共查询到20条相似文献,搜索用时 0 毫秒
1.
The deuteration of the lattice molecules in clathrate hydrates is a widely used experimental technique to clearly separate the vibrational modes. However, the effect of the deuteration on the vibrational spectra and molecular motions is not fully understood. Since the guest–host coupling may change the vibrational spectra, a detailed analysis of the vibrational spectra of deuterated clathrate hydrate is significant in the understanding of the mechanism of the vibrational shift. In this study, the vibrational spectra of the deuterated methane hydrates were calculated by ab initio molecular dynamics simulation. The intramolecular vibrational frequency of the methane in D2O lattice and deuterated methane in H2O lattice was calculated and compared with the pure methane hydrate. The bending, rocking and overtone of the bending mode was also reported. The effect of coupling of the rattling motions of guest and host molecules on the vibrational spectra was revealed. 相似文献
2.
Abstract A new ab initio molecular dynamics method based on the full-potential linearized-augmented-plane-wave (LAPW) basis set has been implemented. The LAPW basis set has been successfully employed for systems containing localized electrons such as first row atoms and transition metals. In our implementation of the LAPW-MD scheme, iterative residual minimization algorithm is used to solve the electronic states problem. The atoms are moved according to forces derived from the Hellman–Feynman theorem and incomplete basis set correction terms. The performance of the program is further enhanced by parallelization. We will discuss technical details of the program implementation and present results obtained from this code to the equilibrium structures and vibrational properties of simple diatomic molecules. 相似文献
3.
The nature of intermolecular interactions between aromatic amino acid residues has been investigated by a combination of molecular dynamics and ab initio methods. The potential energy surface of various interacting pairs, including tryptophan, phenilalanine, and tyrosine, was scanned for determining all the relevant local minima by a combined molecular dynamics and conjugate gradient methodology with the AMBER force field. For each of these minima, single-point correlated ab initio calculations of the binding energy were performed. The agreement between empirical force field and ab initio binding energies of the minimum energy structures is excellent. Aromatic-aromatic interactions can be rationalized on the basis of electrostatic and van der Waals interactions, whereas charge transfer or polarization phenomena are small for all intermolecular complexes and, particularly, for stacked structures. Proteins 2002;48:117-125. 相似文献
4.
Rutash Kumar Ankush Bansal Rohit Shukla Tiratha Raj Singh Pramod Wasudeo Ramteke Satendra Singh 《Journal of biomolecular structure & dynamics》2019,37(13):3513-3523
Solute carrier family 24 member 5 (SLC24A5) is a gene that is associated with oculocutaneous albinism type 6 (OCA6) disorder and is involved in skin and hair pigmentation. It is involved in the maturation of melanosomes and melanin synthesis. SLC24A5 gene is located in the chromosomal position of 15q21.1. The present study involves the use of computational techniques in order to obtain a detailed picture of the most probable mutations that are associated with SLC24A5. From the observed result it was found that the mutation S145F is most deleterious and disease associated is predicted using several bioinformatics tools. The 3-D structures of native and mutant (S145F) were modeled in order to understand protein functionality using ab initio Robetta server. The modeled structure validation was done with ERRAT, Verify-3D, Procheck and RAMPAGE Ramachandran plot analysis. The most validated structure undergoes molecular dynamics simulations (MDS) study to understand the structural and functional behaviour of the native and mutant proteins. The MDS result showed the more flexibility in the native SLC24A5 structure. Due to mutation in the SLC24A5 protein structure it became more rigid and might disturb the conformational changes and glycosylation function of protein structure and might play role in inducing the OCA6. This study provides a significant insight into the underlying molecular mechanism involved in albinism associated with OCA6. It further helps scientists to develop a drug therapy against OCA 6 disease.
Communicated by Ramaswamy H. Sarma 相似文献
5.
Tara Chand Yadav Naresh Kumar Utkarsh Raj Nidhi Goel Pritish Kumar Vardawaj Ramasare Prasad 《Journal of biomolecular structure & dynamics》2020,38(2):382-397
AbstractDrug discovery for a vigorous and feasible lead candidate is a challenging scientific mission as it requires expertise, experience, and huge investment. Natural products and their derivatives having structural diversity are renowned source of therapeutic agents since many years. Tyrosol (a natural phenylethanoid) has been extracted from olive oil, and its structure was confirmed by elemental analysis, FT-IR, FT-NMR, and single crystal X-ray crystallography. The conformational analysis for tyrosol geometry was performed by Gaussian 09 in terms of density functional theory. Validation of bond lengths and bond angles obtained experimentally as well as theoretically were performed with the help of curve fitting analysis, and values of correlation coefficient (R) obtained as 0.988 and 0.984, respectively. The charge transfer within the tyrosol molecule was confirmed by analysis of HOMO→LUMO molecular orbitals. In molecular docking with COX-2 (PDB ID: 5F1A), tyrosol was found to possess satisfactory binding affinity as compared to other NSAIDs (Aspirin, Ibuprofen, and Naproxen) and a COX-2 selective drug (Celecoxib). ADMET prediction, drug-likeness and bioactivity score altogether confirm the lead/drug like potential of tyrosol. Further investigation of simulation quality plot, RMSD and RMSF plots, ligands behavior plot as well as post simulation analysis manifest the consistency of 5F1A-tyrosol complex throughout the 20?ns molecular simulation process that signifies its compactness and stability within the receptor pocket. Abbreviations ADMET Absorption, Distribution, Metabolism, Excretion and Toxicity Å Angstrom COX-2 Cyclooxygenase-2 DFT Density Functional Theory DMF Dimethylformamide FMO Frontier Molecular Orbital FT-IR Fourier-transform Infrared Spectroscopy FT-NMR Nuclear Magnetic Resonance Spectroscopy HOMO Highest Occupied Molecular Orbital LUMO Lowest Unoccupied Molecular Orbital MD Molecular Dynamics NS Nanosecond NSAIDs Non-steroidal anti-inflammatory drugs OPE Osiris Property Explorer RMSD Root-Mean-Square Deviation RMSF Root Sean Square Fluctuation Communicated by Ramaswamy H. Sarma 相似文献
6.
Zheyi Zou Nan Ma Aiping Wang Yunbing Ran Tao Song Yao Jiao Jinping Liu Hang Zhou Wei Shi Bing He Da Wang Yajie Li Maxim Avdeev Siqi Shi 《Liver Transplantation》2020,10(30)
Rhombohedral NaZr2(PO4)3 is the prototype of all the NASICON‐type materials. The ionic diffusion in these rhombohedral NASICON materials is highly influenced by the ionic migration channels and the bottlenecks in the channels which have been extensively studied. However, no consensus is reached as to which one is the preferential ionic migration channel. Moreover, the relationships between the Na+ distribution over the multiple available sites, concerted migration, and diffusion properties remain elusive. Using ab initio molecular dynamics simulations, here it is shown that the Na+ ions tend to migrate through the Na1–Na3–Na2–Na3–Na1 channels rather than through the Na2–Na3–Na3–Na2 channels. There are two types of concerted migration mechanisms: two Na+ ions located at the adjacent Na1 and Na2 sites can migrate either in the same direction or at an angle. Both mechanisms exhibit relatively low migration barriers owing to the potential energy conversion during the Na+ ions migration process. Redistribution of Na+ ions from the most stable Na1 sites to Na2 on increasing Na+ total content further facilitates the concerted migration and promotes the Na+ ion mobility. The work establishes a connection between the Na+ concentration in rhombohedral NASICON materials and their diffusion properties. 相似文献
7.
Vivek Kumar Yadav 《Molecular simulation》2018,44(15):1210-1219
We present an ab initio molecular dynamics study of the roles of fluctuating hydrogen bonds and free ND modes in the dynamics of ND stretch frequency fluctuations in deuterated liquid ammonia. We have also looked at some of the other dynamical quantities such as diffusion and orientational relaxation and also structural quantities such as pair correlations and hydrogen bonding properties which are relevant in the current context. The time correlation function of ND stretch frequencies is found to decay with primarily two time scales: A short-time decay with a time scale of less than 100 fs arising from intermolecular motion of intact hydrogen bonds and also from fast hydrogen bond breaking and a longer time scale of about 500 fs which can be assigned to the lifetime of free ND modes. Unlike water, in liquid ammonia an ND mode is found to remain free for a longer period than it stays hydrogen bonded and this longer lifetime of free ND modes determines the long-time behaviour of frequency fluctuations. Our hole dynamics calculations produced results of vibrational spectral diffusion that are similar to the decay of frequency time correlation. Inclusion of dispersion corrections is found to make the dynamics slightly faster. 相似文献
8.
9.
A study on mechanisms of radical initiated surface chain reaction of ethylene molecule on H-terminated Si(100)-3 × 1 has been carried out in a supercell approach by using density functional theory and ab initio molecular dynamic method. On the H-terminated Si(100)-3 × 1 surface, one of the crucial steps of the surface chain reaction, namely, the abstraction of a H atom from a nearby surface hydride unit, is found to have a somewhat smaller activation energy from the nearest silicon site than from the next-nearest silicon site. From the intermediate state to the final state, the transition state has bigger activation energy. Ab initio molecular dynamics (MD) shows that the H-abstraction on Si(100)-3 × 1 surface bound organic group with a carbon-centered radical is very easy to be obtained from the transition state, and it also shows that the C…H bond at methyl group is formed in a very short MD time, and the Si…C bond between the Si surface and the alkyl chain oscillates with time evolution on Si(100)-3 × 1 surface. 相似文献
10.
11.
A model of the catalytic triad of chymotrypsin is built assuring the arrangement and properties as they are within the complete enzyme. The model contains 18 amino acid residues of chymotrypsin and its substrate. A total of 135 atoms (including 70 heavy atoms) were subjected to full ab initio geometry optimizations through 127 individual steps along the reaction coordinate of the complete catalytic mechanism. It was shown that the described model of the catalytic apparatus forms a self-stabilized molecule ensemble without the rest of the enzyme and substrate. According to the calculations, the formations of the first and second tetrahedral intermediates in the model have 20.3 and 15.7 kcal/mol activation energy barriers, respectively. Removing elements of the catalytic apparatus such as the (1) catalytic aspartate or (2) the anion hole, as well as (3) inserting a water molecule "early" in the catalytic process, or (4) introducing conformational rigidity of the substrate, results in an increase of the above energy barrier of the first catalytic step in the model by 6.4, 13.7, 3.7, and 4.1 kcal/mol, respectively. Based on the calculated process one can conclude that the catalytic reaction in this model is much more similar to the reaction in the enzyme than to the reference reaction. To our knowledge, this is the first model system that mimics the complete catalytic mechanism. 相似文献
12.
13.
Carbon Incorporation and Anion Dynamics as Synergistic Drivers for Ultrafast Diffusion in Superionic LiCB11H12 and NaCB11H12 下载免费PDF全文
Mirjana Dimitrievska Patrick Shea Kyoung E. Kweon Marnik Bercx Joel B. Varley Wan Si Tang Alexander V. Skripov Vitalie Stavila Terrence J. Udovic Brandon C. Wood 《Liver Transplantation》2018,8(15)
The disordered phases of LiCB11H12 and NaCB11H12 possess superb superionic conductivities that make them suitable as solid electrolytes. In these materials, cation diffusion correlates with high orientational mobilities of the CB11H12? anions; however, the precise relationship has yet to be demonstrated. In this work, ab initio molecular dynamics and quasielastic neutron scattering are combined to probe anion reorientations and their mechanistic connection to cation mobility over a range of timescales and temperatures. It is found that anions do not rotate freely, but rather transition rapidly between orientations defined by the cation sublattice symmetry. The symmetry‐breaking carbon atom in CB11H12? also plays a critical role by perturbing the energy landscape along the instantaneous orientation of the anion dipole, which couples fluctuations in the cation probability density directly to the anion motion. Anion reorientation rates exceed 3 × 1010 s?1, suggesting the underlying energy landscape fluctuates dynamically on diffusion‐relevant timescales. Furthermore, carbon is found to modify the orientational preferences of the anions and aid rotational mobility, creating additional symmetry incompatibilities that inhibit ordering. The results suggest that synergy between the anion reorientational dynamics and the carbon‐modified cation–anion interaction accounts for the higher ionic conductivity in CB11H12? salts compared with B12H122?. 相似文献
14.
In this paper, we propose a novel method to derive the interionic potentials for CaO and MgO in conjunction with ab initio calculation and empirical three-body interaction. By using the Chen–Mobius lattice inversion, the pairwise interaction between cations and anions can be evaluated from multiple virtual structures. The quantum-chemistry calculation is carried out to derive the short-range potential for the same species of ions. Empirical three-body interactions are then adopted to heal the drawbacks arising from purely pairwise potential, such as Cauchy relation. The proposed potential is verified by molecular dynamics simulations of some primary properties, including pressure and temperature dependence of lattice constant, elastic constants and phase transition of CaO and MgO. Simulation results are in good agreement with the existing experimental data and ab initio calculations, showing that the developed potentials are valid over a wide range of interionic separations. It is believed that this approach can be readily extended into other materials. 相似文献
15.
Theoretical investigations on the diblock molecular diode, thiophene–thiazole compound, have been carried out at the Hartree–Fock (HF) level by considering the interaction under the external bias. They demonstrate that the electronic structures of this kind of diode molecule are essentially different from those based on the Aviram and Ratner model, in which donor and acceptor π-conjugated segments are separated by an insulating σ-bonded segment, in terms of the energy levels of the frontier molecular orbitals as well as their spatial distributions. The introduction of the external bias modifies both the geometric and electronic structures. In particular, the spatial distributions of the frontier molecular orbitals are also shifted under the external bias. Moreover, all these features show a strong dependence on the polarity of the applied bias due to the build in intrinsic molecular asymmetric structures, which could be used to intuitively interpret the asymmetrical current–voltage behaviours of molecules. 相似文献
16.
17.
Christine Albaret Stphane Lacoutire William P. Ashman Daniel Froment Pierre-Louis Fortier 《Proteins》1997,28(4):543-555
Herein a molecular mechanic study of the interaction of a lethal chemical warfare agent, O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonothioate (also called VX), with Torpedo californica acetylcholinesterase (TcAChE) is discussed. This compound inhibits the enzyme by phosphonylating the active site serine. The chirality of the phosphorus atom induces an enantiomeric inhibitory effect resulting in an enhanced anticholinesterasic activity of the SP isomer (VXS) versus its RP counterpart (VXR). As formation of the enzyme-inhibitor Michaelis complex is known to be a crucial step in the inhibitory pathway, this complex was addressed by stochastic boundary molecular dynamics and quantum mechanical calculations. For this purpose two models of interaction were analyzed: in the first, the leaving group of VX was oriented toward the anionic subsite of TcAChE, in a similar way as it has been suggested for the natural substrate acetylcholine; in the second, it was oriented toward the gorge entrance, placing the active site serine in a suitable position for a backside attack on the phosphorus atom. This last model was consistent with experimental data related to the high inhibitory effect of this compound and the difference in activity observed for the two enantiomers. Proteins 28:543–555, 1997. © 1997 Wiley-Liss, Inc. 相似文献
18.
U. Ryde 《Protein science : a publication of the Protein Society》1995,4(6):1124-1132
Theoretical computations (molecular dynamics and combined quantum chemical and molecular mechanical geometry optimizations) have been performed on horse liver alcohol dehydrogenase. The results provide evidence that Glu-68, a highly conserved residue located 0.47 nm from the catalytic zinc ion, may intermittently coordinate to the zinc ion. Structures with Glu-68 coordinated to the zinc ion are almost as stable as structures with Glu-68 at the crystal position and the barrier between the two configurations of Glu-68 is so low that it can readily be bypassed at room temperature. There is a cavity behind the zinc ion that seems to be tailored to allow such coordination of Glu-68 to the zinc ion. It is suggested that Glu-68 may facilitate the exchange of ligands in the substrate site by coordinating to the zinc ion when the old ligand dissociates. 相似文献
19.
The geometry and energetics of a complex involving pyrazine and an acridine diacid cleft-like host designed by Rebek were investigated at several levels of theory. Molecular mechanics (using the Tripos and CHARMm force fields), semiempirical quantum chemical approaches (with the AM1 and PM3 methods), and an ab initio quantum chemical method (RHF/STO-3G) were used in the complete relaxation of the complex. The geometry of the complex optimized by the RHF/STO-3G method is in excellent agreement with a published X-ray structure; upon superposition, the rms deviation between the corresponding cleft heavy atoms is only 0.17 Å and the pyrazine molecules are superimposable. In addition, ab initio quantum chemical techniques were used to study the complex when the cleft is modeled by a pair of acetic acid molecules. All the calculations presented herein support a two-point interaction mechanism. The similarities found in the results for the full complex and the truncated model are consistent with a purely structural role for the acridine linker of the host. © 1997 John Wiley & Sons, Ltd. 相似文献
20.
AbstractHuman meprin-β, a zinc metalloprotease belonging to the astacin family, have been found to be associated with many pathological conditions like inflammatory bowel disease, fibrosis and neurodegenerative disease. The inhibition of meprin-β by various inhibitors, both macromolecular and small molecules, is crucial in the control of several diseases. Human fetuin-A, a negative acute phase protein involved in inflammatory disease, has recently been identified as an endogenous inhibitor for meprin-β. In this computational study, an integrated in silico approach was performed using existing structural information of meprin-β coupled with ab initio modelling of human fetuin-A to predict a rational model of the complex through protein–protein docking. Further, the models were optimized and validated to generate an ensemble of conformations through extensive molecular dynamics simulation. Virtual alanine scanning mutagenesis was explored to identify hotspot residues on both proteins significant for protein–protein interaction (PPI). The results of the study provide structural insight into PPI between meprin-β and fetuin-A which can be useful in designing molecules to modulate meprin-β activity. Communicated by Ramaswamy H. Sarma 相似文献