首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complement cascade is an important part of the innate immune system, but pathological activation of this system causes tissue injury in several autoimmune and inflammatory diseases, including immune complex glomerulonephritis. We examined whether mice with targeted deletion of the gene for factor B (fB(-/-) mice) and selective deficiency in the alternative pathway of complement are protected from injury in the nephrotoxic serum (NTS) nephritis model of antibody-mediated glomerulonephritis. When the acute affects of the anti-glomerular basement membrane antibody were assessed, fB(-/-) mice developed a degree of injury similar to wild-type controls. If the mice were presensitized with sheep IgG or if the mice were followed for 5 mo postinjection, however, the fB(-/-) mice developed milder injury than wild-type mice. The immune response of fB(-/-) mice exposed to sheep IgG was similar to that of wild-type mice, but the fB(-/-) mice had less glomerular C3 deposition and lower levels of albuminuria. These results demonstrate that fB(-/-) mice are not significantly protected from acute heterologous injury in NTS nephritis but are protected from autologous injury in response to a planted glomerular antigen. Thus, although the glomerulus is resistant to antibody-initiated, alternative pathway-mediated injury, inhibition of this complement pathway may be beneficial in chronic immune complex-mediated diseases.  相似文献   

2.
3.
《MABS-AUSTIN》2013,5(5):1133-1144
The complement system is a powerful tool of the innate immune system to eradicate pathogens. Both in vitro and in vivo evidence indicates that therapeutic anti-tumor monoclonal antibodies (mAbs) can activate the complement system by the classical pathway. However, the contribution of complement to the efficacy of mAbs is still debated, mainly due to the lack of convincing data in patients. A beneficial role for complement during mAb therapy is supported by the fact that cancer cells often upregulate complement-regulatory proteins (CRPs). Polymorphisms in various CRPs were previously associated with complement-mediated disorders.

In this review the role of complement in anti-tumor mAb therapy will be discussed with special emphasis on strategies aiming at modifying complement activity. In the future, clinical efficacy of mAbs with enhanced effector functions together with comprehensive analysis of polymorphisms in CRPs in mAb-treated patients will further clarify the role of complement in mAb therapy.  相似文献   

4.
The complement system is a powerful tool of the innate immune system to eradicate pathogens. Both in vitro and in vivo evidence indicates that therapeutic anti-tumor monoclonal antibodies (mAbs) can activate the complement system by the classical pathway. However, the contribution of complement to the efficacy of mAbs is still debated, mainly due to the lack of convincing data in patients. A beneficial role for complement during mAb therapy is supported by the fact that cancer cells often upregulate complement-regulatory proteins (CRPs). Polymorphisms in various CRPs were previously associated with complement-mediated disorders.In this review the role of complement in anti-tumor mAb therapy will be discussed with special emphasis on strategies aiming at modifying complement activity. In the future, clinical efficacy of mAbs with enhanced effector functions together with comprehensive analysis of polymorphisms in CRPs in mAb-treated patients will further clarify the role of complement in mAb therapy.  相似文献   

5.
The recently identified lectin pathway of the complement system, initiated by binding of mannan-binding lectin (MBL) to its ligands, is a key component of innate immunity. MBL-deficient individuals show an increased susceptibility for infections, especially of the mucosal system. We examined whether IgA, an important mediator of mucosal immunity, activates the complement system via the lectin pathway. Our results indicate a dose-dependent binding of MBL to polymeric, but not monomeric IgA coated in microtiter plates. This interaction involves the carbohydrate recognition domain of MBL, because it was calcium dependent and inhibited by mannose and by mAb against this domain of MBL. Binding of MBL to IgA induces complement activation, as demonstrated by a dose-dependent deposition of C4 and C3 upon addition of a complement source. The MBL concentrations required for IgA-induced C4 and C3 activation are well below the normal MBL plasma concentrations. In line with these experiments, serum from individuals having mutations in the MBL gene showed significantly less activation of C4 by IgA and mannan than serum from wild-type individuals. We conclude that MBL binding to IgA results in complement activation, which is proposed to lead to a synergistic action of MBL and IgA in antimicrobial defense. Furthermore, our results may explain glomerular complement deposition in IgA nephropathy.  相似文献   

6.
Undesired activation of the complement system is a major pathogenic factor contributing to various immune complex diseases and conditions such as hyperacute xenograft rejection. We aim for prevention of complement-mediated damage by specific inhibition of the classical complement pathway, thus not affecting the antimicrobial functions of the complement system via the alternative pathway and the lectin pathway. Therefore, 42 peptides previously selected from phage-displayed peptide libraries on basis of C1q binding were synthesized and examined for their ability to inhibit the function of C1q. From seven peptides that showed inhibition of C1q hemolytic activity but no inhibition of the alternative complement pathway, one peptide (2J) was selected and further studied. Peptide 2J inhibited the hemolytic activity of C1q from human, chimpanzee, rhesus monkey, rat, and mouse origin, all with a similar dose-response relationship (IC(50) 2-6 microM). Binding of C1q to peptide 2J involved the globular head domain of C1q. In line with this interaction, peptide 2J dose-dependently inhibited the binding of C1q to IgG and blocked activation of C4 and C3 and formation of C5b-9 induced via classical pathway activation, as assessed by ELISA. Furthermore, the peptide strongly inhibited the deposition of C4 and C3 on pig cells following their exposure to human xenoreactive Abs and complement. We conclude that peptide 2J is a promising reagent for the development of a therapeutic inhibitor of the earliest step of the classical complement pathway, i.e., the binding of C1q to its target.  相似文献   

7.
The complement cascade has long been recognized to play a key role in inflammatory and degenerative diseases. It is a 'double edged' sword as it is necessary to maintain health, yet can have adverse effects when unregulated, often exacerbating disease. The contrasting effects of complement, depending on whether in a setting of health or disease, is the price paid to achieve flexibility in scope and degree of a protective response for the host from infection and injury. Loss or even decreased efficiency of critical regulatory control mechanisms can result in aggravated inflammation and destruction of self-tissue. The role of the complement cascade is poorly understood in the nervous system and neurological disorders. Novel studies have demonstrated that the expression of complement proteins in brain varies in different cell types and the effects of complement activation in various disease settings appear to differ. Understanding the functioning of this cascade is essential, as it has therapeutic implications. In this review, we will attempt to provide insight into how this complex cascade functions and to identify potential strategic targets for therapeutic intervention in chronic diseases as well as acute injury in the CNS.  相似文献   

8.
Complement component C3 (C3), a key factor in the complement system, is heavily involved in various inflammation-associated diseases. However, it remains obscure for its role in the pathogenesis of cerebral ischemia/reperfusion (I/R) injury in diabetes. A transient middle cerebral artery occlusion (tMCAO) model was used for cerebral I/R injury in streptozotocin-induced diabetic mice. Cerebral infarct volume and neurological function were measured at different times of reperfusion. Complement C3 was measured by ELISA and western blotting. It was observed that complement C3 expression was increased in cerebral I/R injury of diabetic mice, whereas complement C3 deficiency abrogated the activation and injury. Furthermore, activating complement C3 promotes TLR2/NFκB activation after I/R injury in diabetic mice, which is inhibited by of the silencing of TLR2. Taken together, our data demonstrate that complement C3 promotes cerebral I/R injury via the TLR2/NFκB pathway in diabetic mice, and regulating the complement C3/TLR2/NFκB pathway may be a novel target for therapeutic intervention in diabetic stroke.  相似文献   

9.
The complement system is key to innate immunity and its activation is necessary for the clearance of bacteria and apoptotic cells. However, insufficient or excessive complement activation will lead to immune-related diseases. It is so far unknown how the complement activity is up- or down- regulated and what the associated pathophysiological mechanisms are. To quantitatively understand the modulatory mechanisms of the complement system, we built a computational model involving the enhancement and suppression mechanisms that regulate complement activity. Our model consists of a large system of Ordinary Differential Equations (ODEs) accompanied by a dynamic Bayesian network as a probabilistic approximation of the ODE dynamics. Applying Bayesian inference techniques, this approximation was used to perform parameter estimation and sensitivity analysis. Our combined computational and experimental study showed that the antimicrobial response is sensitive to changes in pH and calcium levels, which determines the strength of the crosstalk between CRP and L-ficolin. Our study also revealed differential regulatory effects of C4BP. While C4BP delays but does not decrease the classical complement activation, it attenuates but does not significantly delay the lectin pathway activation. We also found that the major inhibitory role of C4BP is to facilitate the decay of C3 convertase. In summary, the present work elucidates the regulatory mechanisms of the complement system and demonstrates how the bio-pathway machinery maintains the balance between activation and inhibition. The insights we have gained could contribute to the development of therapies targeting the complement system.  相似文献   

10.
Recent studies suggest that uromodulin plays an important role in chronic kidney diseases. It can interact with several complement components, various cytokines and immune system cells. Complement factor H (CFH), as a regulator of the complement alternative pathway, is also associated with various renal diseases. Thus, we have been suggested that uromodulin regulates complement activation by interacting with CFH during tubulointerstitial injury. We detected co‐localization of uromodulin and CFH in the renal tubules by using immunofluorescence. Next, we confirmed the binding of uromodulin with CFH in vitro and found that the affinity constant (KD) of uromodulin binding to CFH was 4.07 × 10?6M based on surface plasmon resonance results. The binding sites on CFH were defined as the short consensus repeat (SCR) units SCR1–4, SCR7 and SCR19–20. The uromodulin‐CFH interaction enhanced the cofactor activity of CFH for factor I‐mediated cleavage of C3b to iC3b. These results indicate that uromodulin plays a role via binding and enhancing the function of CFH.  相似文献   

11.
The capacity of isolated human glomerular basement membrane (GBM) to initiate surface activation of the human alternative complement pathway was defined by the deposition of C3b under circumstances in which the classical complement pathway was inoperative. The deposition of C3b from normal or C2-deficient serum was time- and magnesium-dependent, implying a role for the alternative pathway. Normal human serum rendered deficient in D did not sustain C3b deposition until its reconstitution with D, indicating an absolute requirement for a protein unique to the alternative pathway and essential to the cleavage activation of the C3 amplification convertase of that pathway. The capacity of the excess control proteins H and I to prevent C3b deposition onto GBM incubated in C2-deficient serum provided further evidence for the direct activation of the alternative pathway in this system. The use of radiolabeled monoclonal antibody to localize the deposited C3b afforded specificity and quantitation of about 100 ng of C3b/mg of GBM. Immunohistochemical analysis with a monoclonal antibody to detect C3b demonstrated its deposition to be confined to the epithelial surface of the GBM.  相似文献   

12.
Shiga toxin (Stx)-producing E.coli O157:H7 has become a global threat to public health; it is a primary cause of diarrhea-associated hemolytic uremic syndrome (HUS), a disorder of thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure with thrombi occluding renal microcirculation. In this study, we explored whether Stx triggers complement-dependent microvascular thrombosis in in vitro and in vivo experimental settings of HUS. Stx induced on human microvascular endothelial cell surface the expression of P-selectin, which bound and activated C3 via the alternative pathway, leading to thrombus formation under flow. In the search for mechanisms linking complement activation and thrombosis, we found that exuberant complement activation in response to Stx generated an increased amount of C3a that caused further endothelial P-selectin expression, thrombomodulin (TM) loss, and thrombus formation. In a murine model of HUS obtained by coinjection of Stx2 and LPS and characterized by thrombocytopenia and renal dysfunction, upregulation of glomerular endothelial P-selectin was associated with C3 and fibrin(ogen) deposits, platelet clumps, and reduced TM expression. Treatment with anti-P-selectin Ab limited glomerular C3 accumulation. Factor B-deficient mice after Stx2/LPS exhibited less thrombocytopenia and were protected against glomerular abnormalities and renal function impairment, indicating the involvement of complement activation via the alternative pathway in the glomerular thrombotic process in HUS mice. The functional role of C3a was documented by data showing that glomerular fibrin(ogen), platelet clumps, and TM loss were markedly decreased in HUS mice receiving C3aR antagonist. These results identify Stx-induced complement activation, via P-selectin, as a key mechanism of C3a-dependent microvascular thrombosis in diarrhea-associated HUS.  相似文献   

13.
The complement system is an essential part of the innate immune system by acting as a first line of defense which is stabilized by properdin, the sole known positive regulator of the alternative complement pathway. Dysregulation of complement can promote a diversity of human inflammatory diseases which are treated by complement inhibitors. Here, we generated a novel blocking monoclonal antibody (mAb) against properdin and devised a new diagnostic assay for this important complement regulator. Mouse mAb 1340 specifically detected native properdin from human samples with high avidity. MAb 1340 inhibited specifically the alternative complement mediated cell lysis within a concentration range of 1–10 µg/mL. Thus, in vitro anti-properdin mAb 1340 was up to fifteen times more efficient in blocking the complement system as compared to anti-C5 or anti-Ba antibodies. Computer-assisted modelling suggested a three-dimensional binding epitope in a properdin-C3(H2O)-clusterin complex to be responsible for the inhibition. Recovery of properdin in a newly established sandwich ELISA using mAb 1340 was determined at 80–125% for blood sample dilutions above 1∶50. Reproducibility assays showed a variation below 25% at dilutions less than 1∶1,000. Systemic properdin concentrations of healthy controls and patients with age-related macular degeneration or rheumatic diseases were all in the range of 13–30 µg/mL and did not reveal significant differences. These initial results encourage further investigation into the functional role of properdin in the development, progression and treatment of diseases related to the alternative complement pathway. Thus, mAb 1340 represents a potent properdin inhibitor suitable for further research to understand the exact mechanisms how properdin activates the complement C3-convertase and to determine quantitative levels of properdin in biological samples.  相似文献   

14.
In glomerular diseases of diverse etiologies, dysfunction of the glomerular barrier to protein passage results in proteinuria, and proteinuria is considered an independent risk factor that plays a direct role in inflammation, interstitial fibrosis, and renal failure. The mechanism by which proteinuria leads to nephrotoxic injury is unclear, but a role for complement in mediating interstitial damage appears likely. We describe a strategy for Ag-specific targeting of complement inhibitors using a single chain Ab fragment and show that complement inhibitors targeted to the tubular epithelium protect against tubulointerstitial injury and renal dysfunction in a rat model of puromycin-induced nephrosis. The targeting of systemically administered complement inhibitors markedly enhanced their efficacy and obviated the need to systemically inhibit complement, thus reducing the risk of compromising host defense and immune homeostasis. Targeted inhibition of complement activation by Crry, and of membrane attack complex (MAC) formation by CD59 was equally therapeutic, demonstrating that the MAC plays a key role in proteinuria-induced tubulointerstitial injury. CD59 activity was dependent on its being targeted to the site of complement activation, and this is the first report of specific inhibition of the MAC in vivo after systemic administration of inhibitor. The data establish the MAC is a valid target for pharmaceutical intervention in proteinuric disorders and provide an approach to investigate the role of the MAC in complement-dependent disease under clinically relevant conditions.  相似文献   

15.
王永煜  余薇  周斌 《遗传》2017,39(7):576-587
心血管疾病已成为中国乃至全球首位死亡原因,探索心血管系统发育及调控异常的原因及相关机制可以为心血管疾病的预防和治疗提供重要的科学依据。Hippo信号通路是新近发现的在调节器官大小、细胞增殖及凋亡、干细胞命运等方面具有重要功能的一条信号通路。Hippo信号通路的不同成分参与心脏血管的发育和心血管细胞增殖、分化等功能调控,影响损伤后修复及再生等过程,该通路调节异常可引起心血管疾病,如心梗、心肌肥大、血管内膜增生、动脉硬化等。本文综述了Hippo信号通路对心血管系统发育和疾病调控的相关研究及最新进展,以期为Hippo通路在心血管疾病的发病机制及临床转化研究提供潜在的理论基础。  相似文献   

16.
Chronic kidney diseases (CKD), a common outcome of various kidney diseases, cause a series of refractory complications, which lead to great economic burdens on patients. The clinical outcomes of CKD depend on various factors, including metabolic disorders. Leptin, a peptide hormone, produced in adipose tissues, plays an important role in regulating food consumption and energy expenditure. Leptin also influences the immune system and hematopoiesis. Increased leptin status is observed in CKD, leptin deficiency attenuates the immune response in nephritis. Conversely, leptin inhibits the development of obesity, which is closely associated glomerular disorder. Now, the precise role of leptin in CKD remains elusive. This review will give an integrated understanding of the potential role of leptin and its interactions with other signal molecules in CKD.  相似文献   

17.
A wide variety of nanomaterials are currently being developed for use in the detection and treatment of human diseases. However, there is no systematic way to measure and predict the action of such materials in biological contexts. Lipid-encapsulated nanoparticles (NPs) are a class of nanomaterials that includes the liposomes, the most widely used and clinically proven type of NPs. Liposomes can, however, activate the complement system, an important branch of innate immunity, resulting in undesirable consequences. Here, we describe the complement response to lipid-encapsulated NPs that are functionalized on the surface with various lipid-anchored gadolinium chelates. We developed a quantitative approach to examine the interaction of NPs with the complement system using in vitro assays and correlating these results with those obtained in an in vivo mouse model. Our results indicate that surface functionalization of NPs with certain chemical structures elicits swift complement activation that is initiated by a natural IgM antibody and propagated via the classical pathway. The intensity of the response is dependent on the chemical structures of the lipid-anchored chelates and not zeta potential effects alone. Moreover, the extent of complement activation may be tempered by complement inhibiting regulatory proteins that bind to the surface of NPs. These findings represent a step forward in the understanding of the interactions between nanomaterials and the host innate immune response and provide the basis for a systematic structure-activity relationship study to establish guidelines that are critical to the future development of biocompatible nanotherapeutics.  相似文献   

18.
The complement system is a group of proteins that when activated lead to target cell lysis and facilitates phagocytosis through opsonisation. Individual complement components can be quantified however this does not provide any information as to the activity of the pathway. The CH50 is a screening assay for the activation of the classical complement pathway (Fig 1) and it is sensitive to the reduction, absence and/or inactivity of any component of the pathway. The CH50 tests the functional capability of serum complement components of the classical pathway to lyse sheep red blood cells (SRBC) pre-coated with rabbit anti-sheep red blood cell antibody (haemolysin). When antibody-coated SRBC are incubated with test serum, the classical pathway of complement is activated and haemolysis results. If a complement component is absent, the CH50 level will be zero; if one or more components of the classical pathway are decreased, the CH50 will be decreased. A fixed volume of optimally sensitised SRBC is added to each serum dilution. After incubation, the mixture is centrifuged and the degree of haemolysis is quantified by measuring the absorbance of the haemoglobin released into the supernatant at 540nm. The amount of complement activity is determined by examining the capacity of various dilutions of test serum to lyse antibody coated SRBC. This video outlines the experimental steps involved in analysing the level of complement activity of the classical complement pathway.Download video file.(81M, mp4)  相似文献   

19.
The complement pathway is best known for its role in immune surveillance and inflammation. However, its ability of opsonizing and removing not only pathogens, but also necrotic and apoptotic cells, is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation, to increased survival of various cell types in the presence of split products of complement, and to the production of trophic factors by cells activated by the anaphylatoxins C3a and C5a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3a and C5a.  相似文献   

20.
The complement system is an integral part of innate immunity that detects and eliminates invading pathogens through a cascade of reactions. The destructive effects of the complement activation on host cells are inhibited through versatile regulators that are present in plasma and bound to membranes. Impairment in the capacity of these regulators to function in the proper manner results in autoimmune diseases. To better understand the delicate balance between complement activation and regulation, we have developed a comprehensive quantitative model of the alternative pathway. Our model incorporates a system of ordinary differential equations that describes the dynamics of the four steps of the alternative pathway under physiological conditions: (i) initiation (fluid phase), (ii) amplification (surfaces), (iii) termination (pathogen), and (iv) regulation (host cell and fluid phase). We have examined complement activation and regulation on different surfaces, using the cellular dimensions of a characteristic bacterium (E. coli) and host cell (human erythrocyte). In addition, we have incorporated neutrophil-secreted properdin into the model highlighting the cross talk of neutrophils with the alternative pathway in coordinating innate immunity. Our study yields a series of time-dependent response data for all alternative pathway proteins, fragments, and complexes. We demonstrate the robustness of alternative pathway on the surface of pathogens in which complement components were able to saturate the entire region in about 54 minutes, while occupying less than one percent on host cells at the same time period. Our model reveals that tight regulation of complement starts in fluid phase in which propagation of the alternative pathway was inhibited through the dismantlement of fluid phase convertases. Our model also depicts the intricate role that properdin released from neutrophils plays in initiating and propagating the alternative pathway during bacterial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号