首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the potential of chronic administration of an oral daily dose (10 mg/kg) of the dietary flavonoid quercetin to prevent hypertension and oxidative stress induced by deoxycorticosterone acetate (DOCA)-salt in rats. We have compared its effects to those produced by the well-known anti-hypertensive drug verapamil, administered orally (20 mg/kg/day). Quercetin and verapamil treatments reduced systolic blood pressure of DOCA-salt rats in approximately 67.6 and 63.3% respectively, producing no effect in control animals. Both drugs reduced significantly hepatic and renal hypertrophy induced by DOCA-salt administration, while only quercetin prevented cardiac hypertrophy. Decreased endothelium-dependent relaxation to acetylcholine of aortic rings from DOCA-salt-treated rats was improved by quercetin, but verapamil only enhanced it in the presence of superoxide dismutase (SOD) plus catalase. Increased plasma and heart thiobarbituric acid reactive substances (TBARS) and total glutathione (GSH) levels in liver and heart, decreased liver glutathione peroxidase (GPX) and liver and kidney glutathione transferase (GST) activities were observed in DOCA-salt-treated rats compared to the control animals. The antihypertensive effect of quercetin was accompanied by normalisation of plasma TBARS values, improvement of the antioxidant defences system in heart and liver, restoring total GSH levels in both organs and altered liver GST and GPX activities, and improving kidney GST activity. Verapamil treatment only restored GSH levels in heart, having no effect on other alterations induced by DOCA-salt chronic administration in the antioxidant defences analysed. In conclusion, quercetin shows both antihypertensive and antioxidant properties in this model of mineralocorticoid hypertension, while verapamil exhibits only antihypertensive effects.  相似文献   

2.
The effects of DOCA-salt hypertensive treatment on hepatic glutathione-dependent defense system, antioxidant enzymes, lipid peroxidation, mixed function oxidase and UDP-glucuronyl transferase activities were investigated in male Sprague Dawley rats.Compared with controls, DOCA-salt hypertensive rats had lower body weights (linked to liver hypertrophy). Mixed function oxidase and p-nitrophenol-UGT activities were not affected by the treatment but a significant lower rate of the glucuronoconjugation rate of bilirubin (p < 0.001) was observed in DOCA-salt hypertensive rats. While cytosolic glutathione contents and glutathione reductase activity were not affected, glutathione peroxidase (p < 0.001), glutathione transferase (p < 0.001) and catalase (p < 0.01) activities were decreased and associated with higher malondialdehyde contents (p < 0.001) in treated rats. The imbalance in liver antioxidant status (increasing generation of cellular radical species), associated with increases in lipid peroxidation, suggests that oxidative stress might be directly related to arterial hypertension in DOCA-salt treated male Sprague Dawley rats.  相似文献   

3.
The effects of a vitamin C supplemented diet on blood pressure, body and liver weights, liver antioxidant status, iron and copper levels were investigated in DOCA-salt treated and untreated Sprague-Dawley (SD) male rats after 8 weeks of treatment. Vitamin C supplementation had no effect on blood pressure in SD rats but induced a significant decrease in blood pressure in DOCA-salt treated rats, the decrease being more efficient at 50 mg/kg of vitamin C than at 500 mg/kg. Hepatic lipid peroxidation and iron levels were significantly increased in DOCA-salt hypertensive rats whereas total hepatic antioxidant capacity (HAC), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were decreased. Vitamin C supplementation did not affect the overall antioxidant defences of control SD rat livers. In contrast, vitamin C supplementation accentuated the DOCA-salt induced accumulation of liver iron and lipid peroxidation. This occurred without any notable aggravation in the antioxidant deficiency of vitamin C supplemented DOCA-salt treated rat livers. Our data suggest that DOCA-salt treatment induces an accumulation of iron in rat livers which is responsible for the prooxidant effect of vitamin C. The normalization of blood pressure in DOCA-salt treated rats by vitamin C supplementation appears thus independent from liver antioxidant status.  相似文献   

4.
Increased matrix metalloproteinase (MMP) levels are involved in vascular remodeling of hypertension. In this study, we hypothesized that doxycycline (a MMP inhibitor) could exert antioxidant effects, reverse establish vascular remodeling, and lower blood pressure in spontaneously hypertensive rats (SHR). SHR and Wistar–Kyoto rats received either doxycycline at 30 mg/kg/day by gavage or vehicle. Systolic blood pressure (SBP) was assessed weekly by tail cuff. After 5 weeks of treatment, morphologic changes in the aortic wall were studied in hematoxylin/eosin sections. MMP activity and expression were determined by in situ zymography using DQ gelatin and immunofluorescence for MMP-2. Dihydroethidium was used to evaluate aortic reactive oxygen species (ROS) production by fluorescence microscopy. Doxycycline reduced SBP by 25 mmHg. However, the antihypertensive effects were not associated with significant reversal of hypertension-induced vascular hypertrophy. SHR showed increased aortic MMP-2 levels which co-localized with higher aortic MMP activity and ROS levels, and all those biochemical alterations associated with hypertension were blunted by treatment with doxycycline. These results show that MMP inhibition with doxycycline in SHR with established hypertension resulted in antioxidant effects, lower gelatinolytic activity, and antihypertensive effects which were not associated with reversal of hypertension-induced vascular remodeling.  相似文献   

5.
Young African-American men have altered macrovascular and microvascular function. In this cross-sectional study, we tested the hypothesis that vascular dysfunction in young African-American men would contribute to greater central blood pressure (BP) compared with young white men. Fifty-five young (23 yr), healthy men (25 African-American and 30 white) underwent measures of vascular structure and function, including carotid artery intima-media thickness (IMT) and carotid artery beta-stiffness via ultrasonography, aortic pulse wave velocity, aortic augmentation index (AIx), and wave reflection travel time (Tr) via radial artery tonometery and a generalized transfer function, and microvascular vasodilatory capacity of forearm resistance arteries with strain-gauge plethysmography. African-American men had similar brachial systolic BP (SBP) but greater aortic SBP (P<0.05) and carotid SBP (P<0.05). African-American men also had greater carotid IMT, greater carotid beta-stiffness, greater aortic stiffness and AIx, reduced aortic Tr and reduced peak hyperemic, and total hyperemic forearm blood flow compared with white men (P<0.05). In conclusion, young African-American men have greater central BP, despite comparable brachial BP, compared with young white men. Diffuse macrovascular and microvascular dysfunction manifesting as carotid hypertrophy, increased stiffness of central elastic arteries, heightened resistance artery constriction/blunted resistance artery dilation, and greater arterial wave reflection are present at a young age in apparently healthy African-American men, and conventional brachial BP measurement does not reflect this vascular burden.  相似文献   

6.
The spice-derived phenolic, malabaricone C (mal C), has recently been shown to accelerate healing of the indomethacin-induced gastric ulceration in mice. In this study, we explored its anti-inflammatory activity and investigated the underlying mechanism of the action. Mal C suppressed the microvascular permeability and the levels of tumor necrosis factor-α, interleukin-1β, and nitric oxide in the lipopolysaccharide (LPS)-administered mice. At a dose of 10 mg/kg, it showed anti-inflammatory activity comparable to that of omeprazole (5 mg/kg) and dexamethasone (50 mg/kg). It also reduced the expression and activities of inducible nitric oxide synthase, cyclooxygenase-2, as well as the pro- vs anti-inflammatory cytokine ratio in the LPS-treated RAW macrophages. Mal C was found to inhibit LPS-induced NF-kB activation in RAW 264.7 cells by blocking the MyD88-dependent pathway. Mal C suppressed NF-κB activation and iNOS promoter activity, which correlated with its inhibitory effect on IκB phosphorylation and degradation, and NF-κB nuclear translocation, in the LPS-stimulated macrophages. It also inhibited LPS-induced phosphorylation of p38 and JNK, which are also upstream activators of NF-κB, without affecting Akt phosphorylation. Mal C also effectively blocked the PKR-mediated activation of NF-κB. These findings indicate that mal C exerts an anti-inflammatory effect through NF-κB-responsive inflammatory gene expressions by inhibiting the p38 and JNK-dependent canonical NF-κB pathway as well as the PKR pathway, and is a potential therapeutic agent against acute inflammation.  相似文献   

7.
We previously reported that mild deoxycorticosterone acetate (DOCA)-salt hypertension develops in the absence of generalized sympathoexcitation. However, sympathetic nervous system activity (SNA) is regionally heterogeneous, so we began to investigate the role of sympathetic nerves to specific regions. Our first study on that possibility revealed no contribution of renal nerves to hypertension development. The splanchnic sympathetic nerves are implicated in blood pressure (BP) regulation because splanchnic denervation effectively lowers BP in human hypertension. Here we tested the hypothesis that splanchnic SNA contributes to the development of mild DOCA-salt hypertension. Splanchnic denervation was achieved by celiac ganglionectomy (CGX) in one group of rats while another group underwent sham surgery (SHAM-GX). After DOCA treatment (50 mg/kg) in rats with both kidneys intact, CGX rats exhibited a significantly attenuated increase in BP compared with SHAM-GX rats (15.6 ± 2.2 vs. 25.6 ± 2.2 mmHg, day 28 after DOCA treatment). In other rats, whole body norepinephrine (NE) spillover, measured to determine if CGX attenuated hypertension development by reducing global SNA, was not found to be different between SHAM-GX and CGX rats. In a third group, nonhepatic splanchnic NE spillover was measured as an index of splanchnic SNA, but this was not different between SHAM (non-DOCA-treated) and DOCA rats during hypertension development. In a final group, CGX effectively abolished nonhepatic splanchnic NE spillover. These data suggest that an intact splanchnic innervation is necessary for mild DOCA-salt hypertension development but not increased splanchnic SNA or NE release. Increased splanchnic vascular reactivity to NE during DOCA-salt treatment is one possible explanation.  相似文献   

8.
The present study was designed to investigate the antihypertensive and antioxidant effect of Melothria maderaspatana leaf extract (MME) on sham-operated and DOCA-salt (deoxycorticosterone acetate) induced hypertensive rats. Administration of DOCA-salt significantly increased the systolic (from 127 to 212 mm Hg) and diastolic (from 91 to 174 mm Hg) blood pressure compared to sham-operated control rats, while treatment with MME significantly reduced the systolic (from 212 to 135 mm Hg) and diastolic (from 174 to 96 mm Hg) blood pressure compared to hypertensive control. In DOCA-salt rats, the plasma and tissue concentration of thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxide (LOOH) significantly increased and administration of MME significantly reduced these parameters towards the levels in sham-operated control. In hypertensive rats, activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and levels of non-enzymatic antioxidants such as vitamin C, vitamin E and reduced glutathione (GSH) decreased significantly in the plasma and tissues. Administration of MME returned the enzymatic and non-enzymatic antioxidants towards sham-operated control. MME shows both antihypertensive and antioxidant properties in DOCA-salt hypertensive rats and, among the three different doses tested, 200 mg/kg caused the maximum effect.  相似文献   

9.
The age-dependent participation of endogenous vasopressin (VP) during the development of DOCA-salt hypertension was studied in young (28-day-old) and adult (75-day-old) Brattleboro rats. VP-deficient homozygous (DI) rats were compared to heterozygous (non-DI) littermates which do synthetize VP. Six weeks of DOCA-salt treatment did not increase blood pressure (BP) in adult DI rats. On the other hand, in young DI animals there was a significant rise of systolic and mean arterial pressure accompanied by the hypertrophy of the left ventricle. This moderate DOCA-salt hypertension of young DI rats contrasted with severe hypertension of young non-DI rats. Increased BP response of young VP-deficient DOCA-salt treated rats was independent of the saline intake or blood volume expansion which were similar in young hypertensive and adult normotensive DI animals. It could be concluded that vasopressin is not essential for the induction of DOCA-salt hypertension in young rats even if VP is responsible for the magnitude of BP elevation. In contrast to young animals vasopressin is very important for the development of DOCA-salt hypertension in adult rats.  相似文献   

10.
Experiments were conducted in conscious rats to determine whether DOCA-salt treatment could cause an elevation of sodium concentration of cerebrospinal fluid (CSF), which may be responsible for the enhanced activity of sympathetic nervous system (SNS) and increased secretion of vasopressin (AVP). Systolic blood pressure (SBP) and mean arterial pressure (MAP) were gradually but consistently increased by DOCA-salt treatment. Serum Na concentration was similarly increased with time by DOCA-salt, and significantly higher than control in the 4th treatment week. In contrast, DOCA-salt did not alter the CSF Na levels at any time during treatment. A relationship between SBP and CSF Na was never evident at any stage of the DOCA-salt hypertension. The decrease in MAP following administration of the vasopressin V1-receptor antagonist, d(CH2)5Tyr(Me)AVP (30 micrograms/kg), or hexamethonium (30 mg/kg) was enhanced in the DOCA-treated rats, as compared to findings in the controls. These hypotensive effects were gradually, but progressively enhanced with the development of hypertension by DOCA-salt treatment. We tentatively conclude that mechanisms accounting for the enhanced activity of SNS and AVP in DOCA-salt hypertensive rats are independent of an increased Na concentration in the CSF.  相似文献   

11.
Background: Renovascular hypertension elicits cardiac damage and remodeling. Two-kidney, one-clip (2K1C) is an experimental model used to study hypertension pathophysiology. In this model, the renin-angiotensin-system (RAS) is overactive due to renal artery stenosis, leading to cardiac remodeling. Redox mechanisms underlying RAS activation mediate hypertension-induced cardiovascular damage. Preclinical studies and clinical trials demonstrated resveratrol’s protective effects in cardiovascular diseases, mainly attributed to its antioxidant properties. We hypothesized resveratrol alone or in combination with an angiotensin-converting enzyme (ACE) inhibitor would be beneficial against cardiac damage caused by renovascular hypertension. Objective: We investigated the benefits of resveratrol against cardiac remodeling in 2K1C rats compared with captopril. Methods: Male Wistar rats underwent unilateral renal stenosis – 2K1C Goldblatt model of hypertension. Systolic Blood Pressure (SBP) was measured before and 6 weeks after surgery. Hypertensive 2K1C rats presented SBP≥160 mmHg. From the 6th week after the surgery, the animals received oral resveratrol (20 mg/kg), captopril (12 mg/kg), or their combination for 3 times per week for 3 weeks. Whole heart hypertrophy was evaluated. Histological assays assessed left ventricle hypertrophy and fibrosis. Results: Renovascular hypertension caused cardiac hypertrophy, accompanied by increased myocyte diameter and collagen deposition. Resveratrol reduced 2K1C rats’ SBP and whole heart hypertrophy, independently of captopril. Resveratrol caused a higher reduction in ventricular hypertrophy than captopril. Collagen deposition was greater reduced by 2K1C treated only with resveratrol than with captopril alone or combined with resveratrol. Conclusion: Independent of captopril, resveratrol prompts cardioprotective effects on cardiomyocyte remodeling and fibrosis resulting from renovascular hypertension in 2K1C rats.  相似文献   

12.
Increased sympathetic nervous activity (SNA) elevates venomotor tone in deoxycorticosterone acetate (DOCA)-salt hypertension. We studied the mechanisms by which the SNA increases venomotor tone in DOCA-salt hypertension by making in situ intracellular recordings of venous smooth muscle cell (VSMC) membrane potential (E(m)) and measurement of outside diameter (OD) in mesenteric veins (MV) and mesenteric arteries (MA) of anesthetized rats. We also studied norepinephrine (NE)- and endothelin-1 (ET-1)-induced increases in MA or MV perfusion pressure (PP) in vitro. E(m) in DOCA-salt MV was depolarized compared with sham MV. Prazosin hyperpolarized VSMC E(m) in DOCA-salt but not in sham MV. NE concentration-response curves (CRCs) for OD decreases in MV from DOCA-salt rats were left-shifted with an increased maximum response (E(max)) compared with sham MV. NE CRCs for OD decreases in MA were right-shifted with reduced E(max) in DOCA-salt compared with sham rats. ET-1 CRCs were similar in DOCA-salt and sham MV but were right-shifted with reduced E(max) in DOCA-salt MA. NE CRCs for MAPP increases were left-shifted without a change in E(max) in DOCA-salt rats. NE did not change MVPP. MAPP and MVPP for ET-1 CRCs were similar in sham and DOCA-salt rats, but E(max) for MAPP was reduced in DOCA-salt rats. Hematoxylin staining revealed hypertrophy in DOCA-salt MA but not in MV. We conclude that there is increased reactivity to NE released from the sympathetic nervous system in DOCA-salt MV that causes VSMC depolarization and increased venomotor tone. In DOCA-salt rats, in vivo ET-1 reactivity is maintained in MV, but reduced in MA.  相似文献   

13.
The aim of this study was to analyze the effect of indapamide and its combination with ACE inhibitor (captopril) and antioxidant (Provinols?) on both myocardial hypertrophy and fibrosis. Wistar rats were treated with L-NAME (40 mg/kg/day, L); L-NAME plus indapamide (1 mg/kg/day), or captopril (10 mg/kg/day), or Provinols? (40 mg/kg/day), or combination of indapamide with captopril, and indapamide with Provinols? for 7 weeks. Blood pressure (BP), LV hypertrophy and fibrosis were determined. The content of collagens type I and III was evaluated morphometrically after picrosirius red staining. L-NAME treatment led to increased BP, LV hypertrophy, total fibrosis and relative content of collagens without the change in collagen type I/III ratio. Indapamide and captopril decreased BP, LV hypertrophy and the collagen ratio without affecting total fibrosis, while Provinols? reduced BP, the collagen ratio and fibrosis without affecting LV hypertrophy. The combinations decreased all the parameters. Decrease of LV hypertrophy was achieved by drugs with the best reducing effect on BP, fibrosis reduction was reached by the antioxidant treatment with only partial effect on BP. Thus, the combination of antihypertensive and antioxidant treatment may represent a powerful tool in preventing myocardial remodeling induced by hypertension.  相似文献   

14.
To reveal the role of enzymes involved in PGI2 synthesis for vascular PGI2 generation in experimental hypertensive models, we defined PGI2 synthase and phospholipases activities in the aortic wall of two different experimental hypertensive rats, e.g. spontaneously hypertensive rats (SHR) and desoxycorticosterone acetate (DOCA)-salt hypertensive rats. In the stage of established hypertension both of the hypertensive models had a significantly large capacity of the vascular wall to produce PGI2, as compared to respective control rats. PGI2 synthase activities in the vascular wall were significantly increased by 27% for SHR and by 80% for DOCA-salt hypertensive rats. Moreover, the enzymatic activities were closely related to the blood pressure values for both of the models. On the other hand, phospholipase C or phospholipase A2 activities were increased or unchanged in SHR, respectively, whereas both of the phospholipases were significantly decreased in DOCA-salt hypertensive rats. Thus, it is indicated that PGI2 synthase is partly responsible for the increased PGI2 generation in the vascular wall of SHR and DOCA-salt hypertensive rats, and that vascular phospholipase C is playing a more important role in providing arachidonate for PGI2 synthesis in SHR.  相似文献   

15.
《Free radical research》2013,47(4):466-477
Abstract

In this study, we studied the mechanism of the cytotoxicity of malabaricone C (mal C) against human breast cancer MCF-7 cell line. Mal C dose-dependently increased the sub G1 cell population, associated with cytoplasmic oligonucleosome formation and chromatin condensation. The mal C-induced apoptosis led to mitochondrial damage as revealed by fluorescence microscopy and flow cytometry of the JC-1-stained cells as well as from the release of mitochondrion-specific nuclease proteins AIF and endo G. Mal C also released intracellular Ca2+ from the MCF-7 cells, but the Ca2+-modulators BAPTA-AM and Ru360 only partially abrogated the apoptosis. The calpain activation by mal C did not have any effect on its cytotoxicity. On the other hand, after mal C treatment significant lysosomal membrane permeabilization (LMP), along with release of cathepsin B, as well as Bid-cleavage and its translocation to mitochondria were observed much earlier than the mitochondrial damage. This suggested that cytotoxicity of mal C against human MCF-7 human breast cancer cell line may proceed through LMP as the initial event that triggered a caspase-independent, but cathepsin B and t-Bid-dependent intrinsic mitochondrial apoptotic pathway. A significant accumulation of cells in the S or G2-M phases along with upregulation of the cyclins E and A due to mal C exposure promises it to be a potential anti-cancer agent.  相似文献   

16.
Cyclooxygenase and lipoxygenase metabolism of arachidonic acid produces compounds important in cardiovascular control. Further, arachidonic acid can be metabolised by cytochrome p450 to produce epoxyeicosatrienoic acids (EETs). These derivatives are inactivated by soluble epoxide hydrolase (sEH). The potential role of these EETs in hypertension and cardiac remodelling has been determined using the selective sEH inhibitor, N-adamantyl-N'-dodecylurea (ADU), in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Experiments were performed on male Wistar rats following uninephrectomy alone (UNX rats) or uninephrectomy with administration of DOCA (25 mg every fourth day subcutaneously) and 1% NaCl in drinking water (DOCA-salt rats). ADU (10 mg/kg/d subcutaneously) was administered for 2 wk starting 2 wk after surgery. Cardiovascular structure and function were determined using organ wet weights, histological analysis of collagen and inflammation, isolated heart and thoracic aortic ring preparations, and electrophysiological measurements. DOCA-salt hypertensive rats developed hypertension, hypertrophy, perivascular and interstitial fibrosis, endothelial dysfunction, and prolongation of the cardiac action potential duration within 4 wk. Administration of ADU prevented the further increase in systolic blood pressure and left-ventricular wet weight and normalized endothelial function. ADU treatment did not change inflammatory cell infiltration, collagen deposition, or cardiac action potential duration. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities.  相似文献   

17.
Cyclooxygenase and lipoxygenase metabolism of arachidonic acid produces compounds important in cardiovascular diovascular control. Further, arachidonic acid can be metabolised by cytochrome p450 to produce epoxyeicosatrienoic acids (EETs). These derivatives are inactivated by soluble epoxide hydrolase (sEH). The potential role of these EETs in hypertension and cardiac remodelling has been determined using the selective sEH inhibitor, N-adamantyl-N′-dodecylurea (ADU), in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Experiments were performed on male Wistar rats following uninephrectomy alone (UNX rats) or uninephrectomy with administration of DOCA (25 mg every fourth day subcutaneously) and 1% NaCl in drinking water (DOCA-salt rats). ADU (10 mg/kg/d subcutaneously) was administered for 2wk starting 2wk after surgery. Cardiovascular structure and function were determined using organ wet weights, histological analysis of collagen and inflammation, isolated heart and thoracic aortic ring preparation, and electrophysiological measurements. DOCA-salt hypertensive rats developed hypertension, hypertrophy, perivascular and interstitial fibrosis, endothelial dysfunction, and prolongation of the cardiac action potential duration within 4 wk. Administration of ADU prevented the further increase in systolic blood pressure and left-ventricular wet weight and normalized endothelial function. ADU treatment did not change inflammatory cell infiltration, collagen deposition, or cardiac action potential duration. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities.  相似文献   

18.
We studied the effect of alpha-1 and alpha-2 blockers (prazosin and yohimbine) on systolic blood pressure (SBP) and on renal norepinephrine (NE) content in Sprague-Dawley normotensive and DOCA-salt rats. The administration of desoxycorticosterone acetate (DOCA) to these rats for 6 weeks increased their SBP from 137 to 183 mmHg (p less than .001). This increase was prevented by simultaneous administration of prazosin (p less than .001), yohimbine (p less than .01), or prazosin + yohimbine (p less than .001). DOCA rats on saline and on yohimbine had lower renal NE content (p less than .05 and p less than .001, respectively) than normotensive rats. Renal NE content of DOCA rats on yohimbine decreased with respect to those treated with prazosin (p less than .001) or prazosin + yohimbine (p less than .05). Besides, renal NE content of DOCA rats on prazosin increased when compared to control DOCA rats (p less than .05). However, these drugs showed no effect on SBP and on renal NE content in normotensive rats. These findings further confirm that the alpha adrenoceptor blockade can prevent the hypertension of DOCA-salt rats in such a way that their blood pressure stabilizes at similar levels to those observed in normotensive treated animals.  相似文献   

19.
Vascular capacitance is reduced by endothelin-1 (ET-1) in deoxycorticosterone (DOCA)-salt hypertensive rats. This may contribute to hypertension development. Because the splanchnic blood vessels (especially veins) are important in determining vascular capacitance, we tested the hypothesis that ET-1 levels in the splanchnic vasculature are elevated in hypertensive DOCA-salt compared with normotensive rats. Tissue ET-1 content was measured by ELISA in aorta, vena cava, superior mesenteric artery and vein, and small mesenteric arteries and veins from normotensive sham-operated (sham) and 4-wk DOCA-salt rats. We also determined ET-1 concentration in aortic and portal venous blood (draining the nonhepatic splanchnic organs) in anesthetized and conscious sham and DOCA-salt rats before and after acute blockade of ETB receptor-mediated plasma clearance of ET-1. Results showed a higher ET-1 content in veins than in arteries of similar size. However, ET-1 content was similar in vessels from sham and DOCA-salt rats, except in aorta and superior mesenteric artery, where ET-1 content was greater in DOCA-salt rats. ET-1 concentration was significantly higher in portal venous than in aortic blood, indicating net nonhepatic splanchnic release (nNHSR) of ET-1. However, nNHSR of ET-1 was similar in sham and DOCA-salt rats. Although nNHSR of ET-1 increased significantly after ETB receptor blockade in sham rats, it was completely unchanged in DOCA-salt rats. These data suggest that, despite the absence of ETB receptor-mediated plasma clearance of ET-1, neither the venous peptide content nor the net release of ET-1 is increased in the splanchnic vasculature of DOCA-salt rats. These results argue against the hypothesis that increased venomotor tone in DOCA-salt hypertension is caused by increased ET-1 concentration around splanchnic venous smooth muscle cells.  相似文献   

20.
In DOCA-salt rats, the time course of the synergistic interaction between osmolality and DOCA to produce hypertension is unknown. Therefore, in rats 2 wk after implantation of subcutaneous silicone pellets containing DOCA (65 mg) or no drug (sham), we determined blood pressure (BP) and heart rate (HR) responses, using telemetric pressure transducers, during 2 wk of excess salt ingestion (1% NaCl in drinking water). BP was unaltered in sham rats after increased salt, but in DOCA rats BP increased within 4 h. The initial hypertension of 30-35 mmHg stabilized within 2 days, followed approximately 5 days later by a further increment of approximately 30 mmHg. HR first decreased during the dark phase; the second phase was linked to an abrupt increase in HR and BP variability and decreased HR variability. Pressor responses to acute intravenous hypertonic saline infusion were doubled in DOCA-treated rats via vasopressin and nonvasopressin mechanisms. Only in DOCA-treated rats, portal vein hypertonic saline infusion increased BP, which was prevented by V(1) vasopressin blockade. After 2 wk of DOCA-salt, oral ingestion of water rapidly decreased BP. Intraportal infusion of water did not lower BP in DOCA-salt rats, suggesting that hepatic osmoreceptors were not involved. In summary, the hypertension of DOCA-treated rats consuming excess salt exhibits multiple phases and can be rapidly reversed. Hypertonicity-induced vasopressin and nonvasopressin pressor mechanisms that are augmented by DOCA, and hepatic osmoreceptors may contribute to the initial developmental phase. With time, combined DOCA-salt induces marked changes in the regulation of the autonomic nervous system, which may favor hypertension development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号