首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Folding time predictions from all-atom replica exchange simulations   总被引:2,自引:0,他引:2  
We present an approach to predicting the folding time distribution from all-atom replica exchange simulations. This is accomplished by approximating the multidimensional folding process as stochastic reaction-coordinate dynamics for which effective drift velocities and diffusion coefficients are determined from the short-time replica exchange simulations. Our approach is applied to the folding of the second beta-hairpin of the B domain of protein G. The folding time prediction agrees quite well with experimental measurements. Therefore, we have in hand a fast numerical tool for calculating the folding kinetic properties from all-atom "first-principles" models.  相似文献   

2.
Quantum mechanical/molecular mechanical free-energy simulations were performed to understand the deacylation reaction catalysed by sedolisin (a serine-carboxyl peptidase) and to elucidate the catalytic mechanism and the role of the active-site residues during the process. The results given here demonstrate that Asp170 may act as a general acid/base catalyst for the deacylation reaction. It is also shown that the electrostatic oxyanion hole interactions involving Asp170 may be less effective in transition state stabilisation for the deacylation step in the sedolisin-catalysed reaction compared to the general acid/base mechanism. The proton transfer processes during the enzyme-catalysed process were examined, and their role in the catalysis was discussed.  相似文献   

3.
The 2013 Nobel Prize in Chemistry has convinced the world that how important the role that computational sciences play in chemical and materials sciences. In this review, computational methods and rational molecule design, including quantum mechanics and molecular mechanics methods, have been applied to study electronic structures and the interactions in a number of important applications at molecular level. The applications which include bioactive compounds, drug candidates and photoactive molecules at Swinburne University in the past several years are discussed. The research is in close collaboration with world class experimental groups from spectroscopy, organic and medicinal synthesis laboratories and most recently to γ-ray spectroscopy as well as other theory groups in the world. Ionisation spectra of biomolecules and bioactive compounds including amino acids, DNA bases, cyclic dipeptides, drug candidates, complexes and photoactive molecules are discussed. Most recent projects such as infrared spectral studies of ferrocene, rational design of organic dyes in solar cell applications, and recent development in γ-ray spectra of positron annihilation in molecules are highlighted.  相似文献   

4.
The recognition of DNA by small molecules is of special importance in the design of new drugs. Many natural and synthetic compounds have the ability to interact with the minor groove of DNA. In the present study, identification of minor groove binding compounds was attained by the combined approach of pharmacophore modelling, virtual screening and molecular dynamics approach. Experimentally reported 32 minor groove binding compounds were used to develop the pharmacophore model. Based on the fitness score, best three pharmacophore hypotheses were selected and used as template for screening the compounds from drug bank database. This pharmacophore‐based screening provides many compounds with the same pharmacological properties. All these compounds were subjected to four phases of docking protocols with combined Glide‐quantum‐polarized ligand docking approach. Molecular dynamics results indicated that selected compounds are more active and showed good interaction in the binding site of DNA. Based on the scoring parameters and energy values, the best compounds were selected, and antibacterial activity of these compounds was identified using in vitro antimicrobial techniques. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Due to the higher computational cost relative to pure molecular mechanical (MM) simulations, hybrid quantum mechanical/molecular mechanical (QM/MM) free energy simulations particularly require a careful consideration of balancing computational cost and accuracy. Here, we review several recent developments in free energy methods most relevant to QM/MM simulations and discuss several topics motivated by these developments using simple but informative examples that involve processes in water. For chemical reactions, we highlight the value of invoking enhanced sampling technique (e.g. replica-exchange) in umbrella sampling calculations and the value of including collective environmental variables (e.g. hydration level) in metadynamics simulations; we also illustrate the sensitivity of string calculations, especially free energy along the path, to various parameters in the computation. Alchemical free energy simulations with a specific thermodynamic cycle are used to probe the effect of including the first solvation shell into the QM region when computing solvation free energies. For cases where high-level QM/MM potential functions are needed, we analyse two different approaches: the QM/MM–MFEP method of Yang and co-workers and perturbative correction to low-level QM/MM free energy results. For the examples analysed here, both approaches seem productive although care needs to be exercised when analysing the perturbative corrections.  相似文献   

6.
Lau JK  Cheng YK 《Biopolymers》2012,97(11):910-922
Early studies strongly implied that the specificity of cyclic nucleotide phosphodiesterases (PDEs) toward its endogenous substrates can be uniquely determined by the amido orientation of the invariant glutamine locating in the binding pocket of the enzyme. However, recently solved crystal structures of PDE4 (cAMP specific) and PDE10 (dual specific) in the presence of endogenous substrates have revealed that their invariant glutamine orientations are very similar despite exhibiting different substrate specificities proven physiologically. To understand this subtle specificity issue in the PDE family, here several experimentally inaccessible PDE-substrate complex models have been studied computationally, and the results are juxtaposed and compared in detail. Modeling results show that PDE10 in fact favors cAMP energetically but still can bind to cGMP owing to the robust hydrogen-bond network in the vicinity of the invariant glutamine side chain. PDE4 fails to accommodate cGMP is correlated to the weakening of this same hydrogen-bond network but not owing to any steric strain in the binding pocket. An Asn residue in the binding pocket of PDE4 has enhanced the specificity of the binding to cAMP sideway as observed in our computer simulation. Further to the previously studied syn- versus anti-conformational specificity of cAMP in PDE10, the unexpected substrate-binding mode in PDE10 versus PDE4 as reported here strongly suggested that there are remaining uncertainties in the substrate orientation and recognition mechanism in the PDE families. The molecular details of the binding pocket observed in this study provide hints for more optimal PDE4 and PDE10 inhibitor design.  相似文献   

7.
Hydrogen bonding and polar interactions play a key role in identification of protein-inhibitor binding specificity. Quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) simulations combined with DFT and semi-empirical Hamiltonian (AM1d, RM1, PM3, and PM6) methods were performed to study the hydrogen bonding and polar interactions of two inhibitors BEN and BEN1 with trypsin. The results show that the accuracy of treating the hydrogen bonding and polar interactions using QM/MM MD simulation of PM6 can reach the one obtained by the DFT QM/MM MD simulation. Quantum mechanics/molecular mechanics generalized Born surface area (QM/MM-GBSA) method was applied to calculate binding affinities of inhibitors to trypsin and the results suggest that the accuracy of binding affinity prediction can be significantly affected by the accurate treatment of the hydrogen bonding and polar interactions. In addition, the calculated results also reveal the binding specificity of trypsin: (1) the amidinium groups of two inhibitors generate favorable salt bridge interaction with Asp189 and form hydrogen bonding interactions with Ser190 and Gly214, (2) the phenyl of inhibitors can produce favorable van der Waals interactions with the residues His58, Cys191, Gln192, Trp211, Gly212, and Cys215. This systematic and comparative study can provide guidance for the choice of QM/MM MD methods and the designs of new potent inhibitors targeting trypsin.  相似文献   

8.
Metallodrugs are extensively used to treat and diagnose distinct disease types. The unique physical–chemical properties of metal ions offer tantalizing opportunities to tailor effective scaffolds for selectively targeting specific biomolecules. Modern experimental techniques have collected a large body of structural data concerning the interactions of metallodrugs with their biomolecular targets, although being unable to exhaustively assess the molecular basis of their mechanism of action.In this scenario, the complementary use of accurate computational methods allows uncovering the minutiae of metallodrugs/targets interactions and their underlying mechanism of action at an atomic-level of detail. This knowledge is increasingly perceived as an invaluable requirement to rationally devise novel and selective metallodrugs. Building on literature studies, selected largely from the last 2 years, this compendium encompasses a cross-section of the current role, advances, and challenges met by computer simulations to decipher the mechanistic intricacies of prototypical metallodrugs.  相似文献   

9.
Serum transferrin (sTf) transports iron in serum and internalizes in cells via receptor mediated endocytosis. Additionally, sTf has been identified as the predominant aluminum carrier in serum. Some questions remain unclear about the exact mechanism for the metal release or whether the aluminum and iron show the same binding mode during the entire process. In the present work, simulation techniques at quantum and atomic levels have been employed in order to gain access into a molecular level understanding of the metal-bound sTf complex, and to describe the binding of Al(III) and Fe(III) ions to sTf. First, hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations were carried out in order to analyze the dynamics of the aluminum-loaded complex, taking into account the different pH conditions in blood and into the cell. Moreover, the complexes formed by transferrin with Al(III) and Fe(III) were optimized with high level density functional theory (DFT)/MM methods. All these results indicate that the interaction mode of Al(III) and Fe(III) with sTf change upon different pH conditions, and that the coordination of Al(III) and Fe(III) is not equivalent during the metal intake, transport and release processes. Our results emphasize the importance of the pH on the metal binding and release mechanism and suggest that Al(III) can follow the iron pathway to get access into cells, although once there, it may show a different binding mode, leading to a different mechanism for its release.  相似文献   

10.
11.
The Nostoc sp (Ns) H‐NOX (heme‐nitric oxide or OXygen‐binding) domain shares 35% sequence identity with soluble guanylate cyclase (sGC) and exhibits similar ligand binding property with the sGC. Previously, our molecular dynamic (MD) simulation work identified that there exists a Y‐shaped tunnel system hosted in the Ns H‐NOX interior, which servers for ligand migration. The tunnels were then confirmed by Winter et al. [PNAS 2011;108(43):E 881–889] recently using x‐ray crystallography with xenon pressured conditions. In this work, to further investigate how the protein matrix of Ns H‐NOX modulates the ligand migration process and how the distal residue composition affects the ligand binding prosperities, the free energy profiles for nitric oxide (NO), carbon monooxide (CO), and O2 migration are explored using the steered MDs simulation and the ligand binding energies are calculated using QM/MM schemes. The potential of mean force profiles suggest that the longer branch of the tunnel would be the most favorable route for NO migration and a second NO trapping site other than the distal heme pocket along this route in the Ns H‐NOX was identified. On the contrary, CO and O2 would prefer to diffuse via the shorter branch of the tunnel. The QM/MM (quantum mechanics/molecular mechanics) calculations suggest that the hydrophobic distal pocket of Ns H‐NOX would provide an approximately vacuum environment and the ligand discrimination would be determined by the intrinsic binding properties of the diatomic gas ligand to the heme group. Proteins 2013; 81:1363–1376. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Nymeyer H  Woolf TB  Garcia AE 《Proteins》2005,59(4):783-790
We implement the replica exchange molecular dynamics algorithm to study the interactions of a model peptide (WALP-16) with an explicitly represented DPPC membrane bilayer. We observe the spontaneous, unbiased insertion of WALP-16 into the DPPC bilayer and its folding into an alpha-helix with a transbilayer orientation. The free energy surface suggests that the insertion of the peptide into the DPPC bilayer precedes secondary structure formation. Although the peptide has some propensity to form a partially helical structure in the interfacial region of the DPPC/water system, this state is not a productive intermediate but rather an off-pathway trap for WALP-16 insertion. Equilibrium simulations show that the observed insertion/folding pathway mirrors the potential of mean force (PMF). Calculation of the enthalpic and entropic contributions to this PMF show that the surface bound conformation of WALP-16 is significantly lower in energy than other conformations, and that the insertion of WALP-16 into the bilayer without regular secondary structure is enthalpically unfavorable by 5-10 kcal/mol/residue. The observed insertion/folding pathway disagrees with the dominant conceptual model, which is that a surface-bound helix is an obligatory intermediate for the insertion of alpha-helical peptides into lipid bilayers. In our simulations, the observed insertion/folding pathway is favored because of a large (>100 kcal/mol) increase in system entropy that occurs when the unstructured WALP-16 peptide enters the lipid bilayer interior. The insertion/folding pathway that is lowest in free energy depends sensitively on the near cancellation of large enthalpic and entropic terms. This suggests the possibility that intrinsic membrane peptides may have a diversity of insertion/folding behaviors depending on the exact system of peptide and lipid under consideration.  相似文献   

13.
WW domain proteins are usually regarded as simple models for understanding the folding mechanism of β-sheet. CC45 is an artificial protein that is capable of folding into the same structure as WW domain. In this article, the replica exchange molecular dynamics simulations are performed to investigate the folding mechanism of CC45. The analysis of thermal stability shows that β-hairpin 1 is more stable than β-hairpin 2 during the unfolding process. Free energy analysis shows that the unfolding of this protein substantially proceeds through solvating the smaller β-hairpin 2, followed by the unfolding of β-hairpin 1. We further propose the unfolding process of CC45 and the folding mechanism of two β-hairpins. These results are similar to the previous folding studies of formin binding protein 28 (FBP28). Compared with FBP28, it is found that CC45 has more aromatic residues in N-terminal loop, and these residues contact with C-terminal loop to form the outer hydrophobic core, which increases the stability of CC45. Knowledge about the stability and folding behaviour of CC45 may help in understanding the folding mechanisms of the β-sheet and in designing new WW domains.  相似文献   

14.
Venken T  Daelemans D  De Maeyer M  Voet A 《Proteins》2012,80(6):1633-1646
The HIV Rev protein mediates the nuclear export of viral mRNA, and is thereby essential for the production of late viral proteins in the replication cycle. Rev forms a large organized multimeric protein-protein complex for proper functioning. Recently, the three-dimensional structures of a Rev dimer and tetramer have been resolved and provide the basis for a thorough structural analysis of the binding interaction. Here, molecular dynamics (MD) and binding free energy calculations were performed to elucidate the forces thriving dimerization and higher order multimerization of the Rev protein. It is found that despite the structural differences between each crystal structure, both display a similar behavior according to our calculations. Our analysis based on a molecular mechanics-generalized Born surface area (MM/GBSA) and a configurational entropy approach demonstrates that the higher order multimerization site is much weaker than the dimerization site. In addition, a quantitative hot spot analysis combined with a mutational analysis reveals the most contributing amino acid residues for protein interactions in agreement with experimental results. Additional residues were found in each interface, which are important for the protein interaction. The investigation of the thermodynamics of the Rev multimerization interactions performed here could be a further step in the development of novel antiretrovirals using structure based drug design. Moreover, the variability of the angle between each Rev monomer as measured during the MD simulations suggests a role of the Rev protein in allowing flexibility of the arginine rich domain (ARM) to accommodate RNA binding.  相似文献   

15.
The binding of diatomic ligands, such as O(2), NO, and CO, to heme proteins is a process intimately related with their function. In this work, we analyzed by means of a combination of classical Molecular Dynamics (MD) and Hybrid Quantum-Classical (QM/MM) techniques the existence of multiple conformations in the distal site of heme proteins and their influence on oxygen affinity regulation. We considered two representative examples: soybean leghemoglobin (Lba) and Paramecium caudatum truncated hemoglobin (PcHb). The results presented in this work provide a molecular interpretation for the kinetic, structural, and mutational data that cannot be obtained by assuming a single distal conformation.  相似文献   

16.
17.
Multistate Bennett acceptance ratio (MBAR) works as a method to analyze molecular dynamics (MD) simulation data after the simulations have been finished. It is widely used to estimate free-energy changes between different states and averaged properties at the states of interest. MBAR allows us to treat a wide range of states from those at different temperature/pressure to those with different model parameters. Due to the broad applicability, the MBAR equations are rather difficult to apply for free-energy calculations using different types of MD simulations including enhanced conformational sampling methods and free-energy perturbation. In this review, we first summarize the basic theory of the MBAR equations and categorize the representative usages into the following four: (i) perturbation, (ii) scaling, (iii) accumulation, and (iv) full potential energy. For each, we explain how to prepare input data using MD simulation trajectories for solving the MBAR equations. MBAR is also useful to estimate reliable free-energy differences using MD trajectories based on a semi-empirical quantum mechanics/molecular mechanics (QM/MM) model and ab initio QM/MM energy calculations on the MD snapshots. We also explain how to use the MBAR software in the GENESIS package, which we call mbar_analysis, for the four representative cases. The proposed estimations of free-energy changes and thermodynamic averages are effective and useful for various biomolecular systems.  相似文献   

18.
A parallel study of the radical copper enzyme galactose oxidase (GOase) and a low molecular weight analog of the active site was performed with dynamical density functional and mixed quantum-classical calculations. This combined approach enables a direct comparison of the properties of the biomimetic and the natural systems throughout the course of the catalytic reaction. In both cases, five essential forms of the catalytic cycle have been investigated: the resting state in its semi-reduced (catalytically inactive) and its oxidized (catalytically active) form, A semi and A ox, respectively; a protonated intermediate B; the transition state for the rate-determining hydrogen abstraction step C, and its product D. For A and B the electronic properties of the biomimetic compound are qualitatively very similar to the ones of the natural target. However, in agreement with the experimentally observed difference in catalytic activity, the calculated activation energy for the hydrogen abstraction step is distinctly lower for GOase (16 kcal/mol) than for the mimetic compound (21 kcal/mol). The enzymatic transition state is stabilized by a delocalization of the unpaired spin density over the sulfur-modified equatorial tyrosine Tyr272, an effect that for geometric reasons is essentially absent in the biomimetic compound. Further differences between the mimic and its natural target concern the structure of the product of the abstraction step, which is characterized by a weakly coordinated aldehyde complex for the latter and a tightly bound linear complex for the former. Received 14 October 1999 · Accepted: 19 January 2000  相似文献   

19.
Two important glycoproteins on the influenza virus membrane, hemagglutinin (HA) and neuraminidase (NA), are relevant to virus replication. As previously reported, HA has a substrate specificity towards SIA-2,3-GAL-1,4-NAG (3SL) and SIA-2,6-GAL-1,4-NAG (6SL) glycans, while NA can cleave both types of linkages. However, the substrate binding into NA and its preference are not well understood. In this work, the glycan binding and specificity of human and avian NAs were evaluated by classical molecular dynamics (MD) simulations, whilst the conformational diversity of 3SL avian and 6SL human glycans in an unbound state was investigated by replica exchange MD simulations. The results indicated that the 3SL avian receptor fits well in the binding cavity of all NAs and does not require a conformational change for such binding compared to the flexible shape of the 6SL human receptor. From the QM/MM-GBSA binding free energy and decomposition free energy data, 6SL showed a much stronger binding towards human NAs (H1N1, H2N2 and H3N2) than to avian NAs (H5N1 and H7N9). This suggests that influenza NAs have a substrate specificity corresponding to their HA, indicating the functional balance between the two important glycoproteins. Both linkages show distinct glycan topologies when complexed with NAs, while the flexibility of torsion angles between GAL and NAG in 6SL results in the various shapes of glycan and different binding patterns. Lower conformational diversities of both glycans when bound to NA compared to the unbound state were found, and were required in order to be accommodated within the NA cavity.

Communicated by Ramaswamy H. Sarma  相似文献   


20.
We studied the energetics of the closed-ring mechanism of the acid-catalysed dehydration of d-fructose to 5-hydroxymethylfurfural (HMF) by carrying out canonical ensemble free-energy calculations using bias-sampling, hybrid Quantum Mechanics/Molecular Mechanics Molecular Dynamics simulations with explicit water solvent at 363 K. The quantum mechanical calculations are performed at the PM3 theory level. We find that the reaction proceeds via intramolecular proton and hydride transfers. Solvent dynamics effects are analysed, and we show that the activation energy for the hydride transfers is due to re-organization of the polar solvent environment. We also find that in some instances intramolecular proton transfer is facilitated by mediating water, whereas in others the presence of quantum mechanical water has no effect. From a micro-kinetic point of view, we find that the rate-determining step of the reaction involves a hydride transfer prior to the third dehydration step, requiring an activation free energy of 31.8 kcal/mol, and the respective rate is found in good agreement with reported experimental values in zeolites. Thermodynamically, the reaction is exothermic by .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号