首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
A series of new urea derivatives (3a-p) have been synthesized from readily available isocyanates and amines in good to high yields. All synthesized compounds were fully characterized using 1H NMR, 13C NMR, IR, and mass spectrometry. Additionally, the structure of the compound (3n) was confirmed by single-crystal X-ray diffraction. Furthermore, all compounds were evaluated for antimicrobial activity against five bacteria and two fungi. Last but not the least, molecular docking studies with Candida albicans dihydropteroate synthetase were performed and the results are presented herein.  相似文献   

2.
A series of 4-phthalimidobenzenesulfonamide derivatives were designed, synthesized and evaluated for the inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Structures of the title compounds were confirmed by spectral and elemental analyses. The cholinesterase (ChE) inhibitory activity studies were carried out using Ellman’s colorimetric method. The biological activity results revealed that all of the title compounds (except for compound 8) displayed high selectivity against AChE. Among the tested compounds, compound 7 was found to be the most potent against AChE (IC50=?1.35?±?0.08?μM), while compound 3 exhibited the highest inhibition against BuChE (IC50=?13.41?±?0.62?μM). Molecular docking studies of the most active compound 7 in AChE showed that this compound can interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE.  相似文献   

3.
4.
A series of pleuromutilin derivatives containing alkylamine and nitrogen heterocycle groups were designed and synthesised under mild conditions. The in vitro antibacterial activity of these semisynthetic derivatives against four strains of Staphylococcus aureus (MRSA ATCC 43300, S.aureus ATCC 29213, S.aureus AD3, and S.aureus 144) were evaluated by the broth dilution method. Compound 13 was found to have excellent antibacterial activity against MRSA (MIC = 0.0625 μg/mL). Furthermore, compound 13 was further studied by the time-killing kinetics and the post-antibiotic effect approach. In the mouse thigh infection model, compound 13 exhibited superior antibacterial efficacy than that of tiamulin. Meanwhile, compound 13 showed a lower inhibitory effect than that of tiamulin on RAW264.7 and 16HBE cells at the concentration of 10 μg/mL. Molecular docking study revealed that compound 13 can effectively bind to the active site of the 50S ribosome (the binding free energy = −9.66 kcal/mol).  相似文献   

5.
New N-4-piperazinyl ciprofloxacin-triazole hybrids 6a-o were prepared and characterized. The in vitro antimycobacterial activity revealed that compound 6a experienced promising antimycobacterial activity against Mycobactrium smegmatis compared with the reference isoniazide (INH). Additionally, compound 6a exhibited broad spectrum antibacterial activity against all the tested strains either Gram-positive or Gram-negative bacteria compared with the reference ciprofloxacin. Also, compounds 6g and 6i displayed considerable antifungal activity compared with the reference ketoconazole. DNA cleavage assay of the highly active compounds 6c and 6h showed a good correlation between the Mycobactrium cleaved DNA gyrase assay and their in vitro antimycobactrial activity. Moreover, molecular modeling studies were done for the designed ciprofloxacin derivatives to predict their binding modes towards Topoisomerase II enzyme (PDB: 5bs8).  相似文献   

6.
We report here the design, synthesis, and anti-inflammatory activities of a series of perimidine derivatives containing triazole (5a–s). The chemical structures of the synthesized compounds have been assigned on the basis of IR, 1H NMR, 13C NMR, and HRMS spectral analyses. The anti-inflammatory properties of the synthesized perimidine derivatives were evaluated in a lipopolysaccharide (LPS)-stimulated inflammation model. Among the tested compounds, compound 7-(3-methylbenzyl)-7H-[1,2,4]triazolo[4,3-a]perimidine (hereafter referred to as 5h) and compound 7-(2-fluorobenzyl)-7H-[1,2,4]triazolo[4,3-a]perimidine (hereafter referred to as 5n) caused a reduction in the levels of the pro-inflammatory cytokines—tumor necrosis factor (TNF)-α and interleukin (IL)-6—in RAW264.7 cells. The anti-inflammatory potential of compounds 5h and 5n was also evaluated in vivo in a xylene-induced ear inflammation model. Compound 5n showed the most potent anti-inflammatory activity with an inhibition of 49.26% at a dose of 50 mg/kg. This activity is more potent than that of the reference drug ibuprofen (28.13%), and slightly less than that of indometacin (49.36%). To further elucidate the mechanisms underlying these inhibitory effects, LPS-induced nuclear factor-κB (NF-κB) activation and mitogen-activated protein kinase (MAPK) phosphorylation were studied. The results of western blotting showed that the extract obtained from compound 5n inhibited NF-κB (p65) activation and MAPK (extracellular signal-regulated kinase (ERK) and p38) phosphorylation in a dose-dependent manner. Moreover, the results of a docking study of compound 5n into the COX-2 binding site revealed that its mechanism was possibly similar to that of naproxen, a COX-2 inhibitor. The effect of compound 5n on COX-2 antibody was showed it could significantly inhibit COX-2 activity.  相似文献   

7.
Three novel series of s-triazine derivatives, including thirty-five new compounds 2a-d, 3a-3p, 4b-d, 5b-d, 6d-6d, and 7a-7f were synthesized comprising a diversity of substituents based on the structure of Astrazeneca arylaminotriazine DNA gyrase B inhibitor. The antimicrobial activity was determined for all compounds against Staphylococcus aureus, Escherichia coli and Candida albicans using the two-fold serial dilution technique and against reference standards Ampicillin for the antibacterial screening and Clotrimazole regarding the antifungal evaluation. The tested compounds showed strong to moderate antibacterial inhibitory action and weak antifungal activity. Compounds 3j and 6b were the most potent antibacterial agents against the tested strains and multi-drug resistant (MDR) clinical isolates of Klebsiella pneumoniae and methicillin resistant Staphylococcus aureus (MRSA1) with minimal toxicity in comparison to the reference drugs. In silico molecular properties calculations and molecular docking study for 3j and 6b revealed that both compounds could be considered as promising antibacterial DNA gyrase B inhibitors.  相似文献   

8.
Antimicrobial resistance which is increasing at an alarming rate is a severe public health issue worldwide. Hence, the development of novel antibiotics is an urgent need as microbes have developed resistance against available antibiotics. In search of novel antimicrobial agents, a convenient route for the preparation of substituted 3-(1-phenyl-3-(p-tolyl)-1H-pyrazol-4-yl)-1-(2-phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazol-3(2H)-yl)prop-2-en-1-ones ( 6a – 6o ) has been adopted by using pyridine-3-carbohydrazide and various aromatic aldehydes. The newly synthesized compounds were characterized by using various spectral techniques, for example, IR, 1H NMR, 13C NMR, and mass spectroscopy. Synthesized hybrids were studied for in vitro antimicrobial potency against various bacterial and fungal strains. Antibacterial results revealed that compounds 6e, 6h, 6i, 6l , and 6m were found to be most active against bacterial strains as they showed minimum inhibitory concentration (MIC) value of 62.5 μg/mL while compounds 6d, 6e , and 6h showed MIC value of 200 μg/mL against Candida albicans. The quantum parameters that relate to the bioavailability of the compounds were computed, followed by docking with different bacterial and fungal targets like sortase A, dihydrofolate reductase, thymidylate kinase, gyrase B, sterol 14-alpha demethylase. The experimental and computational results are in good agreement.  相似文献   

9.
A series of new dehydroacetic acid chalcone-1,2,3-triazole hybrids as potential antimicrobial agents was designed, synthesized and characterized by FTIR, NMR and HRMS spectral techniques. All the synthesized compounds were screened in vitro against four bacterial strains (Staphylococcus epidermidis, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa) and two fungal strains (Aspergillus niger and Candida albicans). The antimicrobial results indicated that some of the compounds showed remarkable activities comparable to the standard drugs. Most of the compounds exhibited better efficacy compared to the DHA, which is itself an antimicrobial agent. The synergistic effect in biological activity was observed when DHA, chalcone and 1,2,3-triazole are conjugated. The molecular modeling studies of compound 5j into E. coli topoisomerase II DNA gyrase B were also performed.  相似文献   

10.
Paraoxonase‐1 (PON1) is an organophosphate hydrolyzer and antiatherogenic enzyme. Due to the PON1's crucial functions, inhibitors and activators of PON1 must be known for pharmacological applications. In this study, we investigated the in vitro effects of some sulfonamides compounds on human serum PON1 (hPON1). For this aim, we purified the hPON1 from human serum with high specific activity by using simple chromatographic methods, and after the purification processes, we investigated in vitro interactions between the enzyme and some sulfonamides (2‐amino‐5‐methyl‐1,3‐benzenedisulfonamide, 2‐chloro‐4‐sülfamoilaniline, 4‐amino‐3‐methylbenzenesulfanilamide, sulfisoxazole, sulfisomidine, and 5‐amino‐2‐methylbenzenesulfonamide). IC50, Ki values, and inhibition types were calculated for each sulfonamide. 2‐amino‐5‐methyl‐1,3‐benzenedisulfonamide and 2‐chloro‐4‐sülfamoilaniline exhibited noncompetitive inhibition effect, whereas 4‐amino‐3‐methylbenzenesulfanilamide, sulfisoxazole, and sulfisomidine exhibited mixed type inhibition. On the other hand, 5‐amino‐2‐methylbenzenesulfonamide showed competitive inhibition and so molecular docking studies were performed for this compound in order to assess the probable binding mechanism into the active site of hPON1.  相似文献   

11.
Fifteen new substituted N-2-(2-oxo-3-phenylquinoxalin-1(2H)-yl) acetamides 5a-f, 6a-f, and 8a-c were synthesized by reacting ethyl 2-(2-oxo-3-phenylquinoxalin-1(2H)-yl)acetate with various primary amines including benzylamines, sulfonamides, and amino acids. The in vitro antimicrobial screening of the target compounds was screened to assess their antibacterial and antifungal activity. As a result, seven compounds namely; 5a, 5c, 5d, 6a, 6c, 8b and 8c showed a promising broad spectrum antibacterial activity against both Gram-positive and Gram-negative strains. Among these, the analogs 5c and 6d were nearly as equiactive as ciprofloxacin drug. Meanwhile, four compounds namely; 5c, 6a, 6f and 8c exhibited appreciable antifungal activity with MIC values range 33–40 mg/mL comparable with clotrimazole (MIC 25 mg/mL). In addition, the anticancer effects of the synthesized compounds were evaluated against three cancer lines. The data obtained revealed the benzylamines and sulpha derivatives were the most active compounds especially 5f and 6f ones. Further EGFR enzymatic investigation was carried out for these most active compounds 5f and 6f resulting in inhibitory activity by 1.89 and 2.05 µM respectively. Docking simulation was performed as a trial to study the mechanisms and binding modes of these compounds toward the enzyme target, EGFR protein kinase enzyme. The results revealed good compounds placement in the active sites and stable interactions similar to the co-crystallized reference ligand. Collectively, the analogs 5f and 6f could be further utilized and optimized as good cytotoxic agents.  相似文献   

12.
Subtype-selective α1-adrenoceptor (AR) antagonists display optimum therapeutic efficacies for the treatment of benign prostatic hyperplasia (BPH). In this study, we designed and synthesized novel carbazole-arylpiperazines derivatives (1 and 2) on the basis of the proposed pharmacophore model for α1-AR antagonists. Structural properties were investigated using single-crystal X-ray diffraction analysis. Comparison of crystal structures with ligand-based pharmacophore models revealed that the two agents may possess antagonistic effects on α1D subtype. Tissue functional assay in vitro showed that compound 2 exerted strong antagonistic activity on α1B-AR (pA2 7.13) with a poor selectivity for α1A and α1D subtypes. Compound 1 exhibited enhanced antagonistic effect on α1D subtype (pA2 7.06) and excellent selectivity for α1D over α1B1D1B ratio = 79.4). To illustrate the relationship between antagonistic activity and chemical structure, molecular docking studies were performed using the homology models of α1 receptors. Binding mechanism indicated that small hydrophobic substituents attached to the arylpiperazine moiety were essential for rational design of α1D-selective antagonists.  相似文献   

13.
Some new derivatives of substituted-4(3H)-quinazolinones were synthesized and evaluated for their in vitro antitumor and antimicrobial activities. The results of this study demonstrated that compound 5 yielded selective activities toward NSC Lung Cancer EKVX cell line, Colon Cancer HCT-15 cell line and Breast Cancer MDA-MB-231/ATCC cell line, while NSC Lung Cancer EKVX cell line and CNS Cancer SF-295 cell line were sensitive to compound 8. Additionally, compounds 12 and 13 showed moderate effectiveness toward numerous cell lines belonging to different tumor subpanels. On the other hand, the results of antimicrobial screening revealed that compounds 1, 9 and 14 are the most active against Staphylococcus aureus ATCC 29213 with minimum inhibitory concentration (MIC) of 16, 32 and 32?μg/mL respectively, while compound 14 possessed antimicrobial activities against all tested strains with the lowest MIC compared with other tested compounds. In silico study, ADME-Tox prediction and molecular docking methodology were used to study the antitumor activity and to identify the structural features required for antitumor activity.  相似文献   

14.
Abstract

In this study, newly synthesised compounds 6, 8, 10 and other compounds (1–5, 7 and 9) and their inhibitory properties against the human isoforms hCA I and hCA II were reported for the first time. Compounds 1–10 showed effective inhibition profiles with K I values in the range of 5.13–16.9?nM for hCA I and of 11.77–67.39?nM against hCA II, respectively. Molecular docking studies were also performed with Glide XP to get insight into the inhibitory activity and to evaluate the binding modes of the synthesised compounds to hCA I and II. More rigorous binding energy calculations using MM-GBSA protocol which agreed well with observed activities were then performed to improve the docking scores. Results of in silico calculations showed that all compounds obey drug likeness properties. The new compounds reported here might be promising lead compounds for the development of new potent inhibitors as alternatives to classical hCA inhibitors.  相似文献   

15.
Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a critical role in cancer angiogenesis. Inhibition of VEGFR-2 activity proved effective suppression of tumour propagation. Accordingly, two series of new 3-methylquinoxaline derivatives have been designed and synthesised as VEGFR-2 inhibitors. The synthesised derivatives were evaluated in vitro for their cytotoxic activities against MCF-7and HepG2 cell lines. In addition, the VEGFR-2 inhibitory activities of the target compounds were estimated to indicate the potential mechanism of their cytotoxicity. To a great extent, the results of VEGFR-2 inhibition were highly correlated with that of cytotoxicity. Compound 27a was the most potent VEGFR-2 inhibitor with IC50 of 3.2 nM very close to positive control sorafenib (IC50 = 3.12 nM). Such compound exhibited a strong cytotoxic effect against MCF-7 and HepG2, respectively with IC50 of 7.7 and 4.5 µM in comparison to sorafenib (IC50 = 3.51 and 2.17 µM). In addition, compounds 28, 30f, 30i, and 31b exhibited excellent VEGFR-2 inhibition activities (IC50 range from 4.2 to 6.1 nM) with promising cytotoxic activity. Cell cycle progression and apoptosis induction were investigated for the most active member 27a. Also, the effect of 27a on the level of caspase-3, caspase-9, and BAX/Bcl-2 ratio was determined. Molecular docking studies were implemented to interpret the binding mode of the target compounds with the VEGFR-2 pocket. Furthermore, toxicity and ADMET calculations were performed for the synthesised compounds to study their pharmacokinetic profiles  相似文献   

16.
In this work, we synthesized fourteen different compounds which contain hydrazone bridged thiazole and pyrrole rings. For this purpose, pyrrole-2-carboxaldehydes were reacted directly with thiosemicarbazide in ethanol and then obtained thiosemicarbazones were condensed with α-bromoacetophenone derivatives (Hantzsch reaction) to give 1-substituted pyrrole-2-carboxaldehyde [4-(4-substituted phenyl)-1,3-thiazol-2-yl] hydrazones. The structures of the obtained compounds were elucidated by using IR, 1H-NMR and FAB+-MS spectral data and elemental analyses results. All of the compounds were screened for their antibacterial and antifungal activities against twelve different microorganisms by using microbroth dilution method. Ketoconazole and chloramphenicol were used as standard drugs. All of the compounds showed good activity against Staphylococcus aureus and Enterococcus faecalis.  相似文献   

17.
In this paper, former studies on the interactions of the natural substrate and potential inhibitors of Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT) were used to design five new potential selective inhibitors to this enzyme. Results of the docking energies calculations of these structures inside the active sites of PfSHMT and human SHMT were used to select a more suitable structure as a potential selective inhibitor to PfSHMT. Further molecular dynamics studies of this molecule and 5-formyl-6-hydrofolic acid (natural substrate) docked inside these enzymes' active sites revealed important features for additional refinements of this structure and also additional residues in the PfSHMT active site to be considered further for designing selective inhibitors.  相似文献   

18.
A series of novel compounds carrying 1,2,4-triazole scaffold was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines using MTT assay. Compounds 8a, 8b, 8c, 8d, 10b, 10e, and 10 g showed remarkable antiproliferative activity against the tested cell lines. Compounds 8a, 8b, 8c, 8d, 10b, 10e, and 10 g with the least IC50 values in MTT assay were tested against three known anticancer targets including EGFR, BRAF and Tubulin. The results revealed that compounds 8c and 8d showed almost same BRAF inhibitory activity and were discovered to be potent inhibitors of cancer cell proliferation and were also observed to be strong Tubulin inhibitors. Moreover, 8c also showed the best EGFR inhibition with IC50 = 3.6 μM. Finally molecular modeling studies were performed to explore the binding mode of the most active compounds to the target enzymes.  相似文献   

19.
This study deals with design and synthesis of novel benzofuran–pyrazole hybrids as anticancer agents. Eight compounds were chosen by National Cancer Institute (NCI), USA to evaluate their in vitro antiproliferative activity at 10−5 M in full NCI 60 cell panel. The preliminary screening of the tested compounds showed promising broad-spectrum anticancer activity. Compound 4c was further assayed for five dose molar ranges in full NCI 60 cell panel and exhibited remarkable growth inhibitory activity pattern against Leukemia CCRF-CEM, MOLT-4, Lung Cancer HOP-92, Colon Cancer HCC-2998, CNS Cancer SNB-75, Melanoma SK-MEL-2, Ovarian Cancer IGROV1, Renal Cancer 786-0, RXF 393, Breast Cancer HS 578T and T-47D (GI50: 1.00–2.71 μM). Moreover, enzyme assays were carried out to investigate the possible antiproliferative mechanism of action of compound 4c. The results revealed that compound 4c has good c-Src inhibitory activity at 10 μM. In addition, molecular docking studies showed that 4c could bind to the ATP Src pocket sites. Fulfilling the Lipinskiís rule of five in addition to its ADME profile and the biological results, all strongly suggest that 4c is a promising Src kinase inhibitor.  相似文献   

20.
New thienopyrimidinone and triazolothienopyrimidinone derivatives have been synthesized. These compounds were subjected to anti-inflammatory and antimicrobial activity screening aiming to identify new candidates that have dual anti-inflammatory and antimicrobial activities.Compounds 5, 7 and 10a showed minimal ulcerogenic effect and high selectivity towards human recombinant COX-2 over COX-1 enzyme. Their docking outcome correlated with their biological activity and assured the high selectivity binding towards COX-2. In addition, they could act safely up to 80 mg/kg orally or 40 mg/kg parentrally. The antimicrobial screening showed that compound 10a displayed distinctive inhibitory effect on the growth of Escherichia coli comparable to that of ampicillin. Moreover, compounds 5, 7, 9 and 12a possessed 50% of the inhibitory activity of ampicillin against E. coli. Thus, compounds 5, 7 and 10a represent promising dual acting anti-inflammatory and antimicrobial agents. This work provides rewarding template enriching the chemical space for dual anti-inflammatory anti-microbial activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号