首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A molecular dynamics simulation study is reported for three polymorphic protein crystals (4PTI, 5PTI and 6PTI) of bovine pancreatic trypsin inhibitor (BPTI). The simulated lattice constants are in good agreement with experimental data, indicating the reliability of force field used. The fluctuation patterns of peptide chains in the three crystals are similar, and the protein structures are fairly well maintained during simulation. We observe that water forms a pronounced hydration layer near the protein surface. The diffusion coefficients of water in the three crystals are smaller than in bulk phase, and thus, the activation energies are higher. The porosity, fluctuation of peptide chains and solvent-accessible surface area as well as the diffusion coefficients of water and counterion in 5PTI are the largest among the three crystals. The diffusion of water and counterion is anisotropic, and the degree of anisotropy increases in the order of 4PTI < 5PTI < 6PTI. Despite a slight difference, the structural and diffusion properties in the three BPTI crystals are generally close. This simulation study reveals that crystal polymorphism does not significantly affect microscopic properties in the BPTI crystals with different morphologies.  相似文献   

2.
Abstract

Single-domain antibodies also known as nanobodies are recombinant antigen-binding domains that correspond to the heavy-chain variable region of camelid antibodies. Previous experimental studies showed that the nanobodies have stable and active structures at high temperatures. In this study, the thermal stability and dynamics of nanobodies have been studied by employing molecular dynamics simulation at different temperatures. Variations in root mean square deviation, native contacts, and solvent-accessible surface area of the nanobodies during the simulation were calculated to analyze the effect of different temperatures on the overall conformation of the nanobody. Then, the thermostability mechanism of this protein was studied through calculation of dynamic cross-correlation matrix, principal component analyses, native contact analyses, and root mean square fluctuation. Our results manifest that the side chain conformation of some residues in the complementarity-determining region 3 (CDR3) and also the interaction between α-helix region of CDR3 and framework2 play a critical role to stabilize the protein at a high temperature.

Communicated by Ramaswamy H. Sarma  相似文献   

3.
The robust structural integrity of the epoxy plays an important role in ensuring the long-term service life of its applications, which is affected by the absorbed moisture. In order to understand the mechanism of the moisture effect, the knowledge of the interaction and dynamics of the water molecules inside the epoxy is of great interest. Molecular dynamics simulation is used in this work to investigate the structure and bonding behaviour of the water molecules in the highly cross-linked epoxy network. When the moisture concentration is low, the water molecules are well dispersed in the cross-linked structure and located in the vicinity of the epoxy functional groups, which predominantly form the hydrogen bond (H-bond) with the epoxy network, resulting in the low water mobility in the epoxy. At the high concentration, the water favourably forms the large cluster due to the predominant water–water H-bond interaction, and the water molecules diffuse primarily inside the cluster, which leads to the high water mobility and the accelerated H-bond dynamics. The variation of the bonding behaviour and dynamics of the water molecules reported here could be exploited to understand the material change and predict the long-term performance of the epoxy-based products during the intended service life.  相似文献   

4.
Diabetic macular edema, also known as diabetic eye disease, is mainly caused by the overexpression of vascular endothelial protein tyrosine phosphatase (VE-PTP) at hypoxia/ischemic. AKB-9778 is a known VE-PTP inhibitor that can effectively interact with the active site of VE-PTP to inhibit the activity of VE-PTP. However, the binding pattern of VE-PTP with AKB-9778 and the dynamic implications of AKB-9778 on VE-PTP system at the molecular level are poorly understood. Through molecular docking, it was found that the AKB-9778 was docked well in the binding pocket of VE-PTP by the interactions of hydrogen bond and Van der Waals. Furthermore, after molecular dynamic simulations on VE-PTP system and VE-PTP AKB-9778 system, a series of postdynamic analyses found that the flexibility and conformation of the active site undergone an obvious transition after VE-PTP binding with AKB-9778. Moreover, by constructing the RIN, it was found that the different interactions in the active site were the detailed reasons for the conformational differences between these two systems. Thus, the finding here might provide a deeper understanding of AKB-9778 as VE-PTP Inhibitor.  相似文献   

5.
The mTOR (mammalian or mechanistic Target Of Rapamycin), a complex metabolic pathway that involves multiple steps and regulators, is a major human metabolic pathway responsible for cell growth control in response to multiple factors and that is dysregulated in various types of cancer. The classical inhibition of the mTOR pathway is performed by rapamycin and its analogs (rapalogs). Considering that rapamycin binds to an allosteric site and performs a crucial role in the inhibition of the mTOR complex without causing the deleterious side effects common to ATP-competitive inhibitors, we employ ligand-based drug design strategies, such as virtual screening methodology, computational determination of ADME/Tox properties of selected molecules, and molecular dynamics in order to select molecules with the potential to become non-ATP-competitive inhibitors of the mTOR enzymatic complex. Our findings suggest five novel potential mTOR inhibitors, with similar or better properties than the classic inhibitor complex, rapamycin.  相似文献   

6.
The tryptophanyl emission decay of the mesophilic beta-galactosidase from Aspergillus oryzae free in buffer and entrapped in agarose gel is investigated as a function of temperature and compared to that of the hyperthermophilic enzyme from Sulfolobus solfataricus. Both enzymes are tetrameric proteins with a large number of tryptophanyl residues, so the fluorescence emission can provide information on the conformational dynamics of the overall protein structure rather than that of the local environment. The tryptophanyl emission decays are best fitted by bimodal Lorentzian distributions. The long-lived component is ascribed to close, deeply buried tryptophanyl residues with reduced mobility; the short-lived one arises from tryptophanyl residues located in more flexible external regions of each subunit, some of which are involved in forming the catalytic site. The center of both lifetime distribution components at each temperature increases when going from the free in solution mesophilic enzyme to the gel-entrapped and hyperthermophilic enzyme, thus indicating that confinement of the mesophilic enzyme in the agarose gel limits the freedom of the polypeptide chain. A more complex dependence is observed for the distribution widths. Computer modeling techniques are used to recognize that the catalytic sites are similar for the mesophilic and hyperthermophilic beta-galactosidases. The effect due to gel entrapment is considered in dynamic simulations by imposing harmonic restraints to solvent-exposed atoms of the protein with the exclusion of those around the active site. The temperature dependence of the tryptophanyl fluorescence emission decay and the dynamic simulation confirm that more rigid structures, as in the case of the immobilized and/or hyperthermophilic enzyme, require higher temperatures to achieve the requisite conformational dynamics for an effective catalytic action and strongly suggest a link between conformational rigidity and enhanced thermal stability.  相似文献   

7.
Introducing experimental values as restraints into molecular dynamics (MD) simulations to bias the values of particular molecular properties, such as nuclear Overhauser effect intensities or distances, 3J coupling constants, chemical shifts or crystallographic structure factors, towards experimental values is a widely used structure refinement method. To account for the averaging of experimentally derived quantities inherent in the experimental techniques, time-averaging restraining methods may be used. In the case of structure refinement using 3J coupling constants from NMR experiments, time-averaging methods previously proposed can suffer from large artificially induced structural fluctuations. A modified time-averaged restraining potential energy function is proposed which overcomes this problem. The different possible approaches are compared using stochastic dynamics simulations of antamanide, a cyclic peptide of ten residues.  相似文献   

8.
The dynamics of adsorption and desorption of gaseous molecules on the external surface of a crystal and a membrane of zeolite silicate-1 is investigated by molecular dynamics simulation. The gases are argon and three hydrocarbons, n-heptane, n-butane and ethylene. The sticking coefficient and the desorption coefficient are calculated for different coverages. The results clearly show that the desorption coefficients increase with the coverage contrary to the sticking coefficients. To have a better insight in the process, the desorption and adsorption time are computed, they are very similar and they show an increase with the coverage except for n-heptane which exhibit a specific decreasing behaviour at high loading.  相似文献   

9.
Candida antarctica lipase B (CALB), a serine protease, is involved in the hydrolysis of substrates at the aqueous lipid interface. There is a significant role played by the helices in serine proteases including acting as a flap covering the active site region. The α5 and α10 helices in the path to the active site of CALB appear to play an important role in the region. This study investigates these helices by mutational studies, docking and molecular dynamics simulations. The mutations were selected based on their proximity to the active site and their presence at the α10-helix in the path of the active site. Molecular dynamics studies reveal the flexibility, stability and hydrogen bonding ability of the α5 helix. The radius of gyration (R g) clearly showed the compactness of the structure. Docking studies show the changes occurring at the protein's binding site before and after 15 ns of simulation. Results from the study demonstrate the importance of the two helices α5 and α10 in the stability of CALB.  相似文献   

10.
Molecular dynamics simulation was used to characterise the dynamical injection behaviour of CO through a gold nano-injector with a Gr coating. We also varied the nozzle outlet size, system temperature, and extrusion velocity to elucidate their influence on the flow patterns, injection pressure, and flow rate of the CO nano-jets. Simulation results revealed the following important findings. (1) At 100?K, the liquefaction of a CO jet led to a wider spray angle (øs?=?84~96°) and allowed molecules to attach to the Gr layer, resulting in agglomeration at the orifice. (2) At 500?K and 55.824?m/s, the nebulisation of the CO nano-jet was induced, which produced a narrower spray angle (øs?=?47°). (3) The flow rate of CO molecules was essentially linear under the following conditions: low extrusion velocity (≤13.956?m/s), large orifice (d?=?1.5?nm), and high system temperature (≥300?K). (4) Due to the compressibility of CO molecules, the pressure inside the chamber under a high extrusion speed (≥27.912?m/s) presented a sharp increase in the middle and final extrusion stages. A delay in the pressure increase enabled the liquefaction of the extruded CO molecules, resulting in an unstable flow rate.  相似文献   

11.
We coupled protein-protein docking procedure with molecular dynamics (MD) simulation to investigate the electron transfer (ET) complex Azurin-Cytochrome c551 whose transient character makes difficult a direct experimental investigation. The ensemble of complexes generated by the docking algorithm are filtered according to both the distance between the metal ions in the redox centres of the two proteins and to the involvement of suitable residues at the interface. The resulting best complex (BC) is characterized by a distance of 1.59 nm and involves Val23 and Ile59 of Cytochrome c551. The ET properties have been evaluated in the framework of the Pathways model and compared with experimental data. A 60 ns long MD simulation, carried on at full hydration, evidenced that the two protein molecules retain their mutual spatial positions upon forming the complex. An analysis of the ET properties of the complex, monitored at regular time intervals, has revealed that several different ET paths are possible, with the occasional intervening of water molecules. Furthermore, the temporal evolution of the geometric distance between the two redox centres is characterized by very fast fluctuations around an average value of 1.6 nm, with periodic jumps at 2 nm with a frequency of about 70 MHz. Such a behaviour is discussed in connection with a nonlinear dynamics of protein systems and its possible implications in the ET process are explored.  相似文献   

12.
Experimental nuclear magnetic resonance results for the Arc Repressor have shown that this dimeric protein dissociates into a molten globule at high pressure. This structural change is accompanied by a modification of the hydrogen-bonding pattern of the intermolecular beta-sheet: it changes its character from intermolecular to intramolecular with respect to the two monomers. Molecular dynamics simulations of the Arc Repressor, as a monomer and a dimer, at elevated pressure have been performed with the aim to study this hypothesis and to identify the major structural and dynamical changes of the protein under such conditions. The monomer appears less stable than the dimer. However, the complete dissociation has not been seen because of the long timescale needed to observe this phenomenon. In fact, the protein structure altered very little when increasing the pressure. It became slightly compressed and the dynamics of the side-chains and the unfolding process slowed down. Increasing both, temperature and pressure, a tendency of conversion of intermolecular into intramolecular hydrogen bonds in the beta-sheet region has been detected, supporting the mentioned hypothesis. Also, the onset of denaturation of the separated chains was observed.  相似文献   

13.
The conformation of nifedipine, a cardiac and smooth muscle calcium ion channel antagonist is studied in a hydrated bilayer of forty nine 1,2-di-myristoyl-sn-glycero-3-phosphorylcho-line (DMPC) molecules using molecular dynamics (MD) simulation technique. The simulation was carried out in conditions of constant number, volume and temperature (NVT) at 310 K, which is above the liquid crystalline (Lα) transition temperature of DMPC. The periodic boundary conditions were applied in three-dimensions. Thus the model represented an infinite bilayer. The important geometric parameters characteristic to DMPC and nifedipine molecules were calculated and compared with other theoretical and experimental results pertaining to nifedipine and other related dihydrophyridine (DHP) analogues. Our results suggest that conformational parameters required for antagonist activity are fairly conserved during the interaction of nifedipine with DMPC bilary and bilayer stabilizes the drug conformation in the bioactive form.  相似文献   

14.
Apoptosis (programmed cell death) is a process by which cells died after completing physiological function or after a severe genetic damage. Apoptosis is mainly regulated by the Bcl-2 family of proteins. Anti apoptotic protein Bcl-2 prevents the Bax activation/oligomerization to form heterodimer which is responsible for release of the cytochrome c from mitochondria to the cytosol in response to death signal. Quercetin and taxifolin (natural polyphenols) efficiently bound to hydrophobic groove of Bcl-2 and altered the structure by inducing conformational changes. Taxifolin was found more efficient when compared to quercetin in terms of interaction energy and collapse of hydrophobic groove. Taxifolin and quercetin were found to dissociate the Bcl-2-Bax complex during 12?ns MD simulation. The effect of taxifolin and quercetin was, further validated by the MD simulation of ligand-unbound Bcl-2-Bax which showed stability during the simulation. Obatoclax (an inhibitor of Bcl-2) had no significant dissociation effect on Bcl-2-Bax during simulation which favored the previous experimental results and disruption effect of taxifolin and quercetin.  相似文献   

15.
Graphics processing unit (GPU) is becoming a powerful computational tool in science and engineering. In this paper, different from previous molecular dynamics (MD) simulation with pair potentials and many-body potentials, two MD simulation algorithms implemented on a single GPU are presented to describe a special category of many-body potentials – bond order potentials used frequently in solid covalent materials, such as the Tersoff potentials for silicon crystals. The simulation results reveal that the performance of GPU implementations is apparently superior to their CPU counterpart. Furthermore, the proposed algorithms are generalised, transferable and scalable, and can be extended to the simulations with general many-body interactions such as Stillinger–Weber potential and so on.  相似文献   

16.
In the present contribution, multicomplex-based pharmacophore studies were carried out on the structural proteome of Plasmodium falciparum 1-deoxy-D -xylulose-5-phosphate reductoisomerase. Among the constructed models, a representative model with complementary features, accountable for the inhibition was used as a primary filter for the screening of database molecules. Auxiliary evaluations of the screened molecules were performed via drug-likeness and molecular docking studies. Subsequently, the stability of the docked inhibitors was envisioned by molecular dynamics simulations, principle component analysis, and molecular mechanics-Poisson-Boltzmann surface area-based free binding energy calculations. The stability assessment of the hits was done by comparing with the reference (beta-substituted fosmidomycin analog, LC5) to prioritize more potent candidates. All the complexes showed stable dynamic behavior while three of them displayed higher binding free energy compared with the reference. The work resulted in the identification of the compounds with diverse scaffolds, which could be used as initial leads for the design of novel PfDXR inhibitors.  相似文献   

17.
Parallel cascade selection molecular dynamics (PaCS-MD) has been proposed as a conformational sampling method for enhancing structural transitions from a given reactant to a product by repeating cycles of short-time MD simulations. In the present paper, we assessed how the time scale of a short-time MD simulation affected the computational efficiency by changing the simulation length. In conclusion, ps-order (tps) PaCS-MD simulations showed a higher computational efficiency as a total simulation time over the cycles than ns-order (tns) PaCS-MD simulations, indicating that tps might be suitable for generating structural transitions efficiently.  相似文献   

18.
By employing a series of MD simulations, buckling behaviour of penta-graphene and functionalised penta-graphene having different hydrogen (H) coverage is presented in this study. To this end, the buckling onset strain is determined for different systems. The results reveal that the new allotrope is slightly stiffer than graphene. Moreover, the effect of H adatoms in the range 0–56% on buckling behaviour is investigated. Finally it is shown that the H coverage has an influence on stability, and ripple-type destortion of the penta-graphene under compression.  相似文献   

19.
KIT receptor is the prime target in gastrointestinal stromal tumor (GISTs) therapy. Second generation inhibitor, Sunitinib, binds to an inactivated conformation of KIT receptor and stabilizes it in order to prevent tumor formation. Here, we investigated the dynamic behavior of wild type and mutant D816H KIT receptor, and emphasized the extended A-loop (EAL) region (805–850) by conducting molecular dynamics simulation (~100?ns). We analyzed different properties such as root mean square cutoff or deviation, root mean square fluctuation, radius of gyration, solvent-accessible surface area, hydrogen bonding network analysis, and essential dynamics. Apart from this, clustering and cross-correlation matrix approach was used to explore the conformational space of the wild type and mutant EAL region of KIT receptor. Molecular dynamics analysis indicated that mutation (D816H) was able to alter intramolecular hydrogen bonding pattern and affected the structural flexibility of EAL region. Moreover, flexible secondary elements, specially, coil and turns were dominated in EAL region of mutant KIT receptor during simulation. This phenomenon increased the movement of EAL region which in turn helped in shifting the equilibrium towards the active kinase conformation. Our atomic investigation of mutant KIT receptor which emphasized on EAL region provided a better insight into the understanding of Sunitinib resistance mechanism of KIT receptor and would help to discover new therapeutics for KIT-based resistant tumor cells in GIST therapy.  相似文献   

20.
The dissociation processes of methane and carbon dioxide hydrates were investigated by molecular dynamics simulation. The simulations were performed with 368 water molecules and 64 gas molecules using NPT ensembles. The TraPPE (single-site) and 5-site models were adopted for methane molecules. The EPM2 (3-site) and SPC/E models were used for carbon dioxide and water molecules, respectively. The simulations were carried out at 270 K and 5.0 MPa for hydrate stabilisation. Then, temperature was increased up to 370 K. The temperature increasing rates were 0.1–20 TK/s. The gas hydrates dissociated during increasing temperature or at 370 K. The potential models of methane molecule did not much influence the dissociation process of methane hydrate. The mechanisms of dissociation process were analysed with the coordination numbers and mean square displacements. It was found that the water cages break down first, then the gas molecules escape from the water cages. The methane hydrate was more stable than the carbon dioxide hydrate at the calculated conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号