首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
A series of 11,12-cyclic carbonate azithromycin-4″-O-carbamoyl glycosyl derivatives were designed, synthesized, and evaluated as antibacterial agents to search for target compounds with excellent activity. The results of preliminary antibacterial tests against eight strains in vitro revealed that all of the title compounds exhibited improved activities with broad spectrum compared with the parent compound. The glycosylated side chains may be the pharmacophores responsible for the improved activity.  相似文献   

2.
Novel biaryloxazolidinone derivatives containing a rhodanine or thiohydantoin moiety were designed, synthesized and evaluated for their antibacterial activity. The key compounds 7 and 9 were synthesized by the knoevenagel condensation of intermediate aldehyde 5 with rhodanine derivatives 6a?6b. The preliminary study showed that compounds 7, 9 and 10e exhibited potent antibacterial activity with MIC values of 0.125?µg/mL against S. aureus, MRSA, MSSA, LREF and VRE pathogens, using linezolid and radezolid as the positive controls. The most promising compound 10e exhibited potent antibacterial activity against tested clinical isolates of MRSA, MSSA, VRE and LREF with MIC values in the range of 0.125–0.5?µg/mL, and the potency of 10e against clinical isolates of LREF was 64-fold higher than that of linezolid. Moreover, compound 10e was non-cytotoxic with an IC50 value of 91.04?μM against HepG2 cell. Together, compound 10e might serve as a novel antibacterial agent for further investigation.  相似文献   

3.
A series of novel biaryloxazolidinone derivatives containing amide and acrylamide structure were designed, synthesized and evaluated for their antibacterial activity. Most compounds generally exhibited potent antibacterial activity with MIC values of 1 μg/mL against S. aureus, MRSA, MSSA, LREF and VRE pathogens, using linezolid and radezolid as positive controls. Compound 17 exhibited good antibacterial activity with MIC values of 0.5 μg/mL against S. aureus, MRSA, MSSA and VRE and 0.25 μg/mL against LREF. The results indicated that compound 17 might serve as a potential hit-compound for further investigation.  相似文献   

4.
In continuation of our efforts to find new antimicrobial compounds, series of fatty N-acyldiamines were prepared from fatty methyl esters and 1,2-ethylenediamine, 1,3-propanediamine or 1,4-butanediamine. The synthesized compounds were screened for their antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis), Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and for their antifungal activity against four species of Candida (C. albicans, C. tropicalis, C. glabrata and C. parapsilosis). Compounds 5a (N-(2-aminoethyl)dodecanamide), 5b (N-(2-aminoethyl)tetracanamide) and 6d (N-(3-aminopropyl)oleamide) were the most active against Gram-positive bacteria, with MIC values ranging from 1 to 16 μg/mL and were evaluated for their activity against 21 clinical isolates of methicillin-resistant S. aureus. All the compounds exhibited good to moderate antifungal activity. Compared to chloramphenicol, compound 6b displayed a similar activity (MIC50 = 16 μg/mL). A positive correlation could be established between lipophilicity and biological activity.  相似文献   

5.
A series of novel 4-phenoxyquinoline derivatives containing 3-oxo-3,4-dihydro-quinoxaline moiety were synthesized and evaluated for their antiproliferative activity against five human cancer cell lines (A549, H460, HT-29, MKN-45 and U87MG) in vitro. Most of the tested compounds exhibited more potent inhibitory activities than the positive control foretinib. Compound 1b, 1s and 1t were further examined for their inhibitory activity against c-Met kinase. The most promising compound 1s (with c-Met IC50 value of 1.42 nM) showed remarkable cytotoxicity against A549, H460, HT-29, MKN45 and U87MG cell lines with IC50 values of 0.39 μM, 0.18 μM, 0.38 μM, 0.81 μM, respectively. Their preliminary structure-activity relationships (SARs) study indicated that the replacement of the aromatic ring with the cyclohexane improved their antiproliferative activity.  相似文献   

6.
Metronidazole has a broad-spectrum antibacterial activity. Hereby a series of novel metronidazole derivatives were designed and synthesized based on nitroimidazole scaffold in order to find some more potent antibacterial drugs. For these compounds which were reported for the first time, their antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus were tested. These compounds showed good antibacterial activities against Gram-positive strains. Compound 4m represented the most potent antibacterial activity against S. aureus ATCC 25923 with MIC of 0.003 μg/mL and it showed the most potent activity against S. aureus TyrRS with IC50 of 0.0024 μM. Molecular docking of 4m into S. aureus tyrosyl-tRNA synthetase active site were also performed to determine the probable binding mode.  相似文献   

7.
A series of novel 2,3-dihydro-4H-1-benzoselenin-4-one (thio)semicarbazone derivatives were designed and synthesized by using molecular hybridization approach. All the target compounds were characterized by HRMS and NMR and evaluated in vitro antifungal activity against five pathogenic strains. In comparison with precursor selenochroman-4-ones, the hybrid molecules in this study showed significant improvement in antifungal activities. Notably, compound B8 showed significant antifungal activity against other strains excluding Aspergillus fumigatus (0.25 μg/mL on Candida albicans, 2 μg/mL on Cryptococcus neoformans, 8 μg/mL on Candida zeylanoides and 2 μg/mL on fluconazole-sensitive strains of Candida albicans). Moreover, compounds B8, B9 and C2 also displayed most potent activities against four fluconazole-resistance strains. Especially the MIC values of the hybrid molecule B8 against fluconazole-resistant strains were in the range of 0.5–2 μg/mL. Therefore, the molecular hybridization approach in this study provided new ideas for the development of antifungal drug.  相似文献   

8.
Neuraminidase (NA) is an important antiviral drug target. Zanamivir is one of the most potent NA inhibitors. In this paper, a series of zanamivir derivatives as potential NA inhibitors were studied by combination of molecular modeling techniques including 3D-QSAR, molecular docking, and molecular dynamics (MD) simulation. The results show that the best CoMFA (comparative molecular field analysis) model has q2?=?0.728 and r2?=?0.988, and the best CoMSIA (comparative molecular similarity indices analysis) model has q2?=?0.750 and r2?=?0.981, respectively. The built 3D-QSAR models show significant statistical quality and excellent predictive ability. Seven new NA inhibitors were designed and predicted. 20?ns of MD simulations were carried out and their binding free energies were calculated. Two designed compounds were selected to be synthesized and biologically evaluated by NA inhibition and virus inhibition assays. One compound (IC50?=?0.670?µM, SI?>?149) exhibits excellent antiviral activity against A/WSN/33 H1N1, which is superior to the reference drug zanamivir (IC50?=?0.873?µM, SI?>?115). The theoretical and experimental results may provide reference for development of new anti-influenza drugs.  相似文献   

9.
Two series of thiazole derivatives containing amide skeleton were synthesized and developed as potent Escherichia coli β-ketoacyl-(acyl-carrier-protein) synthase III (ecKAS III) inhibitors. All the 24 new synthesized compounds were assayed for antibacterial activity against the respective Gram-negative and Gram-positive bacterial strains, including E. coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. In which, 10 compounds with broad-spectrum antibacterial activities were further tested for their ecKAS III inhibitory activity. Last, we have successfully found that compound 4e showed both the promising broad antibacterial activity with MIC of 1.56–6.25 μg/mL against the representative bacterial stains, and also processed the most potent ecKAS III inhibitory activity with IC50 of 5.3 μM. In addition, docking simulation also carried out in this study to give a potent prediction binding mode between the small molecule and ecKAS III (PDB code: 1hnj) protein.  相似文献   

10.
Based on the advantages of azole molecules and fluoroquinolone drugs, we designed and synthesized 34 clinafloxacin-azole conjugates using fragment-based drug design and drug combination principles. The in vitro activities of the synthesized conjugates against Mycobacterium tuberculosis (H37Rv), Hela cell as well as Gram-positive and Gram-negative bacteria were assayed. The bioassay results revealed that most of the target molecules had anti-tuberculosis (anti-TB) activity, of which 14 compounds had very strong anti-TB activity [minimum inhibitory concentration (MIC)?<?2?μM]. In addition, the compounds with strong activity towards H37Rv had weak activity towards Gram-negative and Gram-positive bacteria, showing obvious selectivity towards H37Rv. Predicted toxicity data indicated that 27 molecules were less toxic or equivalent to that of the original drug (clinafloxacin). Especially, it is demonstrated that compound TM2l exhibited the strongest anti-TB activity (MIC?=?0.29?μM), low antibacterial activity, negligible toxicity, and good drug-likeness values, which can be considered as an ideal lead molecule for future optimization.  相似文献   

11.
Novel butyrolactone analogues were designed and synthesized based on the known lichen antibacterial compounds, lichesterinic acids (B-10 and B-11), by substituting different functional groups on the butyrolactone ring trying to enhance its activity. All synthesized butyrolactone analogues were evaluated for their in vitro antibacterial activity against Streptococcus gordonii. Among the derivatives, B-12 and B-13 had the lowest MIC of 9.38 μg/mL where they have shown to be stronger bactericidals, by 2–3 times, than the reference antibiotic, doxycycline. These two compounds were then checked for their cytotoxicity against human gingival epithelial cell lines, Ca9–22, and macrophages, THP-1, by MTT and LDH assays which confirmed their safety against the tested cell lines. A preliminary study of the structure–activity relationships unveiled that the functional groups at the C4 position had an important influence on the antibacterial activity. An optimum length of the alkyl chain at the C5 position registered the best antibacterial inhibitory activity however as its length increased the bactericidal effect increased as well. This efficiency was attained by a carboxyl group substitution at the C4 position indicating the important dual role contributed by these two substituents which might be involved in their mechanism of action.  相似文献   

12.
Three series of rhodanine derivatives bearing a quinoline moiety (6ah, 7ag, and 8ae) have been synthesized, characterized, and evaluated as antibacterial agents. The majority of these compounds showed potent antibacterial activities against several different strains of Gram-positive bacteria, including multidrug-resistant clinical isolates. Of the compounds tested, 6g and 8c were identified as the most effective with minimum inhibitory concentration (MIC) values of 1 μg/mL against multidrug-resistant Gram-positive organisms, including methicillin-resistant and quinolone-resistant Staphylococcus aureus (MRSA and QRSA, respectively). None of the compounds exhibited any activity against the Gram-negative bacteria Escherichia coli 1356 at 64 μg/mL. The cytotoxic activity assay showed that compounds 6g, 7g and 8e exhibited in vitro antibacterial activity at non-cytotoxic concentrations. Thus, these studies suggest that rhodanine derivatives bearing a quinoline moiety are interesting scaffolds for the development of novel Gram-positive antibacterial agents.  相似文献   

13.
A series of 4-hydroxycoumarin derivatives were designed and synthesized in order to find some more potent antibacterial drugs. Their antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus were tested. These compounds showed good antibacterial activities against Gram-positive strains. Compound 4g represented the most potent antibacterial activity against Bacillus subtilis and S. aureus with MIC of 0.236, 0.355 μg/mL, respectively. What’s more, it showed the most potent activity against SaFabI with IC50 of 0.57 μM. Molecular docking of 4g into S. aureus Enoyl-ACP-reductase active site were performed to determine the probable binding mode, while the QSAR model was built to check the previous work as well as to introduce new directions.  相似文献   

14.
STAT3 signaling pathway has been validated as a vital therapeutic target for cancer therapy. Based on the novel STAT3 inhibitor of a benzyloxyphenyl-methylaminophenol scaffold hit (1) discovered through virtual screening, a series of analogues had been designed and synthesized for more potent inhibitors. The preliminary SAR had been discussed and the unique binding site in SH2 domain was predicted by molecular docking. Among them, compounds 4a and 4b exhibited superior activities than hit compound (1) against IL-6/STAT3 signaling pathway with IC50 values as low as 7.71 μM and 1.38 μM, respectively. Compound 4a also displayed potent antiproliferative activity against MDA-MB-468 cell line with an IC50 value of 9.61 μM. We believe that these benzyloxyphenyl-methylaminophenol derivatives represent a unique mechanism for interrogating STAT3 as well as a potential structure type for further exploration.  相似文献   

15.
Staphylococcus aureus is a major and dangerous human pathogen that causes a range of clinical manifestations of varying severity, and is the most commonly isolated pathogen in the setting of skin and soft tissue infections, pneumonia, suppurative arthritis, endovascular infections, foreign-body associated infections, septicemia, osteomyelitis, and toxic shocksyndrome. Honokiol, a pharmacologically active natural compound derived from the bark of Magnolia officinalis, has antibacterial activity against Staphylococcus aureus which provides a great inspiration for the discovery of potential antibacterial agents. Herein, honokiol derivatives were designed, synthesized and evaluated for their antibacterial activity by determining the minimum inhibitory concentration (MIC) against S. aureus ATCC25923 and Escherichia coli ATCC25922 in vitro. 7c exhibited better antibacterial activity than other derivatives and honokiol. The structure-activity relationships indicated piperidine ring with amino group is helpful to improve antibacterial activity. Further more, 7c showed broad spectrum antibacterial efficiency against various bacterial strains including eleven gram-positive and seven gram-negative species. Time-kill kinetics against S. aureus ATCC25923 in vitro revealed that 7c displayed a concentration-dependent effect and more rapid bactericidal kinetics better than linezolid and vancomycin with the same concentration. Gram staining assays of S. aureus ATCC25923 suggested that 7c could destroy the cell walls of bacteria at 1 × MIC and 4 × MIC.  相似文献   

16.
Novel 4-oxobenzo[d]1,2,3-triazin derivatives bearing pyridinium moiety 6a–q were synthesized and screened against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Most of the synthesized compounds showed good inhibitory activity against AChE. Among the synthesized compounds, the compound 6j exhibited the highest AChE inhibitory activity. It should be noted that these compounds displayed low anti-BuChE activity with the exception of the compound 6i, as it exhibited BuChE inhibitory activity more than donepezil. The kinetic study of the compound 6j revealed that this compound inhibited AChE in a mixed-type inhibition mode. This finding was also confirmed by the docking study. The latter study demonstrated that the compound 6j interacted with both the catalytic site and peripheral anionic site of the AChE active site. The compound 6j was also observed to have significant neuroprotective activity against H2O2-induced PC12 oxidative stress, but low activity against β-secretase.  相似文献   

17.
The spread of drug-resistant bacteria has imparted a sense of urgency in the search for new antibiotics. In an effort to develop a new generation of antibacterial agents, we have designed de novo charged lipopeptides inspired by natural antimicrobial peptides. These short lipopeptides are composed of cationic lysine and hydrophobic lipoamino acids that replicate the amphiphilic properties of natural antimicrobial peptides. The resultant lipopeptides were found to self-assemble into nanoparticles. Some were effective against a variety of Gram-positive bacteria, including strains resistant to methicillin, daptomycin and/or vancomycin. The lipopeptides were not toxic to human kidney and liver cell lines and were highly resistant to tryptic degradation. Transmission electron microscopy analysis of bacteria cells treated with lipopeptide showed membrane-damage and lysis with extrusion of cytosolic contents. With such properties in mind, these lipopeptides have the potential to be developed as new antibacterial agents against drug-resistant Gram-positive bacteria.  相似文献   

18.
Various 3-substituted 4-anilino-coumarin derivatives have been designed, synthesized and their anti-proliferative properties have been studied. The in vitro cytotoxicity screening was performed against MCF-7, HepG2, HCT116 and Panc-1 cancer cell lines by MTT assay. Most of the synthesized compounds exhibited comparable anti-proliferative activity to the positive control 5-Fluorouracil against these four tested cancer cell lines. Among the different substituents at C-3 position of coumarin scaffold, 3-trifluoroacetyl group showed the most promising results. Especially, compounds 33d (IC50 = 16.57, 5.45, 4.42 and 5.16 μM) and 33e (IC50 = 20.14, 6.71, 4.62 and 5.62 μM) showed excellent anti-proliferative activities on MCF-7, HepG2, HCT116 and Panc-1 cell lines respectively. In addition, cell cycle analysis and apoptosis activation revealed that 33d induced G2/M phase arrest and apoptosis in MCF-7 cells in a dose-dependent manner. Low toxicity of compounds 33d and 33e was observed against human umbilical vein endothelial cells (HUVECs), suggesting their acceptable safety profiles in normal cells. Furthermore, the results of in silico ADME studies indicated that both 33d and 33e exhibited good pharmacokinetic properties.  相似文献   

19.
A series of 4-chloro-2H-thiochromenes featuring nitrogen-containing side chains were designed, synthesized and tested in vitro for their antifungal activities. The results of preliminary antifungal tests showed that most target compounds exhibited good inhibitory activities against Candida albicans, Cryptococcus neoformans, Candida tropicalis. Notably, compounds 10e and 10y showed most potent activity in vitro against a variety of fungal pathogens with low MICs. Meanwhile, low cytotoxicity on mammalian cells has been observed for compounds 10e and 10y in the tested concentrations by the MTT assay. Therefore, the 4-chloro-2H-thiochromenes with nitrogen-containing groups provide new lead structures in the search for novel antifungal agents.  相似文献   

20.
A series of novel 1,2,4-triazole bearing 5-substituted biphenyl-2-sulfonamide derivatives were designed and synthesized to develop new angiotensin II subtype 2 (AT2) receptor agonists as novel antihypertensive candidates. It was found that 14f (IC50 = 0.4 nM) and 15e (IC50 = 5.0 nM) displayed potent AT2 receptor affinity and selectivity in binding assays. Biological evaluation in vivo suggested that 14f is obviously superior to that of reference drug losartan in RHRs, and meanwhile, 14f has no significant impact on heart rate. The interesting activities of these compounds may make them promising candidates as antihypertensive agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号