首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
The combination of NMR spectroscopy and molecular modeling studies provided the putative bioactive conformation for the analgesic cannabinoid (CB) ligand (−)-2-(6a,7,10,10a-tetrahydro-6,6,9-trimethylhydroxy-6H-dibenzo[b,d]pyranyl)-2-hexyl 1,3-dithiolane which served as a template in reported three-dimensional quantitative structure–activity relationship (3D QSAR) studies [Durdagi et al., J. Med. Chem. 2007, 50, 2875]. The reported 3D models of the CB1 receptor allowed us to construct a new 3D QSAR model based on theoretical calculations and molecular docking studies. Statistical comparison of the constructed two 3D QSAR studies showed the improvement of the new model. In addition, the new model can explain more effectively the experimental data and thus it can serve more efficiently in the rational drug design of pharmacologically optimized CB analogues.  相似文献   

2.
3.
4.
5.
6.
7.
In this study, five series of (E)-6-(4-substituted phenyl)-4-oxohex-5-enoic acids IIb–f (E), (E)-3-(4-(substituted)-phenyl)acrylic acids IIIa–g (E), 4-(4-(substituted)phenylamino)-4-oxobutanoic acids VIa,b,e, 5-(4-(substituted)phenylamino)-5-oxopentanoic acids VIIa,f and 2-[(4-(substituted)phenyl) carbamoyl]benzoic acids VIIIa,e were designed and synthesized. Selected compounds were screened in vitro for their cytotoxic effect on 60 human NCI tumor cell lines. Compound IIf (E) displayed significant inhibitory activity against NCI Non-Small Cell Lung A549/ATCC Cancer cell line (68% inhibition) and NCI-H460 Cancer cell line (66% inhibition). Moreover, the final compounds were evaluated in vitro for their cytotoxic activity on HepG2 Cancer cell line in which histone deacetylase (HDAC) is overexpressed. Compounds IIc (E), IIf (E), IIIb (E), and IIIg (E) exhibited the highest cytotoxic activity against HepG2 human cancer cell lines with IC50 ranging from 2.27 to 10.71 μM. In addition, selected compounds were tested on histone deacetylase isoforms (HDAC1–11). Molecular docking simulation was also carried out for HDLP enzyme to investigate their HDAC binding affinity. In addition, generation of 3D-pharmacophore model and quantitative structure activity relationship (QSAR) models were combined to explore the structural requirements controlling the observed cytotoxic properties.  相似文献   

8.
9.
To investigate the larvicidal activities of novel anthraquinones (1a-1k) against Culex quinquefasciatus mosquito larvae. Novel anthraquinones (1a-1k) derivatives were synthesis via condensation method. The compounds were confirmed through FT-IR spectroscopy, 1H & 13C NMR spectrum, and mass spectral studies. The larvicidal activity of compound 1c was highly active LD50 20.92 µg/mL against Culex quinquefasciatus compared standard permethrin with LD50 25.49 µg/mL. Molecular docking studies were carried out for compound 1c against Odorant-binding protein of Culex quinquefasciatus. The compound 1c (−9.8 Kcal/mol) was a potent larvicide with more binding energy than control permethrin (−9.7 Kcal/mol). Therefore, compound (1c) may be more significant inhibitors of mosquito larvicidal.  相似文献   

10.
Pharmacophore mapping, molecular docking and quantitative structure–activity relationship (QSAR) studies were carried out for a structurally diverse set of 48 compounds as CYP2B6 inhibitors. The generated best pharmacophore hypotheses from the three methods of conformer generation (FAST, BEST and conformer algorithm based on energy screening and recursive buildup) indicate the importance of two features, namely, hydrogen bond acceptor [electron-rich centre] and ring aromaticity. The distance between the two centres of the important features for ideal inhibitors varied from 5.82 to 6.03 Å. The chemometric tools used for the QSAR analysis were genetic function approximation (GFA) and genetic partial least squares. The developed QSAR models indicate the importance of an electron-rich centre, size of molecule, impact of branching and ring system and distribution of charges in the molecular surface. The docking study confirms the importance of an electron-rich centre for binding with the iron atom of the cytochrome enzyme. A GFA model with spline option was found to be the best model based on internal validation as well as the r 2 m (overall) criterion (Q 2 = 0.772, r 2 m (overall) = 0.774). According to the external prediction statistics (R 2 pred = 0.876), another GFA-derived model with spline option outperforms the remaining models.  相似文献   

11.
12.
Although several flavonoids have been reported to exert inhibitory effects on influenza H1N1 neuraminidase (NA), little is known about the structure-activity relationship and binding mode. Three dimensional QSAR (quantitative structure-activity relationship) and molecular docking approaches were applied to explore the structural requisites of flavone derivatives for NA inhibitory activity. A meaningful QSAR model with R(2) of 0.5968, Q(2) of 0.6457, and Pearson-R value of 0.8679, was constructed. From the QSAR model, it could be seen how 6-OH, 3'-OH, 4'-OH, and 8-position substituent affect the NA inhibitory activity. Molecular docking study between the most active compound and NA suggested that hydrogen bonds, hydrophobic and electrostatic interactions were closely related to NA inhibitory activity, 5-OH and 7-OH may be essential for this activity. The results provide a set of useful guidelines for the rational design of novel NA inhibitors.  相似文献   

13.
Motivated by the potential anticancer activity of both coumarin and 2-aminothiazole nuclei, a new set of thiazol-2-yl hydrazono-chromen-2-one analogs were efficiently synthesized aiming to obtain novel hybrids with potential cytotoxic activity. MTT assay investigated the significant potency of all the target compounds against the human cervical cancer cell lines (HeLa cells). Cell cycle analysis showed that the representative compound 8a led to cell cycle cessation at G0/G1 phase indicating that CDK2/E1complex could be the plausible biological target for these newly synthesized compounds. Thus, the most active compounds (7c and 8a-c) were tested for their CDK2 inhibitory activity. The biological results revealed their significant CDK2 inhibitory activity with IC50 range of 0.022–1.629 nM. Moreover, RT-PCR gene expression assay showed that compound 8a increased the levels of the nuclear CDK2 regulators P21 and P27 by 2.30 and 5.7 folds, respectively. ELISA tequnique showed also that compound 8a led to remarkable activation of caspases-9 and -3 inducing cell apoptosis. QSAR study showed that the charge distribution and molecular hydrophobicity are the structural features affecting cytotoxic activity in this series. Molecular docking study for the most potent cytotoxic compounds (7c and 8a-c) rationalized their superior CDK2 inhibitory activity through their hydrogen bonding and hydrophobic interactions with the key amino acids in the CDK2 binding site. Pharmacokinetic properties prediction of the most potent compounds showed that the newly synthesized compounds are not only with promising antitumor activity but also possess promising pharmacokinetic properties.  相似文献   

14.
In an attempt to achieve a new class of phosphoramide inhibitors with high potency and resistance to the hydrolysis process against urease enzyme, we synthesized a series of bisphosphoramide derivatives (0143) and characterized them by various spectroscopic techniques. The crystal structures of compounds 22 and 26 were investigated using X-ray crystallography. The inhibitory activities of the compounds were evaluated against the jack bean urease and were compared to monophosphoramide derivatives and other known standard inhibitors. The compounds containing aromatic amines and their substituted derivatives exhibited very high inhibitory activity in the range of IC50 = 3.4–1.91 × 10−10 nM compared with monophosphoramides, thiourea, and acetohydroxamic acid. It was also found that derivatives with PO functional groups have higher anti-urease activity than those with PS functional groups. Kinetics and docking studies were carried out to explore the binding mechanism that showed these compounds follow a mixed-type mechanism and, due to their extended structures, can cover the entire binding pocket of the enzyme, reducing the formation of the enzyme-substrate complex. The quantitative structure-activity relationship (QSAR) analysis also revealed that the interaction between the enzyme and inhibitor is significantly influenced by aromatic rings and PO functional groups. Collectively, the data obtained from experimental and theoretical studies indicated that these compounds can be developed as appropriate candidates for urease inhibitors in this field.  相似文献   

15.
A series of novel metronidazole aryloxy, carboxy and azole derivatives has been synthesized and their cytotoxic activities on three cancer cell lines were evaluated by MTT assay. Compounds 4m, 4l and 4d showed the most potent cytotoxic activity (IC50s?less than?100?µg/mL). Apoptosis was also detected for these compounds by flow cytometry. Docking studies were performed in order to propose the probable target protein. In the next step, molecular dynamics simulation was carried out on the proposed target protein, focal adhesion kinase (FAK, PDB code: 2ETM), bound to compound 4m. As, 4m showed a potent cytotoxic activity and an acceptable apoptotic effect, it can be a potential anticancer candidate that may work through inhibition of FAK.  相似文献   

16.
The three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on a series of falcipain-3 inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. A training set containing 42 molecules served to establish the QSAR models. The optimum CoMFA and CoMSIA models obtained for the training set were statistically significant with cross-validated correlation coefficients r(cv)(2) (q(2)) of 0.549 and 0.608, and conventional correlation coefficients (r(2)) of 0.976 and 0.932, respectively. An independent test set of 12 molecules validated the external predictive power of both models with predicted correlation coefficients (r(pred)(2)) for CoMFA and CoMSIA as 0.697 and 0.509, respectively. The docking of inhibitors into falcipain-3 active site using GOLD software revealed the vital interactions and binding conformation of the inhibitors. The CoMFA and CoMSIA field contour maps agree well with the structural characteristics of the binding pocket of falcipain-3 active site, which suggests that the information rendered by 3D-QSAR models and the docking interactions can provide guidelines for the development of improved falcipain-3 inhibitors.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号