首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pretreating biomass using ionic liquids (ILs) can decrease cellulose crystallinity and lead to improved hydrolysis. However, cellulase activity is often reduced in even low concentrations of ILs, necessitating complete washing between pretreatment and hydrolysis steps. To better understand how ILs interact with enzymes at the molecular scale, endoglucanase E1 from Acidothermus cellulolyticus was simulated in aqueous 1-ethyl-3-methylimidazolium chloride ([Emim]Cl). Homologs with differing surface charge were also simulated to assess the role of electrostatic interactions between the enzyme and the surrounding solvent. Chloride anions interacted with the enzyme surface via Coulomb or hydrogen bond interactions, while [Emim] cations primarily formed hydrophobic or ring stacking interactions. Cations strongly associated with the binding pocket of E1, potentially inhibiting the binding of substrate molecules. At elevated temperatures, cations also disrupted native hydrophobic contacts and caused some loss of secondary structure. These observations suggested that both cations and anions could influence enzyme behavior and that denaturing and inhibitory interactions might both be important in aqueous IL systems.  相似文献   

3.
Perez-Miron J  Jaime C  Ivanov PM 《Chirality》2008,20(10):1127-1133
All possible methylated beta-cyclodextrins (CDs) with C7-symmetry have been studied by molecular dynamics simulations, in gas phase and in water solution. Energetic and structural information were obtained from the trajectory analysis. CD flexibility increases with degree of methylation, very likely due to the concomitant reduction of the intramolecular hydrogen bonds. Solvation-free energy was computed for each of the studied CDs using the MM/GBSA method. An analysis of radial distribution functions was used to determine distribution of solvent molecules around the O2, O3, and O6. The number of solvent molecules around these oxygens decreases with an increase in the degree of methylation. The DeltaS contribution from solvent thus becomes more positive when the degree of methylation increases and, consequently, the overall DeltaG in water diminishes.  相似文献   

4.
Li Xi 《Molecular simulation》2019,45(14-15):1242-1264
ABSTRACT

Bottom-up prediction that links materials chemistry to their properties is a constant theme in polymer simulation. Rheological properties are particularly challenging to predict because of the extended time scales involved as well as large uncertainty in the stress output from molecular simulation. This review focuses on the application of molecular simulation in the prediction of such properties, including approaches solely based on molecular simulation and its integration with rheological models. Most attention is given to the prediction of quantitative properties, in particular, those most studied such as shear viscosity and linear viscoelasticity. Studies on the fundamental understanding of rheology are referenced only when they are directly relevant to the property prediction. The review starts with an overview of the major methods for extracting rheological properties from molecular simulation, using bead-spring chain models as a sandbox system. It then discusses materials-specific prediction using chemically-realistic models, including systematically coarse-grained models that allow the mapping between scales. Finally, integrating molecular simulation with rheological models extends the prediction to highly entangled polymers. Recent development of several multiscale predictive frameworks allowed the successful prediction of rheological properties from the chemical structure for polymers of experimentally relevant molecular weights.  相似文献   

5.
Transport properties of concentrated electrolytes have been analysed using classical molecular dynamics simulations with the algorithms and parameters typical of simulations describing complex electrokinetic phenomena. The electrical conductivity and transport numbers of electrolytes containing monovalent (KCl), divalent (MgCl2), a mixture of both (KCl+MgCl2) and trivalent (LaCl3) cations have been obtained from simulations of the electrolytes in electric fields of different magnitude. The results obtained for different simulation parameters have been discussed and compared with experimental measurements of our own and from the literature. The electroosmotic flow of water molecules induced by the ionic current in different cases has been calculated and interpreted with the help of the hydration properties extracted from the simulations.  相似文献   

6.
Various molecular parameters, which characterize sodium hyaluronate in 0.2M NaCl solution, were obtained at 25°C by means of the static and dynamic light scattering and low shear viscometry over the molecular weight range of 5.94–627 × 104. Molecular weight distribution was obtained by using the Laplace inversion method of the autocorrelation function of the scattered light intensity and by Yamakawa theory for the wormlike chain with the stiff chain parameters for sodium hyaluronate in 0.2M NaCl (persistence length, chain diameter, molar mass per unit contour length, and the excluded‐volume strength). The molecular weight distribution thus obtained reproduced the solution properties of sodium hyaluronate well. Especially, the intrinsic viscosity showed a good agreement over four orders of molecular weight with Yamakawa theory combined with the Barrett function. Sodium hyaluronate in 0.2M NaCl solution is well expressed by the wormlike chain model affected by the excluded‐volume effect with the persistence length of 4.2 nm. © 1999 John Wiley & Sons, Inc. Biopoly 50: 87–98, 1999  相似文献   

7.
Aqueous NaCl solutions of dimerized Na xanthan with salt concentrations of 0.005, 0.01 and 0.1 were exposed to 80°C for different time periods t, and their viscosities were determined as a function of t. The measured relative viscosities decreased markedly with t, suggesting that Na xanthan denatured at 80°C undergoes some conformation changes or degradation. The molecular weights of the test samples recovered at different t were estimated by viscometry in cadoxen, a single-coil solvent for xanthan, and were found to decrease monotonically with t. Thus, it was concluded that the observed decreases in relative viscosity are due primarily to degradation of Na xanthan.  相似文献   

8.
The nitrate reductase (NR) activity extracted from Suaeda maritima is reduced by half in the presence of 0.1 M sodium chloride. This effect of sodi  相似文献   

9.
10.
Molecular dynamics simulations were used to study the thermal conductivity of liquid argon ultra thin films confined between two plates spaced several nanometres apart. The research focused on the dependence of the liquid argon thermal conductivity on the liquid layer thickness and the interaction between liquid and solid. The results show that the thermal conductivity of liquid argon ultra thin films confined between two plates depends on the distance between the two plates and the existence of solid-like liquid layering at the liquid–solid interface and the average migration frequency of all liquid molecules. Stronger interactions between the liquid and the solid resulted in a larger number of atoms in the solid-like liquid layer along the surface and hence smaller thermal resistance between the liquid and the solid. However, as the strength of the interaction with the solid increased, the thermal conductivity was reduced due to fewer atoms near the hot solid boundary and less molecular migration.  相似文献   

11.
Molecular dynamics (MD) simulations on heparin-water-sodium systems were carried out in order to establish a simulation protocol able to represent heparin solution conformation under physiological conditions. Atomic charges suitable for heparin oligosaccharides were obtained from ab initio quantum-mechanical computations, at the 6-31G(**) level. The GROMACS forcefield, the SPC, and SPC/E water models were employed. Also heparin was simulated with IdoA residues in 1C(4) or 2S(0) conformational states. The results of the performed MD simulations are in agreement with the available experimental data, suggesting that this approach can be applied for the study of heparin interactions with its target proteins and thus play a role in the development of new antithrombotic agents.  相似文献   

12.
Voltage-gated sodium (Nav) channels are indispensable membrane elements for the generation and propagation of electric signals in excitable cells. The successes in the crystallographic studies on prokaryotic Nav channels in recent years greatly promote the mechanistic investigation of these proteins and their eukaryotic counterparts. In this paper, we mainly review the progress in computational studies, especially the simulation studies, on these proteins in the past years.  相似文献   

13.
The effect of sodium salicylate (NaSal) on the spherical-to-threadlike micelle shape transition in 3-hexadecyloxy-2-hydroxy-propyl trimethyl ammonium bromide (R16HTAB) solution was studied using molecular dynamics simulation. The simulations were started from a preassembled infinitely long threadlike micelle of R16HTAB. By analyzing the aggregation morphologies and structural details, we find that the preassembled threadlike micelle in the absence of NaSal was unstable and assembled into a spherical micelle. While in the presence of NaSal, the threadlike micelle exhibited fluctuations but remained the threadlike shape during the long simulation run. The Sal? ions were found to penetrate inside the micelle, which promoted the junction between the surfactant and salicylate counterion. The aromatic Sal? ions located in the surfactant headgroup region with their phenyl groups pointing toward the interior core region of the micelle. From another simulation started with two individual spherical micelles, we found that the Sal? ions can link the two spherical micelles into a long threadlike micelle, in accordance with a mode proposed by experimental studies. Our studies showed that the H-bonds and electrostatic interactions between the Sal? ions and the surfactants played an important role in micellar growth and stabilising the threadlike micelle.  相似文献   

14.
The infrared spectral characteristics of three different types of disaccharides (trehalose, maltose, and sucrose) and four different types of monosaccharides (glucose, mannose, galactose, and fructose) in aqueous solutions with sodium chloride (NaCl) were determined. The infrared spectra were obtained using the FT-IR/ATR method and the absorption intensities respected the interaction between the saccharide and water with NaCl were determined. This study also focused on not only the glycosidic linkage position and the constituent monosaccharides, but also the concentration of the saccharides and NaCl and found that they have a significant influence on the infrared spectroscopic characterization of the disaccharides in an aqueous solution with NaCl. The absorption intensities representing the interaction between a saccharide and water with NaCl were spectroscopically determined. Additionally, the applications of MIR spectroscopy to obtain information about saccharide–NaCl interactions in foods and biosystems were suggested.  相似文献   

15.
In this paper, the content of bound water was studied to evaluate the cryoprotective properties of ethylene glycol and glycerol solution. Molecular dynamic models for the solution were built, the classification principle and statistical methods of water molecules in solutions were presented, respectively. The content of bound water with various hydroxyl molarity at different temperatures was obtained through molecular dynamic simulation. The results reveal that the content of bound water increases with increasing hydroxyl molarity, but decreases with increasing temperature. It was found that, the content of bound water in ethylene glycol solution is always slightly more than that in glycerol solution, regardless of whether the temperature increases or not.  相似文献   

16.
It is well known that there is a size effect for the thermal conductivity of thin films and that vacancy defects in film reduce the film's thermal conduction. In this paper, the film size and vacancy defect effects on the thermal conductivities of argon thin films were studied by molecular dynamics simulations. The results show the existence of phonon boundary scattering. The results also confirm that the theoretical model based on the Boltzmann equation can accurately model the thermal conduction of thin argon films. Both the theoretical and MD results illustrate that, although, both the defect and the thickness of the thin film deduce the thermal conductivity, their physical mechanisms differ.  相似文献   

17.
Molecular dynamics simulation was used to study a colloidal suspension with explicit solvent to determine how inclusion of the solvent affects the structure and dynamics of the system. The solute was modelled as a hard-core particle enclosed in a Weeks–Chandler–Andersen (WCA) potential shell, while the solvent was modelled as a simple WCA fluid. We found that when the solute–solvent interaction included a hard core equal to half of the solute hard-core diameter, large depletion effects arose, leading to an effective attraction and large deviations from hard-sphere structure for the colloidal component. It was found that these effects could be eliminated by reducing the hard-core distance parameter in the solute–solvent interaction, thus allowing the solvent to penetrate closer to the colloidal particles. Three different values for the solute–solvent hard-core parameter were systematically studied by comparing the static structure factor and radial distribution function to the predictions of the Percus–Yevick theory for hard spheres. When the optimal value of the solute–solvent hard-core interaction parameter was found, this model was then used to study the dynamical behaviour of the colloidal suspension. This was done by first measuring the velocity autocorrelation function (VACF) over a large range of packing fractions. We found that this model predicted the sign of the long-time tail in the VACF in agreement with experimental values, something that single component hard-sphere systems have failed to do. The intermediate scattering functions at low wavevector were briefly studied to determine their behaviour in a dilute system. It was found that they could be modelled using a simple diffusion equation with a wavevector independent diffusion coefficient, making this model an excellent analogue of experimentally studied hard-sphere colloids.  相似文献   

18.
The present study aimed to explore the most probable regions of the human prion protein backbone for which the initial steps of conformational transitions as a result of intrinsic and extrinsic perturbing factors on the protein structure can be assigned. A total of 0.3-μs molecular dynamics simulations on several analog structures of the protein have been performed. To mimic the impact of the extrinsic and intrinsic destructive parameters on the dynamical characteristics of the protein, mild acidic conditions and R208H mutation have been simulated. The findings indicated that distribution of conformational flexibilities along the protein chain was almost independent of the induced perturbing factors, and was mostly centralized on certain distinct parts of the structure comprising residues 132–145 and 187–203. Analyses also revealed that the segment comprising residues 187–203 may be considered as a peptide sequence, possessing high potential to start the initial steps of conformational rearrangements due to the induced physicochemical alterations. Sequence alignment and molecular dynamics data also revealed that segment 178–203 prefers to accommodate in extended structures rather than α-helices. Region 178–203 may be considered as a peptide switch capable of initiating the conformational transitions due to the introduced modifications and perturbing parameters.  相似文献   

19.
CYP2B6 is a polymorphic enzyme with a large number of variants which may lead to functional changes in enzyme activity and substrate selectivity. In this study, CYP2B6 and its three variants with and without psoralen, a mechanism-based inactivator, were investigated using molecular simulation method. The obtained docking orientation of psoralen was in agreement with previously identified site of metabolism. Stability analysis showed that the three variants displayed more flexibility than CYP2B6.1, and CYP2B6.34 was the most flexible one without psoralen binding. However, in the presence of psoralen, CYP2B6.34 became more rigidity. Tunnel analysis indicates that the bottleneck change of tunnels may be correlated to the increased or decreased activity of variants. Binding free energy analysis shows that van der Waals interaction dominates the binding of psoralen. CYP2B6.34 has the highest affinity to psoralen with lowest binding free energy. Ile114, Phe115 and heme contribute largely to the binding of psoralen with CYP2B6.6, while Phe206 and Leu363 play important roles for CYP2B6.1 and CYP2B6.4. These computational observations suggest that the increased activity of CYP2B6.4 and reduced activity of CYP2B6.6 may be due to changes in regional structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号