首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteolytic studies have enabled two of the three putative domains of the fibrinolytic protein streptokinase to be isolated and characterized (Conejero-Lara F et al., 1996, Protein Sci 5:2583-2591). The N-terminal domain, however, could not be isolated in these experiments because of its susceptibility to proteolytic cleavage. To complete the biophysical characterization of the domain structure of streptokinase we have overexpressed, purified, and characterized the N-terminal region of the protein, residues 1-146. The results show this is cooperatively folded with secondary structure content and overall stability closely similar to those of the equivalent region in the intact protein.  相似文献   

2.
The mechanism whereby fragments of streptokinase (SK) derived from its N terminus (e.g., SK1-59 or SK1-63) enhance the low plasminogen (PG)-activating ability of other fragments, namely SK64-386, SK60-414, SK60-387, and SK60-333 (reported previously), has been investigated using a synthetic peptide approach. The addition of either natural SK1-59, or chemically synthesized SK16-59, at saturation (about 500-fold molar excess) generated amidolytic and PG activation capabilities in equimolar mixtures of human plasminogen (HPG) and its complementary fragment (either SK60-414 or SK56-414, prepared by expression of truncated SK gene fragments in Escherichia coli) that were approximately 1.2- and 2.5-fold, respectively, of that generated by equimolar mixtures of native SK and HPG. Although in the absence of SK1-59 equimolar mixtures of SK56-414 and HPG could generate almost 80% of amidolytic activity, albeit slowly, less than 2% level of PG activation could be observed under the same conditions, indicating that the contribution of the N-terminal region lay mainly in imparting in SK56-414 an enhanced ability for PG activation. The ability of various synthetic peptides derived from the amino-terminal region (SK16-51, SK16-45, SK37-59, SK1-36, SK16-36, and SK37-51) to (1) complement equimolar mixtures of SK56-414 and HPG for the generation of amidolytic and PG activation functions, (2) inhibit the potentiation of SK56-414 and HPG by SK16-59, and (3) directly inhibit PG activation by the 1:1 SK-HPG activator complex was tested. Apart from SK16-59, SK16-51, and 16-45, the ability to rapidly generate amidolytic potential in HPG in the presence of SK56-414 survived even in the smaller SK-peptides, viz., SK37-59 and SK37-51. However, this ability was abolished upon specifically mutating the sequence -LTSRP-, present at position 42-46 in native SK. Although SK16-51 retained virtually complete ability for potentiation of PG activation in comparison to SK16-59 or SK1-59, this ability was reduced by approximately fourfold in the case of SK16-45, and completely abolished upon further truncation of the C-terminal residues to SK16-36 or SK1-36. Remarkably, however, these peptides not only displayed ability to bind PG, but also showed strong inhibition of PG activation by the native activator complex in the micromolar range of concentration; the observed inhibition, however, could be competitively relieved by increasing the concentration of substrate PG in the reaction, suggesting that this region in SK contains a site directed specifically toward interaction with substrate PG. This conclusion was substantiated by the observation that the potentiation of PG activating ability was found to be considerably reduced in a peptide (SK25-59) in which the sequence corresponding to this putative locus (residues 16-36) was truncated at the middle. On the other hand, fragments SK37-51 and SK37-59 did not show any inhibition of the PG activation by native activator complex. Taken together, these findings strongly support a model of SK action wherein the HPG binding site resident in the region 37-51 helps in anchoring the N-terminal domain to the strong intermolecular complex formed between HPG and the region 60-414. In contrast, the site located between residues 16 and 36 is qualitatively more similar to the previously reported PG interacting site (SK254-273) present in the core region of SK, in being involved in the relatively low-affinity enzyme-substrate interactions of the activator complex with PG during the catalytic cycle.  相似文献   

3.
The plasminogen activator (PA)/plasminogen/plasmin proteolytic system has begun to be taken into account in the fertilization process. In this study, we demonstrated the presence of plasminogen in the extracellular matrix (ECM) of hamster oocytes by indirect immunofluorescence and immunoperoxidase assays using human anti-plasminogen. Plasminogen appeared first on the zona pellucida (ZP) of ovarian oocytes and later on the plasma membrane (PM) of oviducal eggs. This would suggest that oviducal oocytes modulate the expression of plasminogen binding sites on the PM. Human plasminogen as well as that of other species, known to be activated by streptokinase (SK), is rapidly converted to a plasmin-SK complex. We demonstrated the rapid formation of a SK-plasminogen complex that yields plasmin in the blood plasma of hamsters. Both the in vivo and in vitro SK treatment of eggs from superovulated female hamsters caused a decreased in the ZP dissolution time (ZPdt), probably either due to the proteolytic effect of plasmin or due to the SK-Plasminogen. Extracellular proteolysis assays carried out on agar-casein plates confirmed the proteolytic activity of SK-incubated eggs; the controls, on the contrary, failed to display a halo. These studies show that (1) superovulated hamster eggs contain plasminogen in their ECM, (2) oviducal eggs exhibit plasminogen on their PMs, indicating the presence of their corresponding binding sites, (3) in hamsters, SK, a non-enzymatic exogenous protein would be capable of activating ECM plasminogen to plasmin, and (4) the complex SK-plasminogen and/or the plasmin are capable of changing the ZPdt with alpha-chymotrypsin.  相似文献   

4.
The contrasting roles of streptokinase (SK) domains in binding human Glu1-plasminogen (Plg) have been studied using a set of proteolytic fragments, each of which encompasses one or more of SK's three structural domains (A, B, C). Direct binding experiments have been performed using gel filtration chromatography and surface plasmon resonance. The latter technique has allowed estimation of association and dissociation rate constants for interactions between Plg and intact SK or SK fragments. Each of the SK fragments that contains domain B (fragments A2-B-C, A2-B, B-C, and B) binds Plg with similar affinity, at a level approximately 100- to 1,000-fold lower than intact SK. Experiments using 10 mM 6-aminohexanoic acid or 50 mM benzamidine demonstrate that either of these two lysine analogues abolishes interaction of domain B with Plg. Isolated domain C does not show detectable binding to Plg. Moreover, the additional presence of domain C within other SK fragments (B-C and A2-B-C) does not alter significantly their affinities for Plg. In addition, Plg-binding by a noncovalent complex of two SK fragments that contains domains A and B is similar to that of domain B. By contrast, species containing domain B and both domains A and C (intact SK and the two-chain complex A1 x A2-B-C) show a significantly higher affinity for Plg, which could not be completely inhibited by saturating amounts of 6-AHA. These results show that SK domain B interacts with Plg in a lysine-dependent manner and that although domains A and C do not appear independently to possess affinity for Plg, they function cooperatively to establish the additional interactions with Plg to form an efficient native-like Plg activator complex.  相似文献   

5.
Recombinant streptokinase is a biopharmaceutical which is usually produced in E. coli. Residual DNA as a contamination and risk factor may remain in the product. It is necessary to control the production procedure to exclude any possible contamination. The aim of the present study was to develop a highly specific and sensitive quantitative real-time PCR-based method to determine the amount of E. coli DNA in recombinant streptokinase. A specific primers and a probe was designed to detect all strains of E. coli. To determine the specificity, in addition to using NCBI BLASTn, 28 samples including human, bacterial, and viral genomes were used. The results confirmed that the assay detects no genomic DNA but E. coli’s and the specificity was determined to be 100%. To determine the sensitivity and limit of detection of the assay, a 10-fold serial dilution (101 to 107 copies/µL) was tested in triplicate. The sensitivity of the test was determined to be 101 copies/µL or 35 fg/µL. Inter-assay and intra-assay were determined to be 0.86 and 1.69%, respectively. Based on the results, this assay can be used as an accurate method to evaluate the contamination of recombinant streptokinase in E. coli.  相似文献   

6.
The possible role of the central beta-domain (residues 151-287) of streptokinase (SK) was probed by site-specifically altering two charged residues at a time to alanines in a region (residues 230-290) previously identified by Peptide Walking to play a key role in plasminogen (PG) activation. These mutants were then screened for altered ability to activate equimolar "partner" human PG, or altered interaction with substrate PG resulting in an overall compromised capability for substrate PG processing. Of the eight initial alanine-linker mutants of SK, one mutant, viz. SK(KK256.257AA) (SK-D1), showed a roughly 20-fold reduction in PG activator activity in comparison to wild-type SK expressed in Escherichia coli (nSK). Five other mutants were as active as nSK, with two [SK(RE248.249AA) and SK(EK281.282AA), referred to as SK(C) and SK(H), respectively] showing specific activities approximately one-half and two-thirds, respectively, that of nSK. Unlike SK(C) and SK(H), however, SK(D1) showed an extended initial delay in the kinetics of PG activation. These features were drastically accentuated when the charges on the two Lys residues at positions 256 and 257 of nSK were reversed, to obtain SK(KK256.257EE) [SK(D2)]. This mutant showed a PG activator activity approximately 10-fold less than that of SK(D1). Remarkably, inclusion of small amounts of human plasmin (PN) in the PG activation reactions of SK(D2) resulted in a dramatic, PN dose-dependent rejuvenation of its PG activation capability, indicating that it required pre-existing PN to form a functional activator since it could not effect active site exposure in partner PG on its own, a conclusion further confirmed by its inability to show a "burst" of p-nitrophenol release in the presence of equimolar human PG and p-nitrophenyl guanidino benzoate. The steady-state kinetic parameters for HPG activation of its 1:1 complex with human PN revealed that although it could form a highly functional activator once "supplied" with a mature active site, the Km for PG was increased nearly eightfold in comparison to that of nSK-PN. SK mutants carrying simultaneous two- and three-site charge-cluster alterations, viz., SK(RE24249AA:EK281.282AA) [SK(CH)], SK(EK272.273AA;EK281.282AA) [SK(FH)], and SK(RE248.249AA;EK272.273AA:EK281.282AA+ ++) [SK(CFH)], showed additive/synergistic influence of multiple charge-cluster mutations on HPG activation when compared to the respective "single-site" mutants, with the "triple-site" mutant [SK(CFH)] showing absolutely no detectable HPG activation ability. Nevertheless, like the other constructs, the double- and triple-charge cluster mutants retained a native like affinity for complexation with partner PG. Their overall structure also, as judged by far-ultraviolet circular dichroism, was closely similar to that of nSK. These results provide the first experimental evidence for a direct assistance by the SK beta-domain in the docking and processing of substrate PG by the activator complex, a facet not readily evident probably because of the flexibility of this domain in the recent X-ray crystal structure of the SK-plasmin light chain complex.  相似文献   

7.
Although several recent studies employing various truncated fragments of streptokinase (SK) have demonstrated that the high-affinity interactions of this protein with human plasminogen (HPG) to form activator complex (SK-HPG) are located in the central region of SK, the exact location and nature of such HPG interacting site(s) is still unclear. In order to locate the "core" HPG binding ability in SK, we focused on the primary structure of a tryptic fragment of SK derived from the central region (SK143-293) that could bind as well as activate HPG, albeit at reduced levels in comparison to the activity of the native, full-length protein. Because this fragment was refractory to further controlled proteolysis, we took recourse to a synthetic peptide approach wherein the HPG interacting properties of 16 overlapping 20-mer peptides derived from this region of SK were examined systematically. Only four peptides from this set, viz., SK234-253, SK254-273, SK274-293, and SK263-282, together representing the contiguous sequence SK234-293, displayed HPG binding ability. This was established by a specific HPG-binding ELISA as well as by dot blot assay using 125I-labeled HPG. These results showed that the minimal sequence with HPG binding function resided between residues 234 and 293. None of the synthetic SK peptides was found to activate HPG, either individually or in combination, but, in competition experiments where each of the peptides was added prior to complex formation between SK and HPG, three of the HPG binding peptides (SK234-253, SK254-273, and SK274-293) inhibited strongly the generation of a functional activator complex by SK and HPG. This indicated that residues 234-293 in SK participate directly in intermolecular contact formation with HPG during the formation of the 1:1 SK-HPG complex. Two of the three peptides (SK234-253 and SK274-293), apart from interfering in SK-HPG complex formation, also showed inhibition of the amidolytic activity of free HPN by increasing the K(m) by approximately fivefold. A similar increase in K(m) for amidolysis by HPN as a result of complexation with SK has been interpreted previously to arise from the steric hinderance at or near the active site due to the binding of SK in this region. Thus, our results suggest that SK234-253 and SK274-293 also, like SK, bound close to the active site of HPN, an event that was reflected in the observed alteration in its substrate accessibility. By contrast, whereas the intervening peptide (SK254-273) could not inhibit amidolysis by free HPN, it showed a marked inhibition of the activation of "substrate" PG (human or bovine plasminogen) by activator complex, indicating that this particular region is intimately involved in interaction of the SK-HPG activator complex with substrate plasminogen during the catalytic cycle. This finding provides a rational explanation for one of the most intriguing aspects of SK action, i.e., the ability of the SK-HPG complex to catalyze selectively the activation of substrate molecules of PG to PN, whereas free HPN alone cannot do so. Taken together, the results presented in this paper strongly support a model of SK action in which the segment 234-293 of SK, by virtue of the epitopes present in residues 234-253 and 274-293, binds close to the active center of HPN (or, a cryptic active site, in the case of HPG) during the intermolecular association of the two proteins to form the equimolar activator complex; the segment SK254-273 present in the center of the core region then imparts an ability to the activator complex to interact selectively with substrate PG molecules during each PG activation cycle.  相似文献   

8.
9.
The streptokinase (SK) gene from S. equisimilis H46A (ATCC 12449) was cloned in E. coli W3110 under the control of the tryptophan promoter. The recombinant SK, which represented 15% of total cell protein content, was found in the soluble fraction of disrupted cells. The solubility of this SK notably differed from that of the product of the SK gene from S. equisimilis (ATCC 9542) which had been cloned in E. coli W3110 by using similar expression vector and cell growth conditions, and occurred in the form of inclusion bodies.  相似文献   

10.
Streptokinase purified from Streptococcus equinus VIT_VB2 isolated from bovine milk sample was immobilized in various solid supports namely entrapment in agarose gel, calcium alginate beads and gelatin gel by cross-linking with formaldehyde. Immobilization of streptokinase in calcium alginate beads showed maximum efficiency (81.8?±?1.06%) when compared with entrapment with agarose gel (55.6?±?2.17%) and cross-linked gelatin formaldehyde gel (71.0?±?1.54%). The purified SK activity was expressed maximum in calcium alginate (1%) and gelatin gel (0.25%) with 1292.68?±?1.33 and 1121.9?±?1.2?U?mL?1, respectively. Similarly, SK entrapped in gelatin gel and calcium alginate showed maximum in vitro blood clot lysis activity with 77.67?±?2.64% and 76.16?±?2.72%, respectively. The immobilized SK in gelatin gel showed complete clot lysis within 15?min; hence, this application of the study could be used in the treatment of superficial thrombophlebitis, phlebitis, and venous thrombosis. These beads were used for three repeated cycles to check the conversion of substrates into their products, and we concluded that SK can be immobilized in the suitable matrices. Therefore, this helps in the drug-delivery strategies in highly efficient way, moreover, economically competent process in the pharmaceutics.  相似文献   

11.
The system of extracellular proteolysis consisted of plasminogen (PGn), its active protease, plasmin, and PGn activators and their inhibitors affect the growth, differentiation, and proliferation of nervous cells both under normal and pathological conditions. The purpose of our investigation was to study the effects of exogenous PGn, its activator, streptokinase (SK), pyruvate kinase (PK), and their equimolar complexes on morphological and functional properties of IMR-32 neuroblastoma cells. It has been found that PGn, SK, PK, and their complexes stimulate cell proliferation during 1–3 days of incubation. We also observed increased DNA, RNA, and protein content. The low-lactate dehydrogenase (LDH) efflux indicated that the addition of the proteins we assayed to the culture medium prevented the development of degenerative processes caused by serum deprivation. The levels of extracellular PGn-activator activity, as measured by the fibrinolytic method, increased in the presence of SK. The SK effect vanished if SK was in the complex with PK on the 3rd day of cultivation. New original facts were obtained to testify the probability of initiation of neoplastic transformation and tumor growth potentiation.  相似文献   

12.
We have used a group of human microplasminogens (mPlg), modified by residue substitutions, insertions, deletions, and chain breaks (1) to study the determinants of productive interactions with two plasminogen activators, urokinase (uPA), and streptokinase (SK); (2) to explore the basis of species specificity in the zymogen-SK complex activity; and (3) to compare active SK complex formation in mPlg and microplasmin (mPlm). Modifications within the disulfide-bonded loop containing the activation site and the adjacent hexadecapeptide upstream sequence showed that uPA recognition elements encompassed R29 at the activation site and multiple elements extending upstream to perhaps 13 residues, all maintained in specific conformational register by surrounding pairs of disulfide bonds. A generally parallel pattern of structural requirements was observed for active zymogen-SK complex formation. Changes within the loop downstream of the activation site were tolerated well by uPA and poorly by SK. The introduction of selected short bovine (Plg) sequences in human mPlg reduced the activity of the resulting SK complexes. The requirements for active SK complex formation are different for mPlg and mPlm.  相似文献   

13.
Streptokinase (SK) is a specific effective medicine for thrombolytic therapy of acute myocardial infarction. This study established a process for the pilot production of recombinant streptokinase (r-SK). Engineering bacteria were fermented in a 20-l fermentor to produce r-SK. After simple renaturation and purification, 12.9 g of r-SK with 97.8% of purity and about 105 IU mg−1 of specific activity was obtained, the yield of protein and the recovery of activity were 44.9% and 51%, respectively. Finally, the r-SK was made into about 700 doses of injections for clinical applications.  相似文献   

14.
The fibrinolytic system comprises a proenzyme, plasminogen, which can be converted to the active enzyme, plasmin, which degrades fibrin. Plasminogen activation is mediated by plasminogen activators, which are classified as either tissue-type plasminogen activators (t-PA) or urokinase-type plasminogen activators (u-PA). Inhibition of the fibrinolytic system may occur at the level of the activators or at the level of generated plasmin. Plasmin has a low substrate specificity, and when circulating freely in the blood it degrades several proteins including fibrinogen, factor V, and factor VIII. Plasma does, however, contain a fast-acting plasmin inhibitor, alpha 2-antiplasmin, which inhibits free plasmin extremely rapidly but which reacts much slower with plasmin bound to fibrin. A "systemic fibrinolytic state" may, however, occur by extensive activation of plasminogen and depletion of alpha 2-antiplasmin. Clot-specific thrombolysis therefore requires plasminogen activation restricted to the vicinity of the fibrin. Two physiological plasminogen activators, t-PA and single-chain u-PA (scu-PA) induce clot-specific thrombolysis, via entirely different mechanisms, however. t-PA is relatively inactive in the absence of fibrin, but fibrin strikingly enhances the activation rate of plasminogen by t-PA. This is explained by an increased affinity of fibrin-bound t-PA for plasminogen and not by alteration of the catalytic rate constant of the enzyme. The high affinity of t-PA for plasminogen in the presence of fibrin thus allows efficient activation on the fibrin clot, while no significant plasminogen activation by t-PA occurs in plasma. scu-PA has a high affinity for plasminogen (Km = 0.3 microM) but a low catalytic rate constant (kcat = 0.02 sec-1). However, scu-PA does not activate plasminogen in plasma in the absence of a fibrin clot, owing to the presence of (a) competitive inhibitor(s). Fibrin-specific thrombolysis appears to be due to the fact that fibrin reverses the competitive inhibition. The thrombolytic efficacy and fibrin specificity of natural and recombinant t-PA has been demonstrated in animal models of pulmonary embolism, venous thrombosis, and coronary artery thrombosis. In all these studies intravenous infusion of t-PA at sufficiently high rates caused efficient thrombolysis in the absence of systemic fibrinolytic activation. The efficacy and relative fibrinogen-sparing effect of t-PA was recently confirmed in three multicenter clinical trials in patients with acute myocardial infarction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Streptokinase (SK) is efficaciously used as a thrombolytic drug for the treatment of myocardial infarction. Being a bacterial protein, SK is immunogenic in humans. Therefore, resulting from SK therapy, patients become immunized and anti-SK antibody (Ab) titers rise post-treatment. High Ab titers might provoke severe immune reactions during SK therapy and neutralize SK activity, preventing effective thrombolysis. Spot synthesis combined with peptide library techniques is a useful tool for studying protein-peptide interactions on continuous cellulose membranes. Here, we report on the mapping of antigenic regions of SK using a spot-synthesized peptide library and human total sera from patients receiving SK therapy. All tested samples have high anti-SK Ab titers and most of them show significant SK neutralizing capacity. Individual variations in peptide recognition were detected. However, patients treated with SK tend, in general, to show a common regional binding pattern, including residues 1-20, 130-149, 170-189, and 390-399. This is the first study reporting the probing of a cellulose-bound set of peptides with total human sera.  相似文献   

16.
Several pathogenic bacteria secrete plasminogen activator proteins. Streptokinase (SKe) produced by Streptococcus equisimilis and staphylokinase secreted from Staphylococcus aureus are human plasminogen activators and streptokinase (SKu), produced by Streptococcus uberis, is a bovine plasminogen activator. Thus, the fusion proteins among these activators can explain the function of each domain of SKe. Replacement of the SKalpha domain with staphylokinase donated the staphylokinase-like activation activity to SKe, and the SKbetagamma domain played a role of nonproteolytic activation of plasminogen. Recombinant SKu also activated human plasminogen by staphylokinase-like activation mode. Because SKu has homology with SKe, the bovine plasminogen activation activities of SKe fragments were checked. SKebetagamma among them had activation activity with bovine plasminogen. This means that the C-terminal domain (gamma-domain) of streptokinase determines plasminogen species necessary for activation and converses the ability of substrate recognition to human species.  相似文献   

17.
18.
Streptococcus equisimilis streptokinase (SK) is a single-chain protein of 414 residues that is used extensively in the clinical treatment of acute myocardial infarction due to its ability to activate human plasminogen (Plg). The mechanism by which this occurs is poorly understood due to the lack of structural details concerning both molecules and their complex. We reported recently (Parrado J et al., 1996, Protein Sci 5:693-704) that SK is composed of three structural domains (A, B, and C) with a C-terminal tail that is relatively unstructured. Here, we report thermal unfolding experiments, monitored by CD and NMR, using samples of intact SK, five isolated SK fragments, and two two-chain noncovalent complexes between complementary fragments of the protein. These experiments have allowed the unfolding processes of specific domains of the protein to be monitored and their relative stabilities and interdomain interactions to be characterized. Results demonstrate that SK can exist in a number of partially unfolded states, in which individual domains of the protein behave as single cooperative units. Domain B unfolds cooperatively in the first thermal transition at approximately 46 degrees C and its stability is largely independent of the presence of the other domains. The high-temperature transition in intact SK (at approximately 63 degrees C) corresponds to the unfolding of both domains A and C. Thermal stability of domain C is significantly increased by its isolation from the rest of the chain. By contrast, cleavage of the Phe 63-Ala 64 peptide bond within domain A causes thermal destabilization of this domain. The two resulting domain portions (A1 and A2) adopt unstructured conformations when separated. A1 binds with high affinity to all fragments that contain the A2 portion, with a concomitant restoration of the native-like fold of domain A. This result demonstrates that the mechanism whereby A1 stimulates the plasminogen activator activities of complementary SK fragments is the reconstitution of the native-like structure of domain A.  相似文献   

19.
随着纳米技术的发展,纳米颗粒因具有较高的转染效率、良好的靶向性及有效的基因保护作用而被用作基因载体。简要介绍了磁性纳米颗粒、硅纳米颗粒及阳离子多聚物颗粒等的研究进展。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号