似文献   

2.
On the basis of microarray analyses of the salt‐tolerant wheat mutant RH8706‐49, a previously unreported salt‐induced gene, designated as TaHPS [Triticum aestivum hypothetical (HPS)‐like protein], was cloned. Real‐time quantitative polymerase chain reaction analyses showed that expression of the gene was induced by abscisic acid, salt and drought. The encoded protein was found to be localized mainly in the plasma membranes. Transgenic Arabidopsis plants overexpressing TaHPS were more tolerant to salt and drought stresses than non‐transgenic wild‐type (WT) plants. Under salt stress, the root cells of the transgenic plants secreted more Na+ and guard cells took up more Ca2+ ions. Compared with wild‐type plants, TaHPS‐expressing transgenic plants showed significantly lower amylase activity and glucose and malic acid levels. Our results showed that the expression of TaHPS inhibited amylase activity, which subsequently led to a closure of stomatal apertures and thus improved plant tolerance to salt and drought.  相似文献   

3.
4.
5.
A cDNA (SsCAX1) encoding a tonoplast-localised Ca2+/H+ exchanger was isolated from a C3 halophyte Suaeda salsa (L.). To clarify the role of SsCAX1 in plant salt tolerance, Arabidopsis plants expressing SsCAX1 were treated with NaCl. Transgenic Arabidopsis plants displayed decreased salt tolerance. Although Na+ content was close to wild-type plants, transgenic plants accumulated more Ca2+ and retained less K+ in leaves than the wild-type plants in salinity. Furthermore, transgenic lines held higher leaf membrane leakage than wild-type lines under NaCl treatment. In addition, transgenic plants showed a 23% increase in vacuolar H+-ATPase activity compared with wild-type plants in normal condition. But the leaf V-H+-ATPase activity had subtle changes in transgenic plants, while significantly increased in wild-type plants under saline condition. These results suggested that regulated expression of Ca2+/H+ antiport was critical for maintenance of cation homeostasis and activity of V-H+-ATPase under saline condition.  相似文献   

6.
7.
ERA1是控制植物气孔开闭的一个重要基因,根据其保守域构建RNA干扰(RNAi)载体并转化拟南芥,考察转基因植株的生长、气孔导度、离体叶片失水率以及ERA1和相关基因表达,探讨siRNA介导的ERA1表达下调对拟南芥抗旱性的影响。结果表明:转基因拟南芥株系中ERA1的表达受到明显抑制,其离体叶片失水率低于野生型,但并未出现ERA1缺失突变体的负面生长表型;转基因株系对ABA处理比野生型更敏感,其ABA处理株的根长显著变短,气孔孔径更小;转基因株ABI1、ABI2、ATHB6的表达量降低,而RAB18、RD29B、ADH1的表达量升高,siRNA介导的ERA1表达下调可能会激活RAB18、RD29B等逆境响应元件。研究发现,采用RNAi技术可以有效下调ERA1表达,在没有过多负面生长表型的前提下提高拟南芥的抗旱性,且ERA1表达下调可能通过ABA途径正面影响拟南芥的抗旱性。  相似文献   

8.
Transgenic Arabidopsis plants overexpressing the wheat vacuolarNa+/H+ antiporter TNHX1 and H+-PPase TVP1 are much more resistantto high concentrations of NaCl and to water deprivation thanthe wild-type strains. These transgenic plants grow well inthe presence of 200 mM NaCl and also under a water-deprivationregime, while wild-type plants exhibit chlorosis and growthinhibition. Leaf area decreased much more in wild-type thanin transgenic plants subjected to salt or drought stress. Theleaf water potential was less negative for wild-type than fortransgenic plants. This could be due to an enhanced osmoticadjustment in the transgenic plants. Moreover, these transgenicplants accumulate more Na+ and K+ in their leaf tissue thanthe wild-type plants. The toxic effect of Na+ accumulation inthe cytosol is reduced by its sequestration into the vacuole.The rate of water loss under drought or salt stress was higherin wild-type than transgenic plants. Increased vacuolar soluteaccumulation and water retention could confer the phenotypeof salt and drought tolerance of the transgenic plants. Overexpressionof the isolated genes from wheat in Arabidopsis thaliana plantsis worthwhile to elucidate the contribution of these proteinsto the tolerance mechanism to salt and drought. Adopting a similarstrategy could be one way of developing transgenic staple cropswith improved tolerance to these important abiotic stresses. Key words: H+-pyrophosphatase, Na+/H+ antiporter, salt and drought tolerance, sodium sequestration, transgenic Arabidopsis plants  相似文献   

9.
The reorganization of actin filaments (AFs) and vacuoles in guard cells is involved in the regulation of stomatal movement. However, it remains unclear whether there is any interaction between the reorganization of AFs and vacuolar changes during stomatal movement. Here, we report the relationship between the reorganization of AFs and vacuolar fusion revealed in pharmacological experiments, and characterizing stomatal opening in actin‐related protein 2 (arp2) and arp3 mutants. Our results show that cytochalasin‐D‐induced depolymerization or phalloidin‐induced stabilization of AFs leads to an increase in small unfused vacuoles during stomatal opening in wild‐type (WT) Arabidopsis plants. Light‐induced stomatal opening is retarded and vacuolar fusion in guard cells is impaired in the mutants, in which the reorganization and the dynamic parameters of AFs are aberrant compared with those of the WT. In WT, AFs tightly surround the small separated vacuoles, forming a ring that encircles the boundary membranes of vacuoles partly fused during stomatal opening. In contrast, in the mutants, most AFs and actin patches accumulate abnormally around the nuclei of the guard cells, which probably further impair vacuolar fusion and retard stomatal opening. Our results suggest that the reorganization of AFs regulates vacuolar fusion in guard cells during stomatal opening.  相似文献   

10.
11.
The hot pepper xyloglucan endo-trans-gluco-sylase/hydrolase (CaXTH3) gene that was inducible by a broad spectrum of abiotic stresses in hot pepper has been reported to enhance tolerance to drought and high salinity in transgenic Arabidopsis. To assess whether CaXTH3 is a practically useful target gene for improving the stress tolerance of crop plants, we ectopically over-expressed the full-length CaXTH3 cDNA in tomato (Solanum lycopersicum cv. Dotaerang) and found that the 35S:CaXTH3 transgenic tomato plants exhibited a markedly increased tolerance to salt and drought stresses. Transgenic tomato plants exposed to a salt stress of 100 mM NaCl retained the chlorophyll in their leaves and showed normal root elongation. They also remained green and unwithered following exposure to 2 weeks of dehydration. A high proportion of stomatal closures in 35S:CaXTH3 was likely to be conferred by increased cell-wall remodeling activity of CaXTH3 in guard cell, which may reduce transpirational water loss in response to dehydration stress. Despite this increased stress tolerance, the transgenic tomato plants showed no detectable phenotype defects, such as abnormal morphology and growth retardation, under normal growth conditions. These results raise the possibility that CaXTH3 gene is appropriate for application in genetic engineering strategies aimed at improving abiotic stress tolerance in agriculturally and economically valuable crop plants.  相似文献   

12.
Calcium-dependent protein kinases (CDPKs) are unique serine/threonine kinases in plants and there are 34 CDPKs in Arabidopsis genome alone. Although several CDPKs have been demonstrated to be critical calcium signaling mediators for plant responses to various environmental stresses, the biological functions of most CDPKs in stress signaling remain unclear. In this study, we provide the evidences to demonstrate that AtCPK23 plays important role in Arabidopsis responses to drought and salt stresses. The cpk23 mutant, a T-DNA insertion mutant for AtCPK23 gene, showed greatly enhanced tolerance to drought and salt stresses, while the AtCPK23 overexpression lines became more sensitive to drought and salt stresses and the complementary line of the cpk23 mutant displayed similar phenotype as wild-type plants. The results of stomatal aperture measurement showed that the disruption of AtCPK23 expression reduced stomatal apertures, while overexpression of AtCPK23 increased stomatal apertures. The alteration of stomatal apertures by changes in AtCPK23 expression may account, at least in partial, for the modified Arabidopsis response to drought stress. In consistent with the enhanced salt-tolerance by disruption of AtCPK23 expression, K+ content in the cpk23 mutant was not reduced under high NaCl stress compared with wild-type plants, which indicates that the AtCPK23 may also regulate plant K+-uptake. The possible mechanisms by which AtCPK23 mediates drought and salt stresses signaling are discussed.  相似文献   

13.
14.
Stomatal closure is an important process to prevent water loss in plants response to drought stress, which is finely modulated by ion channels together with their regulators in guard cells, especially the S-type anion channel AtSLAC1 in Arabidopsis. However, the functional characterization and regulation analyses of anion channels in gramineous crops, such as in maize guard cells are still limited. In this study, we identified an S-type anion channel ZmSLAC1 that was preferentially expressed in maize guard cells and involved in stomatal closure under drought stress. We found that two Ca2+-dependent protein kinases ZmCPK35 and ZmCPK37 were expressed in maize guard cells and localized on the plasma membrane. Lesion of ZmCPK37 resulted in drought-sensitive phenotypes. Mutation of ZmSLAC1 and ZmCPK37 impaired ABA-activated S-type anion currents in maize guard cells, while the S-type anion currents were increased in the guard cells of ZmCPK35- and ZmCPK37-overexpression lines. Electrophysiological characterization in maize guard cells and Xenopus oocytes indicated that ZmCPK35 and ZmCPK37 could activate ZmSLAC1-mediated Cl- and NO3- currents. The maize inbred and hybrid lines overexpressing ZmCPK35 and ZmCPK37 exhibited enhanced tolerance and increased yield under drought conditions. In conclusion, our results demonstrate that ZmSLAC1 plays crucial roles in stomatal closure in maize, whose activity is regulated by ZmCPK35 and ZmCPK37. Elevation of ZmCPK35 and ZmCPK37 expression levels is a feasible way to improve maize drought tolerance as well as reduce yield loss under drought stress.  相似文献   

15.
16.
The Arabidopsis gene AVP1 encodes an H+-pyrophosphatase that functions as a proton pump at the vacuolar membranes, generating a proton gradient across vacuolar membranes, which serves as the driving force for many secondary transporters on vacuolar membranes such as Na+/H+-antiporters. Overexpression of AVP1 could improve drought tolerance and salt tolerance in transgenic plants, suggesting a possible way in improving drought and salt tolerance in crops. The AVP1 was therefore introduced into peanut by Agrobacterium-mediated transformation. Analysis of AVP1-expressing peanut indicated that AVP1-overexpression in peanut could improve both drought and salt tolerance in greenhouse and growth chamber conditions, as AVP1-overexpressing peanuts produced more biomass and maintained higher photosynthetic rates under both drought and salt conditions. In the field, AVP1-overexpressing peanuts also outperformed wild-type plants by having higher photosynthetic rates and producing higher yields under low irrigation conditions.  相似文献   

17.
The calcium-sensing receptor (CaS), which is localized in the chloroplasts, is a crucial regulator of extracellular calcium-induced stomatal closure in Arabidopsis. It has homologs in Oryza sativa and other plants. These sequences all have a rhodanese-like protein domain, which has been demonstrated to be associated with specific stress conditions. In this study, we cloned the Oryza sativa calcium-sensing receptor gene (OsCAS) and demonstrated that OsCAS could sense an increase of extracellular Ca2+ concentration and mediate an increase in cytosolic Ca2+ concentration. The OsCAS gene was transformed into an Arabidopsis CaS knockout mutant (Salk) and overexpressed in the transgenic plants. OsCAS promoted stomatal closure. We screened homozygous transgenic Arabidopsis plants and determined physiological indices such as the oxidative damage biomarker malondialdehyde (MDA), relative membrane permeability (RMP), proline content, and chlorophyll fluorescence parameters, after 21 days of drought treatment. Our results revealed lower RMP and MDA contents and a higher Proline content in transgenic Arabidopsis plants after drought stress, whereas the opposite was observed in Salk plants. With respect to chlorophyll fluorescence, the electron transport rate and effective PSII quantum yield decreased in all lines under drought stress; however, in the transgenic plants these two parameters changed fewer and were higher than those in wild-type and Salk plants. The quantum yield of regulated energy dissipation and nonregulated energy dissipation in PSII were higher in Salk plants, whereas these values were lower in the transgenic plants than in the wild type under drought stress. The above results suggest that the transgenic plants showed better resistance to drought stress by decreasing damage to the cell membrane, increasing the amount of osmoprotectants, and maintaining a relatively high photosynthetic capacity. In conclusion, OsCAS is an extracellular calcium-sensing receptor that helps to compensate for the absence of CaS in Arabidopsis and increases the drought stress tolerance of transgenic plants.  相似文献   

18.
The impact of reduced vacuolar invertase activity on photosynthetic and carbohydrate metabolism was examined in tomato (Solanum lycopersicon L.). The introduction of a co-suppression construct (derived from tomato vacuolar invertase cDNA) produced plants containing a range of vacuolar invertase activities. In the leaves of most transgenic plants from line INV-B, vacuolar invertase activity was below the level of detection, whereas leaves from line INV-A and untransformed wild-type plants showed considerable variation. Apoplasmic invertase activity was not affected by the co-suppression construct. It has been suggested that, in leaves, vacuolar invertase activity regulates sucrose content and its availability for export, such that in plants with high vacuolar invertase activity a futile cycle of sucrose synthesis and degradation takes place. In INV-B plants with no detectable leaf vacuolar invertase activity, sucrose accumulated to much higher levels than in wild-type plants, and hexoses were barely detectable. There was a clear threshold relationship between invertase activity and sucrose content, and a linear relationship with hexose content. From these data the following conclusions can be drawn. (i) In INV-B plants sucrose enters the vacuole where it accumulates as hydrolysis cannot take place. (ii) There was not an excess of vacuolar invertase activity in the vacuole; the rate of sucrose hydrolysis depended upon the concentration of the enzyme. (iii) The rate of import of sucrose into the vacuole is also important in determining the rate of sucrose hydrolysis. The starch content of leaves was not significantly different in any of the plants examined. In tomato plants grown at high irradiance there was no impact of vacuolar invertase activity on the rate of photosynthesis or growth. The impact of the cosuppression construct on root vacuolar invertase activity and carbohydrate metabolism was less marked.Abbreviations CaMV Cauliflower Mosaic Virus - WT wild type  相似文献   

19.
LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up‐regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress‐up‐regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide‐type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress‐up‐regulated genes and cause a series of physiological and biochemical resistant responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号