首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New α,β-unsaturated ketones 4a,b; 5a–c; and 6a,b; as well as 4-H pyran 7; pyrazoline 8a,b; isoxazoline 9; pyridine 10–11; and quinoline-4-carboxylic acid 12a,b derivatives were synthesized and evaluated for in vitro antitumour activity against HepG2, MCF-7, HeLa, and PC-3 cancer cell lines. Antioxidant activity was investigated by the ability of these compounds to scavenge the 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS?+). Compounds 6a, 6b, 7, and 8b exhibited potent antitumour activities against all tested cell lines with [IC50] ?5.5–18.1 µΜ), in addition to significantly high ABTS?+ scavenging activities. In vitro EGFR kinase assay for 6a, 6b, 7, and 8b as the most potent antitumour compounds showed that; compounds 6b, and 7 exhibited worthy EGFR inhibition activity with IC50 values of 0.56 and 1.6?µM, respectively, while compounds 6a and 8b showed good inhibition activity with IC50 values of 4.66 and 2.16?µM, respectively, compared with sorafenib reference drug (IC50?=?1.28?µM). Molecular modelling studies for compounds 6b, 7, and 8b were conducted to exhibit the binding mode towards EGFR kinase, which showed similar interaction with erlotinib.  相似文献   

2.
Eight newly synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2 with R = pCl–C6H4 1a, pBr–C6H4 2a, C6H5 3a, and pMe–C6H4 4a and RC(O)NHP(O)(NC4H8O)2 R = pCl–C6H4 1b, pBr–C6H4 2b, C6H5 3b, pMe–C6H4 4b, were selected to compare the inhibition kinetic parameters, IC50, Ki, kp and KD, on human erythrocyte acetylcholinesterase (hAChE) and bovine serum butyrylcholinesterase (BuChE), Also, the in vivo inhibition potency of compound 2a, 2b and 3a, were studied. The data demonstrates that compound 2a and compound 2b are the potent sensitive as AChE and BuChE inhibitors respectively, and the inhibition of hAChE is about 10-fold greater than that of BuChE.  相似文献   

3.
Herein, we report the synthesis of different novel sets of coumarin-6-sulfonamide derivatives bearing different functionalities (4a, b, 8a–d, 11a–d, 13a, b, and 15a–c), and in vitro evaluation of their growth inhibitory activity towards the proliferation of three cancer cell lines; HepG2 (hepatocellular carcinoma), MCF-7 (breast cancer), and Caco-2 (colon cancer). HepG2 cells were the most sensitive cells to the influence of the target coumarins. Compounds 13a and 15a emerged as the most active members against HepG2 cells (IC50?=?3.48?±?0.28 and 5.03?±?0.39?µM, respectively). Compounds 13a and 15a were able to induce apoptosis in HepG2 cells, as assured by the upregulation of the Bax and downregulation of the Bcl-2, besides boosting caspase-3 levels. Besides, compound 13a induced a significant increase in the percentage of cells at Pre-G1 by 6.4-folds, with concurrent significant arrest in the G2-M phase by 5.4-folds compared to control. Also, 13a displayed significant increase in the percentage of annexin V-FITC positive apoptotic cells from 1.75–13.76%. Moreover, QSAR models were established to explore the structural requirements controlling the anti-proliferative activities.  相似文献   

4.
In this work we described the synthesis and evaluation of cytotoxic and apoptotic activity of novel pyrrolopyrimidine derivatives against A549, PC3 and MCF-7 cells. Among the synthesized compounds, 6b, 8a, 9a and 7a, 8b displayed the significant cytotoxic activities against A549 and PC3 cells with IC50 value of 0.35, 1.48, 1.56 and 1.04, 1.89 µM, respectively. It was found that A549 cells were more sensitive to synthesized compounds than PC3 and MCF-7 cells. In order to evaluate the mechanism of cytotoxic activity in A549, compounds 6b, 8a and 9a were selected for further studies. Annexin V binding assay and western blot analysis results revealed that 6b, 8a and 9a induced apoptosis in A549 cells by intrinsic apoptotic pathway through the activation pro-apoptotic proteins such as Bim, Bax, Bak, Puma and deactivation of anti-apoptotic proteins including Bcl-2, Mcl-1 and Bcl-XL accompanied by the activation of caspase-3, caspase-9 and cleavage of PARP. Also, compounds 6b, 8a and 9a triggered apoptosis in HCT116 wt cells via activation of caspase-3 and caspase-9, but not in HCT116 Bax/Bak KO cells, indicating resistance to 6b, 8a and 9a treatment.  相似文献   

5.
Synthesis of “reversed” methylenecyclopropane analogues of nucleoside phosphonates 6a,7a, 6b, and 7b is described. 1-Bromo-1-bromomethylcyclopropane 8 was converted to the bromocyclopropyl phosphonate 9 by Michaelis-Arbuzov reaction with triisopropyl phosphite. Base-catalyzed β-elimination and deacetylation gave the key Z- and E-hydroxymethylcyclopropyl phosphonates 10 and 11 separated by chromatography. The Mitsunobu type of alkylation of 10 or 11 with adenine or 2-amino-6-chloropurine afforded phosphonates 12a, 12b, 13a, and 13b. Acid hydrolysis furnished the adenine and guanine analogues 6a, 7a, 6b, and 7b. The E and Z configuration was assigned on the basis of NOE experiments with phosphonates 6b and 7b. All Z- and E-isomers were also distinguished by different chemical shifts of CH2O or CH2N (H4 or H4′). Significant differences of the chemical shifts of the cyclopropane C3(3’) carbons and coupling constants 3JP,C2(2’) or 3JP,C3(3’) selective for the Z- or E-isomers were also noted. Phosphonates 6a, 7a, 6b, and 7b are devoid of significant antiviral activity.  相似文献   

6.
The potential antitumor activities of a series of 7-(4-substituted piperazin-1-yl)fluoroquinolone derivatives (114a,b) using ciprofloxacin and norfloxacin as scaffolds are described. These compounds exhibit potent and broad spectrum antitumor activities using 60 human cell lines in addition to the inherent antibacterial activity. Compounds 1a, 2a, 3b, 6b and 7a were found to be the most potent, while 2b, 5b, and 6a were found to have an average activity. The results of this study demonstrated that compounds 1a, 2a, 3b, 6b and 7a (mean GI50; 2.63–3.09?µM) are nearly 7-fold more potent compared with the positive control 5-fluorouracil (mean GI50; 22.60?µM). More interestingly, compounds 1a, 2a, 3b, 6b and 7a have an almost antitumor activity similar to gefitinib (mean GI50; 3.24?µM) and are nearly 2-fold more potent compared to erlotinib (mean GI50; 7.29?µM). In silico study and ADME-Tox prediction methodology were used to study the antitumor activity of the most active compounds and to identify the structural features required for antitumor activity.  相似文献   

7.
A new set of 4-phenylcoumarin derivatives was designed and synthesized aiming to introduce new tubulin polymerization inhibitors as anti-breast cancer candidates. All the target compounds were evaluated for their cytotoxic effects against MCF-7 cell line, where compounds 2f, 3a, 3b, 3f, 7a and 7b, showed higher cytotoxic effect (IC50?=?4.3–21.2?μg/mL) than the reference drug doxorubicin (IC50?=?26.1?μg/mL), additionally, compounds 1 and 6b exhibited the same potency as doxorubicin (IC50?=?25.2 and 28.0?μg/mL, respectively). The thiazolidinone derivatives 3a, 3b and 3f with potent and selective anticancer effects towards MCF-7 cells (IC50?=?11.1, 16.7 and 21.2?μg/mL) were further assessed for tubulin polymerization inhibition effects which showed that the three compounds were potent tubulin polymerization suppressors with IC50 values of 9.37, 2.89 and 6.13?μM, respectively, compared to the reference drug colchicine (IC50?=?6.93?μM). The mechanistic effects on cell cycle progression and induction of apoptosis in MCF-7 cells were determined for compound 3a due to its potent and selective cytotoxic effects in addition to its promising tubulin polymerization inhibition potency. The results revealed that compound 3a induced cell cycle cessation at G2/M phase and accumulation of cells in pre-G1 phase and prevented its mitotic cycle, in addition to its activation of caspase-7 mediating apoptosis of MCF-7 cells. Molecular modeling studies for compounds 3a, 3b and 3f were carried out on tubulin crystallography, the results indicated that the compounds showed binding mode similar to the co-crystalized ligand; colchicine. Moreover, pharmacophore constructed models and docking studies revealed that thiazolidinone, acetamide and coumarin moieties are crucial for the activity. Molecular dynamics (MD) studies were carried out for the three compounds over 100?ps. MD results of compound 3a showed that it reached the stable state after 30?ps which was in agreement with the calculated potential and kinetic energy of compound 3a.  相似文献   

8.
A new series of pyrazolo[3,4-d]pyrimidine-6-one derivatives (2a–2j) were prepared by using the Biginelli multicomponent cyclocondensation of 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (1a), different aromatic aldehydes, and urea with a catalytic amount of HCl at reflux temperature. These compounds were characterized by IR, 1H NMR, 13C NMR, and Mass spectral data. In vitro antiamoebic activity was performed against HM1:IMSS strain of Entamoeba histolytica. The results showed that the compounds 2b, 2i, and 2j with IC50 values of 0.37 µM, 0.04 µM, and 0.06 µM, respectively, exhibited better antiamoebic activity than the standard drug metronidazole (IC50?=?1.33 µM). The toxicological studies of these compounds on human breast cancer MCF-7 cell line showed that the compounds 2b, 2i, and 2j exhibited >80% viability at the concentration range of 1.56–50 µM.  相似文献   

9.
A new series of NSAID thioesters were synthesized and evaluated for their in vitro antitumor effects against a panel of four human tumor cell lines, namely: HepG2, MCF-7, HCT-116 and Caco-2, using the MTT assay. Compared to the reference drugs 5-FU, afatinib and celecoxib, compounds 2b, 3b, 6a, 7a, 7b and 8a showed potent broad-spectrum antitumor activity against the selected tumour cell lines. Accordingly, these compounds were selected for mechanistic studies about COX inhibition and kinase assays. In vitro COX-1/COX-2 enzyme inhibition assay results indicated that compounds 2b, 3b, 6a, 7a, 7b, 8a and 8?b selectively inhibited the COX-2 enzyme (IC50?=?~0.20–0.69?μM), with SI values of (>72.5–250) compared with celecoxib (IC50?=?0.16?μM, COX-2 SI:?>?312.5); however, all the tested compounds did not inhibit the COX-1 enzyme (IC50?>?50?μM). On the other hand, EGFR, HER2, HER4 and cSrc kinase inhibition assays were evaluated at a 10?μM concentration. The selected candidates displayed limited activities against the various tested kinases; the compounds 2a, 3b, 6a, 7a, 7b and 8a showed no activity to weak activity (% inhibition?=?~0–10%). The molecular docking study revealed the importance of the thioester moiety for the interaction of the drugs with the amino acids in the active sites of COX-2. The aforementioned results indicated that thioester based on NSAID scaffolds derivatives may serve as new antitumor compounds.  相似文献   

10.
In this research, we exploited derivatives of thieno[2,3-b]pyridine as dual inhibitors of the key enzymes in eicosanoid biosynthesis, cyclooxygenase (COX, subtypes 1 and 2) and 5-lipoxygensase (5-LOX). Testing these compounds in a rat paw oedema model revealed potency higher than ibuprofen. The most active compounds 7a, 7b, 8b, and 8c were screened against COX-1/2 and 5-LOX enzymes. Compound 7a was the most powerful inhibitor of 5-LOX with IC50?=?0.15?µM, while its p-chloro analogue 7b was more active against COX-2 (IC50?=?7.5?µM). The less desirable target COX-1 was inhibited more potently by 8c with IC50?=?7.7?µM. Surflex docking programme predicted that the more stable anti- conformer of compound (7a) formed a favourable complex with the active site of 5-LOX but not COX-1. This is in contrast to the binding mode of 8c, which resembles the syn-conformer of series 7 and binds favourably to COX-1.  相似文献   

11.
Abstract

The oxidation of methyl 5–0-benzyl-3-deoxy-3-fluoro-α-D-arabi-nofuranoside (1) with DMSO/Ac2o afforded a ~ 2:1 mixture of 2-keto derivatives with erythro and threo configuration resulting from isomerization at C3. Successive treatment of the above mixture with MeONH2, LiA1H4, and S-ethyl trifluoroacetate followed by silica gel chromatography afforded methyl 5–0-benzyl-2, 3-dideoxy-3-fluoro-2-(trifluoroacetamido)-α-D-ribofuranoside (6b) and its lyxo isomer 7b in a total yield of 25% and 5%, respectively. The arabino analogue 25 was prepared from 6b. Compounds 6b, 7b and 25 were converted to the corresponding 5–0-benzoyl derivatives 8a, 9 and 26. A series of 2′-amino-2′, 3′-dideoxy-3′-fluoro-β-D-ribo- and-α-D-lyxofuranosides of natural heterocyclic bases have been synthesized starting from 8a and 9. None of the test compounds had any antiviral activity. 3′-Fluoro-2′-amino-2′, 3′-dideoxycytidine (16) was the only compound showing inhibition of murine L1210 and human Molt/4F cell proliferation (50% effective concentration: 39–42μg/m1).  相似文献   

12.
The chemical synthesis of some 4-substituted 1-[1-(2-hydroxyethoxy)methyl-1,2,3-triazol-(4 and 5)-ylmethyl]-1H-pyrazolo[3,4-d]pyrimidines 12a,b, 13a,b and 14–23 as acyclic nucleosides is described. Treatment of (2-acetoxyethoxy)methylbromide with sodium azide afforded (2-acetoxyethoxy)methylazide 9. The heterocycles 6a,b were alkylated, separately, with propargyl bromide to obtain, regioselectively, 4-(methyl and benzyl)thio-1-(prop-2-ynyl)-1H-pyrazolo[3,4-d]pyrimidines 7a,b. These N1-alkylated products were condensed with compound 9 via a 1,3-dipolar cycloaddition reaction to obtain, after separation and deprotection, 1,4 and 1,5-regioisomers 12a,b and 13a,b. The deprotected acyclic nucleosides 12a and 13a served as precursors for the preparation of 4-amino (14 and 15), 4-methylamino (16 and 17), 4-benzylamino (18 and 19), 4-methoxy (20 and 21) and 4-hydroxy (22 and 23) analogues. Compounds 7a,b and all deprotected acyclic nucleosides were evaluated for their inhibitory effects against the replication of HIV-1(IIIB) and HIV-2(ROD) in MT-4 cells and for their anti-tumor activity. No marked activity was found. However, initial evaluation of 6a,b, 7a,b, 12a,b, 13a,b and 14–23 showed that compound 7b has marked activity against M. tuberculosis.  相似文献   

13.
Xanthine oxidase (XO) is responsible for the pathological condition called gout. Inhibition of XO activity by various pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidine-4-one derivatives was assessed and compared with the standard inhibitor allopurinol. Out of 10 synthesized compounds, two compounds, viz. 3-amino-6-(2-hydroxyphenyl)-1H-pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidin-4-one (3b) and 3-amino-6-(4-chloro-2-hydroxy-5-methylphenyl)-1H-pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidin-4-one (3g) were found to have promising XO inhibitory activity of the same order as allopurinol. Both compounds and allopurinol inhibited competitively with comparable Ki (3b: 3.56?µg, 3g: 2.337?µg, allopurinol: 1.816?µg) and IC50 (3b: 4.228?µg, 3g: 3.1?µg, allopurinol: 2.9?µg) values. The enzyme–ligand interaction was studied by molecular docking using Autodock in BioMed Cache V. 6.1 software. The results revealed a significant dock score for 3b (?84.976?kcal/mol) and 3g (?90.921?kcal/mol) compared with allopurinol (?55.01?kcal/mol). The physiochemical properties and toxicity of the compounds were determined in silico using online computational tools. Overall, in vitro and in silico study revealed 3-amino-6-(4-chloro-2-hydroxy-5-methylphenyl)-1H-pyrazolo[3,4-d]thiazolo[3,2–a]pyrimidin-4-one (3g) as a potential lead compound for the design and development of XO inhibitors.  相似文献   

14.
Abstract

A novel series of 5-nitro-1H-benzimidazole derivatives substituted at position 1 by heterocyclic rings was synthesized. Cytotoxicity and antiviral activity of the new compounds were tested. Compound 3 was more active than doxorubicin against A-549, HCT-116 and MCF-7. However, compound 3 showed no activity against human liver carcinoma Hep G-2 cell line. Compounds 9 and 17b (E) showed potency near to doxorubicin against the four cell lines. The acute toxicity of compound 9 on liver cancer induced in rats was determined in vivo. Interestingly, it showed restoration activity of liver function and pathology towards normal as compared to the cancer-bearing rats induced by DENA. Compounds 17a (Z), 17b (E) and 18a (Z) were the most promising compounds for their antiviral activity against rotavirus Wa strain.  相似文献   

15.
Four series of pyridothienopyrimidin-4-one derivatives were designed and prepared to improve the pim-1 inhibitory activity of the previously reported thieno[2,3-b]pyridines. Significant improvement in the pim-1 inhibition and cytotoxic activity was achieved using structure rigidification strategy via ring closure. Six compounds (6c, 7a, 7c, 7d, 8b and 9) showed highly potent pim-1 inhibitory activity with IC50 of 4.62, 1.18, 1.38, 1.97, 8.83 and 4.18?μM, respectively. Four other compounds (6b, 6d, 7b and 8a) showed moderate pim-1 inhibition. The most active compounds were tested for their cytotoxic activity on three cell lines [MCF7, HCT116 and PC3]. Compounds 7a [the 2-(2-chlorophenyl)-2,3-dihydro derivative] and 7d [the 2-(2-(trifluoromethyl)-phenyl)-2,3-dihydro derivative] displayed the most potent cytotoxic effect on the three cell lines tested consistent with their highest estimated pim-1 IC50 values.  相似文献   

16.
Various pyrazolo[3,4-d]pyrimidines carrying a variety of substituents in the 6-position have been synthesised and their ability to inhibit growth of Mycobacterium tuberculosis in vitro has been determined. Compounds 5a, 5b, 6c, 7a, 7b, 8d, 8e and 8f demonstrated a minimum inhibitory concentration (MIC) of <6.25?µg/mL and were found to be active against Mycobacterium tuberculosis strain H37RV. Compound 8d was found to be the most active compound in vitro with a MIC of <6.25?µg/mL and inhibitory concentration IC90 of 1.53?µg/mL.  相似文献   

17.
The synthesis and characterization of three novel iridium(III) complexes and one rhodium(III) complex with 1-nitroso-2-naphthol (3) chelating as a 1,2-naphthoquinone-1-oximato ligand are described. The reaction of μ2-halogenido-bridged dimers [(η5-C5Me5)IrX2]2 [X is Cl (1a), Br (1b), I (1c)] and [(η5-C5Me5)RhCl2]2 (2a) with 3 in CH2Cl2 yields the mononuclear complexes (η5-C5Me5)IrX(η2-C10H6N2O) (4a, 4b, 4c) and (η5-C5Me5)RhCl(η2-C10H6N2O) (5a). All compounds were characterized by their 1H and 13C NMR, IR, and mass spectra, UV/vis spectra were recorded for 4a and 5a. The X-ray structure analyses revealed a pseudo-octahedral “piano-stool” configuration for the metals with bidentate coordination through oximato-N and naphthoquinone-O, forming a nearly planar five-membered metallacycle. The metal complexes 4a and 5a were evaluated in respect to their cytotoxicity and binding affinity toward double-stranded DNA. As determined in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, both exerted a much stronger cytotoxic effect toward HeLa and HL60 cancer cell lines than did cisplatin. The remarkable cytotoxicity of the compounds tested may be attributed to necrosis, rather than to apoptosis, as it is evidenced by the caspase-3/7 activation assay. No clear evidence was found for interaction with double-stranded DNA. The melting experiments showed no significant differences between thermodynamic parameters of intact DNA and DNA incubated with 3, 4a, or 5a, although these derivatives altered DNA recognition by the BamHI restriction enzyme. Therefore, the screened iridium and rhodium complexes 4a and 5a may still be interesting as potential anticancer drugs owing to their high cytotoxicity toward cancer cell lines, whereas they do not modify DNA in a way similar to that of cisplatin.  相似文献   

18.
A new series of 4,6-disubstituted 2-(4-(dimethylamino)styryl)quinoline 4a,b9a,b was synthesized by the reaction of 2-(4-(dimethylamino)styryl)-6-substituted quinoline-4-carboxylic acids 3a,b with thiosemicarbazide, p-hydroxybenzaldehyde, ethylcyanoacetate, and 2,4-pentandione. In addition, the antitumour activity of all synthesized compounds 3a,b9a,b was studied via MTT assay against two cancer cell lines (HepG2 and HCT116). Furthermore, epidermal growth factor receptor (EGFR) inhibition, using the most potent antitumour compounds, 3a, 3b, 4a, 4b, and 8a, was evaluated. The interpretation of the results showed clearly that the derivatives 3a, 4a, and 4b exhibited the highest antitumour activities against the tested cell lines HepG2 and HCT116 with IC50 range of 7.7–14.2?µg/ml, in comparison with the reference drugs 5-fluorouracil (IC50?=?7.9 and 5.3?µg/ml, respectively) and afatinib (IC50?=?5.4 and 11.4?µg/ml, respectively). In vitro EGFR screening showed that compounds 3a, 3b, 4a, 4b, and 8a exhibited moderate inhibition towards EGFR with IC50 values at micromolar levels (IC50 range of 16.01–1.11?µM) compared with the reference drugs sorafenib (IC50 =?1.14?µM) and erlotinib (IC50 =?0.1?µM). Molecular docking was performed to study the mode of interaction of compounds 3a and 4b with EGFR kinase.  相似文献   

19.
A series of new 3,6-diphenylimidazo[2,1-b]thiazole derivatives (4al) are synthesized and evaluated for their anticancer activity. Some of the synthesized compounds have shown potent anti-proliferative activity against HeLa, MDA-MB-231, A549 and THP1 human cancer cell lines. Among the active compounds, 3-(3-trifluoromethylphenyl)-6-phenylimidazo[2,1-b]thiazole (4j) has caused significant cytotoxicity in HeLa cells, with IC50 as low as 6.5 μM. Compound 4j has induced caspase-3 and caspase-8 activation, leading to an apoptotic cell death. FACS analysis has revealed that compound 4j arrests cells in G0/G1 phase. The presence of 3-(3-trifluoromethylphenyl)- or 3-(3-chlorophenyl)-substituent, in that order, on the 6-phenylimidazo[2,1-b]thiazole impacts more positively than other aryl-substituents, on the anti-proliferative properties of these compounds.  相似文献   

20.
The three-step synthesis of new mixed P/N/N′/O-donor ligands C6H3(OH){2-NHC(O)CH2NCHC6H4PPh2}(4-CH3) 3a·HH and C6H4(OH){3-NHC(O)CH2NCHC6H4PPh2} 3b·HH, by Schiff base condensation of the 1° amines C6H3(OH){2-NHC(O)CH2NH2}(4-CH3) 2a or C6H4(OH){3-NHC(O)CH2NH2} 2b with C6H4(CHO)(2-PPh2) in refluxing EtOH, is described. Reaction of 1 equiv. of 3a·HH or 3b·HH with MCl2(cod) (M = Pt, Pd; cod = cycloocta-1,5-diene) affords the κ2-PN-chelate complexes MCl2(3a·HH) (M = Pd 4a; M = Pt 4b) and MCl2(3b·HH) (M = Pt 4c). The dichlorometal(II) complexes 4d and 4e, bearing instead a pendant 4-phenolic group, were similarly prepared (in >90% yield). Chloro-bridge cleavage of [Pd(μ-Cl)(η3-C3H5)]2 with 3a·HH or 3b·HH gave the monocationic κ2-PN-chelate complexes [Pd(η3-C3H5)(3a·HH)]Cl 5a or [Pd(η3-C3H5)(3b·HH)]Cl 5b, respectively. Elimination of cod, and single CH3 protonation, from Pt(CH3)2(cod) upon reaction with 1 equiv. of 3a·HH or 3b·HH in C7H8 at room temperature afforded the neutral complexes C6H3(OH){2-NC(O)CH2NCHC6H4PPh2Pt(CH3)}(4-CH3) 6a and C6H4(OH){3-NC(O)CH2NCHC6H4PPh2Pt(CH3)} 6b, respectively bearing a monoanionic (3a·H or 3b·H) κ3-PNN′-tridentate ligand. Amide and phenol deprotonation were readily achieved, using KOtBu as base, to give high yields of the κ4-PNN′O-tetradentate complexes C6H3(O){2-NC(O)CH2NCHC6H4PPh2Pd}(4-CH3) 7a and C6H3(O){2-NC(O)CH2NCHC6H4PPh2Pt}(4-CH3) 7b bearing the dianionic ligand 3a2−. All new compounds have been characterised by multinuclear NMR, FTIR, mass spectroscopy and microanalysis. Single crystal X-ray studies have been performed on compounds 1b·1.5CH2Cl2, 3b·HH·0.5Et2O, 6b·CHCl3 and 7b·0.5Et2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号