首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Carbonic anhydrase IV (CAIV) is a membrane-associated enzyme anchored to plasma membrane surfaces by a phosphatidylinositol glycan linkage. We have determined the 2.8-angstroms resolution crystal structure of a truncated, soluble form of recombinant murine CAIV. We have also determined the structure of its complex with a drug used for glaucoma therapy, the sulfonamide inhibitor brinzolamide (Azopt). The overall structure of murine CAIV is generally similar to that of human CAIV; however, some local structural differences are found in the active site resulting from amino acid sequence differences in the "130's segment" and the residue-63 loop (these may affect the nearby catalytic proton shuttle, His-64). Similar to human CAIV, the C-terminus of murine CAIV is surrounded by a substantial electropositive surface potential that may stabilize the interaction with the phospholipid membrane. Binding interactions observed for brinzolamide rationalize the generally weaker affinity of inhibitors used in glaucoma therapy toward CAIV compared with CAII.  相似文献   

4.
Human carbonic anhydrase I and II isoenzymes (hCA I and II) and acetylcholinesterase (AChE) are important metabolic enzymes that are closely associated with various physiological and pathological processes. In this study, we investigated the inhibition effects of some sulfonamides on hCA I, hCA II, and AChE enzymes. Both hCA isoenzymes were purified by Sepharose‐4B‐L‐Tyrosine‐5‐amino‐2‐methylbenzenesulfonamide affinity column chromatography with 1393.44 and 1223.09‐folds, respectively. Also, some inhibition parameters including IC50 and Ki values were determined. Sulfonamide compounds showed IC 50 values of in the range of 55.14 to 562.62 nM against hCA I, 55.99 to 261.96 nM against hCA II, and 98.65 to 283.31 nM against AChE. Ki values were in the range of 23.40 ± 9.10 to 365.35 ± 24.42 nM against hCA I, 45.87 ± 5.04 to 230.08 ± 92.23 nM against hCA II, and 16.00 ± 45.53 to 157.00 ± 4.02 nM against AChE. As a result, sulfonamides had potent inhibition effects on these enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly in the treatment of some disorders.  相似文献   

5.
6.
Avermectins are used worldwide as antiparasitic drugs in the field of veterinary medicine and as agricultural pesticides and insecticides. Carbonic anhydrase (CA, E.C. 4.2.1.1) is a zinc‐containing metalloenzyme that catalyzes the reversible hydration of carbon dioxide (CO2) to yield protons (H+) and bicarbonate (HCO3?). In this study, some avermectins, including abamectin, doramectin, eprinomectin, and moxidectin, were investigated for in vitro inhibitory effects on the CA enzyme purified from goat liver, which was purified (125.00‐fold) using sepharose 4B‐l ‐tyrosine‐sulfanilamide affinity chromatography, with a yield of 68.27% and a specific activity of 21765.31 EU/mg proteins. The inhibition results obtained from this study showed Ki values of 0.283, 0.153, 0.232, and 0.317 nM for abamectin, doramectin, eprinomectin, and moxidectin, respectively. On the other hand, acetazolamide, well‐known clinically established CA inhibitor, possessed a Ki value of 0.707 nM against goat liver CA.  相似文献   

7.
Carbonic anhydrases (CAs, E.C.4.2.1.1) play a critical role in many important physiological events and treatment of some diseases. Flavonoids or phenolic compounds have been discovered as novel CAs inhibitors instead of the traditional sulfonamides, with different binding to CAs, pro‐drug activities, and new inhibition mechanisms. Here, we investigated the inhibition effects of some flavonoids including malvin, callistephin, oenin, pelargonin, silychristin, and 1‐(4‐methoxyphenyl)‐2‐methyl‐3‐nitro‐1‐H‐indol‐6‐ol (ID‐8) against hCA I and II, which purified from human erythrocytes by affinity column chromatography. Both hCA isoenzymes were inhibited by flavonoids, with IC50 and Ki values in the range of 2.34 nM to 346.5 μM and 51.01–99.55 μM for hCA I and 86.60–750.00 μM for hCA II, respectively. These results showed that flavonoids especially malvin and oenin effectively inhibited hCA I and II isoenzymes. Hence, they may be used as an effective CA inhibitor in medical applications for treatment of certain diseases such as glaucoma, in the future.  相似文献   

8.
A series of sulfonamide derivatives incorporating substituted 3-formylchromone moieties were investigated for the inhibition of three human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, hCA I, II, and VI. All these compounds, together with the clinically used sulfonamide acetazolamide, were investigated as inhibitors of the physiologically relevant isozymes I, II (cytosolic), and VI (secreted isoform). These sulfonamides showed effective inhibition against all these isoforms with KI’s in the range of 0.228 to 118 µM. Such molecules can be used as leads for discovery of novel effective CA inhibitors against other isoforms with medicinal chemistry applications.  相似文献   

9.
In this work, the carbonic anhydrase (CA) enzyme was purified from Kangal Akkaraman sheep in Sivas, Turkey with specific activity value of 6681.57 EU/mg and yield of 14.90% with using affinity column chromatography. For designating the subunit molecular mass and enzyme purity, sodium dodecyl sulfate polyacrylamide gel electrophoresis method was used and single band for this procedure was obtained. The molecular mass of CA enzyme was found as 28.89 kDa. In this study, the optimum temperature and optimum pH were obtained from 30 and 7.5. Vmax and Km values for p‐nitrophenylacetate substrate of the CA were determined from Lineweaver–Burk graphs. Additionally, the inhibitory results of diverse heavy metal ions (Hg+, Fe2+, Pb2+, Co2+, Ag+, and Cu2+) on sheep were studied. Indeed, CA enzyme activities of Kangal sheep were investigated with using esterase procedure under in vitro conditions. The heavy metal concentrations inhibiting 50% of enzyme activity (IC50) and Ki values were obtained.  相似文献   

10.
The amino acid sequence of the high-activity equine erythrocyte carbonic anhydrase (CA-II) has been determined. Two different N-termini are noted, the C1 form having an N-acetyl-serine and the C2 form an N-acetyl-threonine. The sequence of the equine enzyme is most homologous to the human CA-II isozyme, with 224 of the 259 residues being identical.This investigation was supported in part by United States Public Health Service Grant CA-1786 from the National Cancer Institute.  相似文献   

11.
Carbonic anhydrase is inhibited by the “metal poison” cyanide. Several spectroscopic investigations of carbonic anhydrase where the natural zinc ion has been replaced by cobalt have further strengthened the view that cyanide and cyanate bind directly to the metal. We have determined the structure of human carbonic anhydrase II inhibited by cyanide and cyanate, respectively, by X-ray crystallography. It is shown that the inhibitors replace a molecule of water, which forms a hydrogen bond to the peptide nitrogen of Thr-199 in the native structure. The coordination of the zinc ion is hereby left unaltered compared to the native crystal structure, so that the zinc coordinates three histidines and one molecule of water or hydroxyl ion in a tetrahedral fashion. The binding site of the two inhibitors is identical to what earlier has been suggested to be the position of the substrate (CO2) when attacked by the zinc bound hydroxyl ion. The peptide chain undergoes no significant alterations upon binding of either inhibitor. © 1993 Wiley-Liss, Inc.  相似文献   

12.
In this study, carbonic anhydrase (CA) enzyme was purified and characterized from blood samples of Kangal Akkaraman sheep and inhibitory properties on certain antibiotics were examined. CA purification was composed of preparation of the hemolysate and conducting the Sepharose‐4B‐tyrosine‐sulfanilamide affinity gel chromatography in having specific activity of 11626 EU mg?1, yield of 14.40%, and 242.76‐fold purification. Sodium dodecyl sulfate‐polyacrylamide gel electrophoresis was performed to assess the enzyme purity and a single band was observed. Some antibiotics were exhibited in vitro inhibition on the CA activity. IC50 values of these inhibitors were calculated by plotting activity percentage. IC50 values of certain drugs (dexamethasone; caffeine; metamizole sodium; tetramisol; ceftiofur HCl; ivermectin; tavilin 50; penokain G; neosym; and sulfamezathine) were found as 0.38, 8.24, 285.53, 114.77, 5.33, 2.76, 27.58, 213.50, 208.28, and 36.60 μM, respectively. Ki values of different drugs on Kangal Akkaraman sheep blood CA activity were found in the range of 0.21 ± 0.038–266.64 ± 37.11 μM.  相似文献   

13.
A series of carbamate derivatives were synthesized and their carbonic anhydrase I and II isoenzymes and acetylcholinesterase enzyme (AChE) inhibitory effects were investigated. All carbamates were synthesized from the corresponding carboxylic acids via the Curtius reactions of the acids with diphenyl phosphoryl azide followed by addition of benzyl alcohol. The carbamates were determined to be very good inhibitors against for AChE and hCA I, and II isoenzymes. AChE inhibition was determined in the range 0.209–0.291?nM. On the other hand, tacrine, which is used in the treatment of Alzheimer’s disease possessed lower inhibition effect (Ki: 0.398?nM). Also, hCA I and II isoenzymes were effectively inhibited by the carbamates, with inhibition constants (Ki) in the range of 4.49–5.61?nM for hCA I, and 4.94–7.66?nM for hCA II, respectively. Acetazolamide, which was clinically used carbonic anhydrase (CA) inhibitor demonstrated Ki values of 281.33?nM for hCA I and 9.07?nM for hCA II. The results clearly showed that AChE and both CA isoenzymes were effectively inhibited by carbamates at the low nanomolar levels.  相似文献   

14.
Carbonic anhydrase enzyme, one of the fastest known enzymes, remains largely unexplored in prokaryotes when compared to its mammalian counterparts despite its ubiquity. In this study, the enzyme has been purified from Bacillus subtilis SA3 using sequential Sephadex G-75 chromatography, DEAE cellulose chromatography, and sepharose-4B-L-tyrosinesulphanilamide affinity chromatography and characterized to provide additional insights into its properties. The apparent molecular mass of carbonic anhydrase obtained by SDS-PAGE was found to be approximately 37 kDa. Isoelectric focusing of the purified enzyme revealed an isoelectric point (pI) of around 6.1 when compared with marker. The presence of metal ions such as Zn2+, Co2+, Cu2+, Fe3+, Mg2+, and anion SO4 increased enzyme activity while strong inhibition was observed in the presence of Hg2+, Cl, HCO3, and metal chelator EDTA. The optimum pH and temperature for the enzyme were found to be 8.3 and 37°C, respectively. Enzyme kinetics with p-nitrophenyl acetate as substrate at pH 8.3 and 37°C determined the Vmax and Km values of the enzyme to be 714.28 μmol/mg protein/min and 9.09 mM, respectively. The Ki value for acetazolamide was 0.22 mM, compared to 0.099 mM for sulphanilamide. The results from N-terminal amino acid sequencing imply the purified protein is a putative beta-carbonic anhydrase with close similarities to CAs from plants, microorganisms.  相似文献   

15.
Carbonic anhydrases (EC 4.2.1.1) catalyse the reversible hydration of CO2 into bicarbonate and protons. As a hypoxia-sensitive and tumour-associated isoform, isoform CA IX, is significantly overexpressed in various malignancies, being a validated target for new anticancer/antimetastatic drugs. A multitude of studies has shown that CA IX inhibition decreases cancer cell proliferation and metastasis through pHe/pHi modulation and enhancement of ferroptosis among others. Numerous studies demonstrated increased efficacy of cytotoxic drugs combined with CA inhibitors (CAIs) in various cancer types. We tested the inhibitory effect of boric acid (BA), an inorganic Lewis acid, on CA IX as well as other isoforms (CA I, II, and XII). BA acted as a millimolar in vitro CAI, decreased proliferation of two cancer cell lines, although not strong correlations between the in vitro inhibition and in vivo effects were observed. The mechanism of antiproliferative action of BA should be investigated in more detail.  相似文献   

16.
In this study, we have synthesised (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and a series of its derivatives (5, 13–16) and tested the ability of these compounds to inhibit two metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I and hCA II. The synthesised compounds showed inhibitory effect on hCA I and hCA II isozymes. The results showed that synthesised compounds (5, 13–16) demonstrated the best inhibition activity against hCA I (IC50: 3.22–54.28 μM) and hCA II (IC50: 18.52–142.01 μM). The compound 14 showed the highest inhibiton effect against hCA I (IC50: 3.22 μM; Ki: 1.19?±?1.4 μM). On the other hand, the compound 13 showed the highest inhibiton effect against hCA II (IC50: 18.52 μM; Ki: 3.25?±?1.13 μM).  相似文献   

17.
Thermal stability of carbonic anhydrase (CA) immobilized within polyurethane (PU) foam was investigated. The catalytic activity of the enzyme was estimated by using p‐nitrophenyl acetate (p‐NPA) as the substrate in tris buffer containing 10% acetonitrile. The immobilized CA was stable during the repeatable washings and stability tests over 45 days stored in tris buffer at ambient conditions indicating that the CA was covalently attached to the polyurethane (PU) foam by crosslinking. The immobilized CA was found to be 98% stable below 50°C, whereas a drastic decrease was seen at temperatures between 50 and 60°C. The optimum temperature for the immobilized CA was found to be 45°C and it lost its activity completely at 60°C. Thermal deactivation energies for the free and immobilized CA were estimated to be 29 and 86 kcal/mol, respectively. The association of unfolded CA with the polymeric backbone chains of the PU foam was also addressed. It was concluded that the immobilized CA was highly stable at temperatures less than 50°C and could be used in biomimetic CO2 sequestration processes. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

18.
Four different derivatives of aromatic sulfonamides have been synthesized: 1,2-bis[(4-sulfonamidobenzamide)ethoxy]ethane (SBAM), 1,2-bis[(4-sulfonamidobenzoate)ethoxy]ethane, 1,2-bis[(2,4-dichloro-5-sulfonamidobenzamide)ethoxy]ethane, and 1,2-bis[(2,4-dichloro-5-sulfonamidobenzoate)ethoxy]ethane. SBAM is a most potent inhibitor on ciliary epithelium carbonic anhydrase and is approximately 13 times more active against carbonic anhydrase isoform II than against isoform I.  相似文献   

19.
碳酸酐酶(carbonic anhydrase)作为一种活性中心含有锌离子的金属酶,能够可逆催化CO2生成碳酸氢盐的水合反应,该反应在生物体内承担着多样的生理学功能,具有高度的生物学意义。除广泛存在于真核生物以外,该酶在淡水、海水、嗜常温、嗜热、厌氧、好氧、致病、产酸、自养、异养等多种原核微生物中也有广泛的分布,并参与光合作用、呼吸作用和以CO2作为底物的反应,维持生理pH以及离子转运等生理过程。近年来,随着温室效应的日益加剧.生物固定CO2作为该酶的一种全新应用引起了研究者的广泛关注。回顾了碳酸酐酶作为催化剂参与CO2固定过程的历史、现状和最新发现,同时展望了未来应用的趋势。  相似文献   

20.
A series of hydroxylic compounds (1–10, NK-154 and NK-168) have been assayed for the inhibition of three physiologically relevant carbonic anhydrase isozymes, the cytosolic isozymes I, II and tumor-associated isozyme IX. The investigated compounds showed inhibition constants in the range of 0.068–4003, 0.012–9.9 and 0.025–115?μm at the hCA I, hCA II and hCA IX enzymes, respectively. In order to investigate the binding mechanisms of these inhibitors, in silico studies were also applied. Molecular docking scores of the studied compounds are calculated using scoring algorithms, namely Glide/induced fit docking. The inhibitory potencies of the novel compounds were analyzed at the human isoforms hCA I, hCA II and hCA IX as targets and the KI values were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号