首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 364 毫秒
1.
Tyrosine phenol lyase catalyzes a series of α,β-elimination, β-replacement and racemization reactions. These reactions were studied with intact cells of Erwinia herbicola ATCC 21434 containing tyrosine phenol lyase.

Various aromatic amino acids were synthesized from l-serine and phenol, pyrocatechol, resorcinol or pyrogallol by the replacement reaction using the intact cells. l(d)-Tyrosine, 3,4-dihydroxyphenyl-l(d)-alanine (l(d)-dopa), l(d)-serine, l-cysteine, l-cystine and S-methyl-l-cysteine were degraded to pyruvate and ammonia by the elimination reaction. These amino acids could be used as substrate, together with phenol or pyrocatechol, to synthesize l-tyrosine or l-dopa via the replacement reaction by intact cells. l-Serine and d-serine were the best amino acid substrates for the synthesis of l-tyrosine or l-dopa. l-Tyrosine and l-dopa synthesized from d-serine and phenol or pyrocatechol were confirmed to be entirely l-form after isolation and identification of these products. The isomerization of d-tyrosine to l-tyrosine was also catalyzed by intact cells.

Thus, l-tyrosine or l-dopa could be synthesized from dl-serine and phenol or pyrocatechol by intact cells of Erwinia herbicola containing tyrosine phenol lyase.  相似文献   

2.
A growth factor (TJF) for a malo-lactic fermentation bacterium has been isolated from tomato juice, and found to be a β-glucoside. The NMR spectra of TJF and its acetate revealed that the glucosyl residue linked to the hydroxyl group at C-2′ or C-4′ of d- or l-pantothenic acid moiety. Then, 2′-O-(β-d-glucopyranosyl)-dl-pantothenic acid (I), 4′-O-(β-d-glucopyranosyl)-dl-pantothenic acid (II) and 4′-O-(β-d-glucopyranosyl)-d(R)-pantothenic acid (II-a) were synthesized, and Il-a and 4′-O-(β-d-glucopyranosyl)-l-pantothenic acid (II-b) were obtained by the optical resolution of the acetate of II. Among the above compounds, II-a was identical with natural TJF regarding to the biological activity, NMR and ORD spectra, and thin-layer chromatography.  相似文献   

3.
d-Serine is a physiological activator of NMDA receptors (NMDARs) in the nervous system that mediates several NMDAR-mediated processes ranging from normal neurotransmission to neurodegeneration. d-Serine is synthesized from l-serine by serine racemase (SR), a brain-enriched enzyme. However, little is known about the regulation of d-serine synthesis. We now demonstrate that the F-box only protein 22 (FBXO22) interacts with SR and is required for optimal d-serine synthesis in cells. Although FBXO22 is classically associated with the ubiquitin system and is recruited to the Skip1-Cul1-F-box E3 complex, SR interacts preferentially with free FBXO22 species. In vivo ubiquitination and SR half-life determination indicate that FBXO22 does not target SR to the proteasome system. FBXO22 primarily affects SR subcellular localization and seems to increase d-serine synthesis by preventing the association of SR to intracellular membranes. Our data highlight an atypical role of FBXO22 in enhancing d-serine synthesis that is unrelated to its classical effects as a component of the ubiquitin-proteasome degradation pathway.  相似文献   

4.
d-Serine, an endogenous co-agonist for the glycine site of the synaptic NMDA glutamate receptor, regulates synaptic plasticity and is implicated in schizophrenia. Serine racemase (SR) is the enzyme that converts l-serine to d-serine. In this study, we demonstrate that SR interacts with the synaptic proteins, postsynaptic density protein 95 (PSD-95) and stargazin, forming a ternary complex. SR binds to the PDZ3 domain of PSD-95 through the PDZ domain ligand at its C terminus. SR also binds to the C terminus of stargazin, which facilitates the cell membrane localization of SR and inhibits its activity. AMPA receptor activation internalizes SR and disrupts its interaction with stargazin, therefore derepressing SR activity, leading to more d-serine production and potentially facilitating NMDA receptor activation. These interactions regulate the enzymatic activity as well as the intracellular localization of SR, potentially coupling the activities of NMDA and AMPA receptors. This shuttling of a neurotransmitter synthesizing enzyme between two receptors appears to be a novel mode of synaptic regulation.  相似文献   

5.
Tyrosol β-d-fructofuranoside and hydroxytyrosol β-d-fructofuranoside have been synthesized as new compounds in 27.6 and 19.5% respective yields through transfructosylation of tyrosol and hydroxytyrosol. Yeast β-galactosidase Lactozym 3000?L comprising invertase activity was used as catalyst. Besides the main monofructosides, an equimolar mixture of tyrosol β-d-fructofuranosyl-((2→1)-β-d-fructofuranoside and tyrosol β-d-fructofuranosyl-(2→6)-β-d-fructofuranoside was isolated as additional product fraction in 14.3% yield.  相似文献   

6.
The acylated, amidated and esterified derivatives of N-acetylglucosaminyl-α(1 → 4)-N-acetylmuramyl tri- and tetrapeptide were synthesized and examined as to their protective effect on pseudomonal infection in the mouse and pyrogenicity in the rabbit. Modifications of the terminal end function of the peptide moieties in their molecules caused enhancement of resistance to pseudomonal infection and reduction of pyrogenicity. Among the compounds tested, sodium N-acetylglucosaminyl-β(1 → 4)-N-acetylmuramyl-l-alanyl-d-isoglutaminyl-(l)-stearoyl-(d)-meso-2,6-diaminopimelic acid-(d)-amide and sodium N-acetylglucosaminyl-β(1 → 4)-N-acetylmuramyl-l-alanyl-d-isoglutaminyl-(l)-stearoyl-(d)-meso-2,6-diaminopimelic acid-(d)-amide-(l)-d-alanine were found to be advantageous and conceivably worthwhile for further investigation as immunobiologically active compounds.  相似文献   

7.
Crystalline l-asparaginase from Escherichia coli A-I-3 hydrolyzed d-asparagine, l- and d-glutamine but at much slower rates than the rate at which it hydrolyzed l-asparagine. Inhibitions by these substrates and related compounds were revealed to be competitive.

d-Asparagine showed the same affinity for the enzyme both in its hydrolysis and inhibition of l-asparagine hydrolysis. l-Aspartate, d-aspartate and α-N-ethylasparagine inhibited various hydrolysis reactions with the respective inhibitor constants. The enzyme was found to hydrolyze β-methylaspartate as well as β-aspartohydroxamate. These data strongly suggest that the hydrolysis occurred at the same active site of the enzyme molecule with relatively low specificity for the configuration of the substrate molecule and the kind of bonding which it hydrolyzes.  相似文献   

8.
The α-d-galactosidases of six Streptomyces strains were examined on their inducer susceptibility, substate specificity, and inhibitor susceptibility. In all strains examined, α-d-galactosidase was induced by d-galactose, but neither by d-fucose nor by l-arabinose. α-d-Fucosidase activity was always induced accompanying with α-d-galactosedase activity. β-l-Arabinosidase activity, however, was never observed. These α-d-galactosidases were purified to electrophoretically pure degree by successive ammonium sulfate and ethanol precipitation, and ion exchange and gel filtration chromatography. The purified preparations from six strains were different from each other in their chromatographic behaviors and in some physical properties, but they all showed strong α-d-fucosidase activity as well. The α-d-galactosidase activities were strongly inhibited by d-galactose and l-arabinose, but scarcely by d-fucose. On the other hand, their α-d-fucosidase activities were inhibited by d-fucose as well as by d-galactose and l-arabinose.  相似文献   

9.
Pyrrolothiazolate formed by the Maillard reaction between l-cysteine and d-glucose has a pyrrolothiazole skeleton as a chromophore. We searched for a Maillard pigment having a pyrrolooxazole skeleton formed from l-threonine or l-serine instead of l-cysteine in the presence of d-glucose. As a result, two novel yellow pigments, named pyrrolooxazolates A and B, were isolated from model solutions of the Maillard reaction containing l-threonine and d-glucose, and l-serine and d-glucose, respectively, and identified as (2R,3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-2,5,7a-trimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid and (3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-5,7a-dimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid by instrumental analyses. These compounds were pyrrolooxazole derivatives carrying a carboxy group, and showed the absorption maxima at 300–360 nm under acidic and neutral conditions and at 320–390 nm under alkaline conditions.  相似文献   

10.
ABSTRACT

Maltose phosphorylase (MP), a glycoside hydrolase family 65 enzyme, reversibly phosphorolyzes maltose. In this study, we characterized Bacillus sp. AHU2001 MP (MalE) that was produced in Escherichia coli. The enzyme exhibited phosphorolytic activity to maltose, but not to other α-linked glucobioses and maltotriose. The optimum pH and temperature of MalE for maltose-phosphorolysis were 8.1 and 45°C, respectively. MalE was stable at a pH range of 4.5–10.4 and at ≤40°C. The phosphorolysis of maltose by MalE obeyed the sequential Bi–Bi mechanism. In reverse phosphorolysis, MalE utilized d-glucose, 1,5-anhydro-d-glucitol, methyl α-d-glucoside, 2-deoxy-d-glucose, d-mannose, d-glucosamine, N-acetyl-d-glucosamine, kojibiose, 3-deoxy-d-glucose, d-allose, 6-deoxy-d-glucose, d-xylose, d-lyxose, l-fucose, and l-sorbose as acceptors. The kcat(app)/Km(app) value for d-glucosamine and 6-deoxy-d-glucose was comparable to that for d-glucose, and that for other acceptors was 0.23–12% of that for d-glucose. MalE synthesized α-(1→3)-glucosides through reverse phosphorolysis with 2-deoxy-d-glucose and l-sorbose, and synthesized α-(1→4)-glucosides in the reaction with other tested acceptors.  相似文献   

11.
We compared the growth inhibitory effects of all aldohexose stereoisomers against the model animal Caenorhabditis elegans. Among the tested compounds, the rare sugars d-allose (d-All), d-talose (d-Tal), and l-idose (l-Ido) showed considerable growth inhibition under both monoxenic and axenic culture conditions. 6-Deoxy-d-All had no effect on growth, which suggests that C6-phosphorylation by hexokinase is essential for inhibition by d-All.  相似文献   

12.
The structures of allosamidin (1) and methylallosamidin (2), novel insect chitinase inhibitors, were elucidated as 1 and 2 by acid hydrolysis experiments and analyses of 2d-NMR spectra. They are unique basic pseudotrisaccharides consisting of 2-acetamido-2-deoxy-d-allose (N-acetyl-d- allosamine) and a novel aminocyclitol derivative (3), termed allosamizoline.  相似文献   

13.
The structure of an acidic polysaccharide elaborated by Bacillus polymyxa S-4 was investigated in relation to its physiological activity, particularly, its hypocholesterolemic effect on experimental animals. The polysaccharide is composed of d-glucose, d-mannose, d-galactose, d-glucuronic acid, and d-mannuronic acid (molar ratio 3:3:1: 2:1). Methylation and fragmentation analyses, such as Smith degradation and partial acid hydrolysis showed that the polysaccharide has a complicated, highly branched structure, consisting mainly of (1 → 3)- and (1 → 4)-d-glycosidic linkages. The backbone chain containing d-glucuronic acid, d-mannose, and d-galactose residues is attached at the C-3, C-4, and C-4 positions, respectively, with side chains of single or a few carbohydrate units, which are terminated with d-glucose or d-mannose residues.  相似文献   

14.
Some strains of Pseudomonas was found capable of utilizing l-theanine or d-theanine as a sole nitrogen and carbon source. The cell-free extract catalyzes the hydrolysis of the amide group of the compounds and the hydrolase activity was influenced remarkably by the nitrogen source in the medium. l-Theanine and d-theanine were hydrolyzed to yield stoichiometrically l-glutamic acid and d-glutamic acid, respectively, and ethylamine, which were isolated from the reaction mixture and identified.

The theanine hydrolase of Pseudomonas aeruginosa was purified approximately 200-fold. It was shown that the activities of l-theanine hydrolase, d-theanine hydrolase and the heat-stable l-glutamine hydrolase and d-glutamine hydrolase are ascribed to a single enzyme, which may be regarded as a γ-glutamyltransferase from the point of view of the substrate specificity and the properties. This theanine hydrolase catalyzed the transfer of γ-glutamyl moiety of the substrates and glutathione to hydroxylamine. l-Glutamine and d-glutamine were hydrolyzed by the theanine hydrolase and also by the heat-labile enzyme of the same strain of Pseudomonas aeruginosa, whose properties resembled the common glutaminase.  相似文献   

15.
A bacterial strain, HN-56, having an activity of d-glucose isomerization was isolated from soil, and was identified to be similar to Aerobacter aerogenes (Kruse) Beijerink. d-Glucose-isomerizing activity was induced when HN-56 was precultured in the media containing d-xylose, d-mannose, lactate, especially d-mannitol. Paper chromatography showed that the ketose formed in reaction system containing d-glucose was d-fructose alone. The optimum pH for the reaction was 6.5~7.0. Sulfhydryl reagents inhibit the reaction, but metal inhibitors affect little if any. With the washed living cells as enzyme source, only arsenate could accumulate d-fructose. In addition, the cells grown with d-mannitol and d-mannose showed no activity of d-xylose isomerase.  相似文献   

16.
It is confirmed by a new method for the determination of d-glutamic acid, that Aerobacter strain A rapidly metabolizes d-glutamic acid, while it only shows feeble metabolic activity towards l-glutamic acid when it is grown on a dl-glutamate-K2HPO4 medium. A specific d-glutamic oxidase is demonstrated in the cell-free extracts of Aerobacter strain A. This enzyme seems to be different from d-glutamic-aspartic oxidase obtained from Aspergillus ustus by the authors, since the former has no activity towards d-aspartic acid.  相似文献   

17.
The electrophoretically homogeneous glucomannan isolated from konjac flour was composed of d-glucose and d-mannose residues in the approximate ratio of 1: 1.6. Controlled acid hydrolysis gave 4-O-β-d-mannopyranosyl-d-mannose, 4-O-β-d-mannopyranosyl-d-glucoseT 4-O-β-d-glucopyranosyl-d-glucose(cellobiose), 4-O-β-d-glucopyranosyl-d-mannose(epicellobiose), O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose, O-β-d-glucopyranosyl- (1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose, O-β-d-mannopyranosyl-(1→4)-O-β-d-glucopy- ranosyl-(1→4)-d-mannose and O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-d-mannose.  相似文献   

18.
3-Chloro-d-alanine chloride-lyase, which occurs in the cells of Pseudomonas putida CR 1-1, catalyzes not only the α,β-elimination reaction of 3-chloro-d-alanine to form pyruvate, but also its β-replacement reaction in the presence of a high concentration of sodium hydrosulfide to form d-cysteine. Using the β-replacement reaction, the enzymatic synthesis of d-cysteine by resting cells was investigated. The culture conditions for cell production of the bacterium with high d-cysteine-producing activity and the reaction conditions for d-cysteine production were optimized. Under these optimal reaction conditions, 100% of the added 3-chloro-d-alanine could be converted to d-cysteine and, as the highest yield, 20.6 mg of d-cysteine per 1.0 ml of reaction mixture could be synthesized.  相似文献   

19.
The acceptor specificity of amylomaltase from Escherichia coli IFO 3806 was investigated using various sugars and sugar alcohols. d-Mannose, d-glucosamine, N-acetyl- d-glucosamine, d-xylose, d- allose, isomaltose, and cellobiose were efficient acceptors in the transglycosylation reaction of this enzyme. It was shown by chemical and enzymic methods that this enzyme could transfer glycosyl residues only to the C4-hydroxyl groups of d-mannose, iY-acetyl- d-glucosamine, d-allose, and d-xylose, producing oligosaccharides terminated by 4–0-α-d-glucopyranosyl-d-mannose, 4–0-α-d-glucopyranosyl-yV-acetyl-d-glucosamine, 4-O-α-d-glucopyranosyl-d-allose, and 4–0-α-d-gluco- pyranosyl-d-xylose at the reducing ends, respectively.  相似文献   

20.
Corynebacterium sp. SHS 0007 accumulated 2-keto-l-gulonate and 2-keto-d-gluconate simultaneously with 2,5-diketo-d-gluconate utilization. This strain, however, possibly metabolized 2,5- diketo-d-gluconate through two pathways leading to d-gluconate as a common intermediate: via 2- keto-d-gluconate, and via 2-keto-l-gulonate, l-idonate and 5-keto-d-gluconate. A polysaccharide- negative, 2-keto-l-gulonate-negative and 5-keto-d-gluconate-negative mutant produced only calcium 2-keto-l-gulonate from calcium 2,5-diketo-d-gluconate, in a 90.5 mol% yield. The addition of a hydrogen donor such as d-glucose was essential for its production. This mutant possessed the direct oxidation route of d-glucose to d-gluconate, the pentose cycle pathway and a possible Embden-Meyerhof-Parnas pathway, indicating that d-glucose was metabolized through these three pathways and provided NADPH for the reduction of 2,5-diketo-d-gluconate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号