首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of studies have found that the chronic administration of nicotine causes an increase in the density of nicotinic binding sites in the brain, but it is not known whether these additional binding sites are functionally active receptors. In this study, the effects of 1-week administration of the potent nicotinic agonist, (+)-anatoxin-a (96 nmol/day via osmotic minipumps), was assessed on [3H]nicotine binding and [3H]dopamine uptake and release in rat striatal synaptosomes. Chronic (+)-anatoxin-a treatment resulted in a 32% increase in the Bmax of [3H]nicotine binding in anatoxin-treated animals compared to control. There was a 43% increase in the activity of 3 microM nicotine to release [3H]dopamine from synaptosomes of anatoxin-treated animals, but the release induced by 20 mM K+ depolarization was unaffected. There was no effect of chronic (+)-anatoxin-a treatment on the uptake of [3H]dopamine. A strong positive correlation (r = 0.64) was found between the density of [3H]nicotine binding sites and the nicotine-induced stimulation of [3H]dopamine release in individual animals. These results indicate that (+)-anatoxin-a, like nicotine, produces an up-regulation of nicotine binding sites following chronic administration, and that these additional sites are functional receptors capable of mediating the release of dopamine from striatal synaptosomes.  相似文献   

2.
Acetylcholine enhanced in a concentration-dependent way the K+ (15 mM)-evoked release of [3H]dopamine from synaptosomes isolated from rat corpus striatum and prelabeled with the radioactive catecholamine. The concentration-effect curve of ACh obtained in presence of 1.2 mM Ca2+ was progressively shifted to the left when [Ca2+] was lowered to 0.4 and to 0.2 mM. Intrastriatal injections of kainic acid reduced (70%) the uptake of [3H]choline in synaptosomes prepared 8 days after the lesion but did not affect significantly the uptake of [3H]dopamine. Also the release of [3H]dopamine evoked by K+ was minimally affected by kainic acid treatment. In contrast, acetylcholine (tested in presence of 1.2 or 0.2 mM Ca2+) was much more effective in enhancing [3H]dopamine release in synaptosomes from kainic acid-lesioned than from unlesioned striata. The results suggest that muscarinic receptors located on dopamine nerve terminals undergo supersensitivity following intrastriatal kainic acid injection.  相似文献   

3.
Potassium chloride (25 mM) and (+)-amphetamine (100 microM) both stimulated the release of radioactivity from slices of substantia nigra preincubated with [3H]3,4-dihydroxyphenylethylamine [( 3H]dopamine). Potassium chloride (25 mM) released radioactivity from slices of both zona compacta and zona reticulata. Prior 6-hydroxydopamine (6-OHDA) lesions of one nigrostriatal pathway did not reduce the spontaneous release of radioactivity, or the potassium chloride- or amphetamine-induced release of radioactivity from slices of nigra ipsilateral to the lesion after preincubation with [3H]dopamine. The accumulation of radioactivity following incubation of nigral slices from 6-OHDA-lesioned animals with [3H]dopamine was increased when compared to uptake into slices from intact tissue. In synaptosomal preparations of striatum, nomifensine but not desipramine or fluoxetine inhibited [3H]dopamine uptake. In contrast, nomifensine, desipramine, and fluoxetine all inhibited [3H]dopamine uptake in nigral synaptosomal preparations. Following 6-OHDA lesions of one nigrostriatal pathway the uptake of [3H]dopamine into nigral synaptosomal preparations was unchanged but uptake into striatal preparations was substantially decreased. In contrast, bilateral electrolesions of the dorsal and medial raphe nuclei reduced [3H]dopamine uptake into nigral preparations but not into striatal synaptosomes. The uptake of [3H]5-hydroxytryptamine ([3H]5-HT) into synaptosomal preparations of substantia nigra was abolished by fluoxetine and reduced by desipramine, but was unaffected by nomifensine. In contrast, fluoxetine, desipramine, and nomifensine all inhibited [3H]5-HT uptake into striatal synaptosomal preparations. Following 6-OHDA lesions of one nigro-striatal pathway the uptake of [3H]5-HT into nigral synaptosomal preparations was unchanged but uptake into striatal preparations was reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of bromoacetylaminomenthylnorepinephrine (BAAN) on the sodium-dependent, high-affinity norepinephrine (NE) uptake system in rat brain synaptosomes and CNS neuronal cultures were investigated. BAAN inhibited [3H]NE uptake into synaptosomes in a dose- and time-dependent manner (IC50, 6.5 microM). Pretreatment of cortical synaptosomes or neuronal cells with BAAN alone, followed by washing to remove free drug, reduced the Vmax but did not alter the Km value for [3H]NE uptake. The BAAN-induced reduction in Vmax was attenuated by concurrent pretreatment with desipramine and blocked by the reaction of BAAN with dithiothreitol or cysteine. In contrast, BAAN was 19-fold less potent at inhibiting [3H]dopamine uptake in striatal synaptosomes, and no change in the Vmax or Km value for [3H]dopamine uptake was observed after a pretreatment with BAAN followed by washing. Furthermore, the irreversible beta-antagonist, bromoacetylalprenololmentane, was equipotent to BAAN for inhibiting [3H]NE uptake into cortical synaptosomes, but did not alter the Vmax or Km for [3H]NE after pretreatment. In neuronal cultures, BAAN inhibited sodium-dependent uptake of [3H]NE (IC50, 5.6 microM) with no effect on sodium-independent uptake. After pretreatment of cultures with 30 microM BAAN followed by washing, there was a 74% decrease in the Vmax for [3H]NE uptake. Following a 24-h lag period, uptake recovered to the control level within 48 h; however, recovery was completely blocked by cycloheximide. The data indicate that BAAN irreversibly binds to the [3H]NE uptake system in both CNS synaptosomes and neuronal cultures and may be a useful probe for studying the turnover of the [3H]NE uptake system.  相似文献   

5.
The nature of the intraterminal compartments from which acetylcholine (ACh) is released following presynaptic stimulation was investigated. This was pursued by examining the effects of the anticholinergic drug 2-(4-phenylpiperidino)cyclohexanol (AH5183) on the release of newly synthesized [3H]ACh and of endogenous ACh from purified cholinergic nerve terminals (synaptosomes) which were isolated from the electric organs of Torpedo. Preincubation of the synaptosomes, with AH5183 (1-10 microM), does not affect either the intraterminal synthesis of [3H]ACh or the uptake of its precursors, but results in a marked inhibition (85%) of the release of the newly synthesized [3H]ACh. However, when AH5183 is added following the accumulation of [3H]ACh in the nerve terminals, it does not affect [3H]ACh release. AH5183 also has no effect on the release of preformed endogenous ACh. These findings, together with the previous in vitro demonstrations that AH5183 is a potent inhibitor of ACh uptake into isolated cholinergic vesicles, suggest that most of the synaptosomal ACh is secreted by a vesicular mechanism.  相似文献   

6.
This study was undertaken to evaluate the effects of chronic variate stress and lithium treatment on glutamatergic activity and neuronal vulnerability of rat hippocampus. Male Wistar rats were simultaneously treated with lithium and submitted to a chronic variate stress protocol during 40?days, and afterwards the hippocampal glutamatergic uptake and release, measured in slices and synaptosomes, were evaluated. We observed an increased synaptosomal [(3)H]glutamate uptake and an increase in [(3)H]glutamate stimulated release in hippocampus of lithium-treated rats. Chronic stress increased basal [(3)H]glutamate release by synaptosomes, and decreased [(3)H]glutamate uptake in hippocampal slices. When evaluating cellular vulnerability, both stress and lithium increased cellular death after oxygen and glucose deprivation (OGD). We suggest that the manipulation of glutamatergic activity induced by stress may be in part responsible for the neuroendangerment observed after stress exposure, and that, in spite of the described neuroprotective effects of lithium, it increased the neuronal vulnerability after OGD.  相似文献   

7.
The uptake of tritiated dopamine [3H] (DMI insensitive DA uptake) by synaptosomal fractions isolated from rat mediobasal hypothalamus (MBH) and caudate putamen (CP) was measured in the presence of different concentrations of alpha-melanocyte stimulating hormone (alpha-MSH) and Pro-Leu-Gly-NH2 (PLG; MIF-1) which is an inhibitor of alpha-MSH release. Compared to control, [3H]DA uptake increased significantly when the synaptosomal fraction of CP was incubated with 0.1 and 1 microM of alpha-MSH and also when the rat was previously injected with alpha-MSH. A simultaneous reduction of endogenous dopamine content was observed. Kinetic studies suggest that the enhanced uptake induced by alpha-MSH 1 microM is the consequence of the rise in Vmax, without changes in the apparent km. The uptake of [3H]DA in hypothalamic (MBH) preparations on the other hand, was not modified by the presence of alpha-MSH. PLG did not have any significant effect on [3H]DA uptake either in the CP or in the MBH. alpha-MSH may act as a modulator of the dopaminergic nigrostriatal system and the results obtained incubating CP synaptosomes in its presence demonstrate a possible direct modulator action by alpha-MSH on the terminal area of the substantia nigra neurons.  相似文献   

8.
Previous work has shown that [3H]paroxetine is a potent and selective in vitro label for serotonin uptake sites in the mammalian brain. In the present study, [3H]paroxetine was tested in mice as an in vivo label for serotonin uptake sites. Maximum tritium concentration in the whole brain (1.4% of the intravenous dose) was reached 1 h after injection into a tail vein. Distribution of the tracer at 3 h after injection followed the distribution of serotonin uptake sites known from previous in vitro binding studies (r = 0.85). The areas of highest [3H]paroxetine concentration, in decreasing order, were: hypothalamus greater than frontal cortex greater than olfactory tubercles greater than thalamus greater than upper colliculi greater than brainstem greater than hippocampus greater than striatum greater than cerebellum. Preinjection of carrier paroxetine (1 mg/kg) significantly decreased [3H]paroxetine concentration in all areas except in the cerebellum, which is known to contain a relatively low number of specific binding sites. Kinetic studies showed highest specific [3H]paroxetine binding (tissue minus cerebellum) at 2 h after injection and slow clearance of activity thereafter (half-time of dissociation from the hypothalamus, 215 min). The specificity of in vivo [3H]paroxetine binding was studied by preinjecting monoamine uptake blockers or receptor antagonists 5 min before administration of [3H]paroxetine. Serotonergic or muscarinic cholinergic receptor antagonists and dopamine or norepinephrine uptake blockers did not reduce the in vivo binding of [3H]paroxetine. In contrast, there was an excellent correlation (r = 0.99) between the in vivo inhibitory potencies of serotonin uptake blockers in this study and previously published in vitro data on inhibition of [3H] serotonin uptake in brain synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
[3H]MPP+ had lower Km and higher Vmax values for its accumulation in rat brain synaptosomes than did [3H]MPTP. The kinetic parameters favored the uptake of [3H]MPP+ in the striatum to that in hypothalamus, whereas they were equally favorable for the uptake of [3H]MPTP in both regions. Hypothalamic uptake of [3H]MPTP and [3H]MPP+ was inhibited by desipramine, imipramine, norepinephrine, and serotonin. Striatal uptake of [3H]MPP+ and [3H]MPTP was blocked by nomifensine and dopamine. These results support the concept that MPTP accumulates in serotonergic neurons where it is oxidized by monoamine oxidase B to MPP+, which is released and then is selectively accumulated in dopaminergic neurons via the dopamine uptake system.  相似文献   

10.
The effect of a unilateral perinatal hypoxic-ischemic brain injury on dopamine D1 and D2 receptors and uptake sites was investigated in rats by using in vitro quantitative binding autoradiography, 2-3 weeks after the insult. We observed significant decreases in the Bmax and KD for [3H]SCH 23390-labeled D1 and in the Bmax for [3H]spiperone-labeled D2 receptors in the lesioned caudate-putamen in rats with moderate brain injury (visible loss in hemispheric volume ipsilateral to the injury) compared with the nonlesioned contralateral caudate-putamen or with control rats. Changes in [3H]SCH 23390 and [3H]spiperone binding predominated in the dorsolateral part of the lesioned caudate-putamen. Pronounced reduction in [3H]SCH 23390 binding was also observed in the substantia nigra pars reticulata on the side of the lesion. In contrast, we did not observe any significant change in Bmax or KD for [3H]mazindol-labeled dopamine uptake sites. Similarly, no significant changes in the levels of dopamine or its metabolites were found on the side of the lesion. The observed reductions in striatal dopamine D1 and D2 receptors are a reflection of striatal cell loss induced by the hypoxic-ischemic injury. The absence of changes in [3H]mazindol binding or dopamine levels in the lesioned caudate-putamen indicates that the dopaminergic presynaptic structures are preserved.  相似文献   

11.
GABA release and uptake were examined in Genetic Absence Epilepsy Rats from Strasbourg and in non-epileptic control animals, using crude synaptosomes prepared from the cerebral cortex and thalamus. Uptake of [3H]GABA over time was reduced in thalamic synaptosomes from epileptic rats, compared to controls. The affinity of the uptake process in thalamic synaptosomes was lower in epileptic animals. NNC-711, a ligand for the GAT-1 uptake protein, reduced synaptosomal uptake by more than 95%; beta-alanine, an inhibitor selective for the uptake proteins GAT-2 and -3, did not significantly reduce synaptosomal uptake. Autoradiography studies using [3H]tiagabine, a ligand selective for GAT-1, revealed no differences between the strains in either affinity or levels of binding. Ethanolamine O-sulphate (100 microM), a selective inhibitor of GABA-transaminase, did not affect uptake levels. Aminooxyacetic acid (10-100 microM), an inhibitor of GABA-transaminase and, to a lesser extent, glutamate decarboxylase, caused an increase in measured uptake in both thalamic and cortical synaptosomes, in both strains. We found no difference in in vitro basal or KCl-stimulated endogenous GABA release between epileptic and control rats. These results indicate that GABA uptake in the thalamus of Genetic Absence Epilepsy Rats from Strasbourg was reduced, compared to control animals. The lower uptake affinity in the epileptic animals probably contributed to the reduction in uptake over time. Uptake appeared to be mediated primarily by the 'neuronal' transporter GAT-1. Autoradiography studies revealed no differences in the number or affinity of this uptake protein. It is therefore possible that altered functional modulation of GAT-1 caused the decrease in uptake shown in the epileptic animals. Inhibition of GABA-transaminase activity had no effect on measured GABA uptake, whereas a reduction in glutamate decarboxylase activity may have affected measured uptake levels.  相似文献   

12.
Release of preaccumulated, tritium-labeled dopamine ([3H]DA) from preparations of isolated nerve terminals (synaptosomes) of rat median eminence (ME) and corpus striatum (CS) was examined over short time intervals (1-20 s). In both preparations, basal efflux of [3H]DA was linear with time. Depolarization with high K+ resulted in an initial rapid release of [3H]DA which stabilized by 20 s, whereas veratridine elicited an increased rate of release over basal levels that was linear over the first 20 s. The calculated rate constants of release for both the initial phase of K+- and the veratridine-stimulated release were approximately threefold greater in CS than in ME synaptosomes. The major component of the high K+-induced release of [3H]DA from both synaptosome preparations increased as a graded function of [Ca2+]o. However, a smaller component, independent of external Ca2+, existed in both ME and CS synaptosomes. Increasing the [Mg2+] in the external solution resulted in a right shift of both the [K+]o and the [Ca2+]o dose-response curves, consistent with actions of Mg2+ on screening surface membrane charges and blocking voltage-dependent Ca2+ channels. In all studies, steady-state uptake of the [3H]DA was about twofold greater into CS than into ME synaptosomes. Moreover, the fraction of incorporated [3H]DA released by stimulation from the CS was much greater than that released from ME synaptosomes. These data are consistent with differences between these two types of dopaminergic terminals with respect to packaging and/or distribution of the accumulated neurotransmitter in intraneuronal pools, as well as marked differences in the apparent kinetics of DA release.  相似文献   

13.
In HEK 293 cells expressing the human dopamine transporter (DAT), a 10-min incubation with 10 microM cocaine followed by extensive washing resulted in a 30% increase in [3H]dopamine (DA) uptake as well as an increase in cell surface DAT in biotinylation experiments. Consistent with this novel regulation, [3H]DA uptake into synaptosomes prepared from the nucleus accumbens of rats sacrificed 30 min after a single cocaine injection (30 mg/kg) was significantly increased compared to controls (56% increase in V(max), no change in K(m)). In addition, DA clearance in the striatum of anesthetized rats was increased after local application of a low (3 pmol) but not high (65 pmol) dose of cocaine, presumably as a result of mobilization of DAT to the cell surface. Cocaine-induced increases in cell surface expression of DAT and associated changes in DA clearance represent a novel mechanism that may play a role in its addictive properties.  相似文献   

14.
It is known that nicotine can activate several subtypes of release-regulating presynaptic nicotinic receptors (nAChRs) including those situated on central noradrenergic, dopaminergic, cholinergic and glutamatergic axon terminals. The objective of this study was to investigate the effects of chronic administration of (-)nicotine on the function of the above autoreceptors and heteroreceptors using rat superfused synaptosomes. In hippocampal synaptosomes prelabelled with [3H]noradrenaline (NA) the nicotine-evoked overflow of [3H]NA was higher in rats treated with nicotine for 10 days (via osmotic mini-pumps) than in vehicle-treated rats. In striatal synaptosomes, prelabelled with [3H]dopamine (DA), chronic nicotine did not modify the releasing effect of nicotine. No significant change was observed in experiments with synaptosomes from nucleus accumbens prelabelled with [3H]DA. Exposure of hippocampal synaptosomes prelabelled with [3H]choline to nicotine elicited release of [3H]acetylcholine; this effect was almost abolished in synaptosomes from animals administered nicotine for 10 days, suggesting down-regulation of nicotinic autoreceptors. In hippocampal synaptosomes prelabelled with [3H]D-aspartate, the releasing effect of epibatidine following chronic nicotine treatment did not differ from that in controls. The K+-evoked exocytotic release of the neurotransmitters tested was not modified by long-term nicotine administration. The results show that chronic nicotine differentially affects the function of release-regulating nAChR subtypes.  相似文献   

15.
The effects of both (-)- and (+)-nicotine isomers were examined on in vitro uptake and release of [3H]dopamine in rat striatum. Both isomers inhibited uptake of [3H]dopamine in chopped tissue at concentrations well below those necessary for promoting release of preloaded [3H]dopamine. (-)-Nicotine was more potent than (+)-nicotine both at inhibiting uptake and at promoting release. Unlike other dopamine uptake inhibitors, however, nicotine inhibited only 50% of the total uptake. In the presence of 1 nM nicotine, the residual [3H]dopamine uptake was less sensitive to inhibition by cocaine than uptake in the absence of nicotine. Nicotine did not compete against the binding of [3H]GBR 12935, a selective dopamine uptake inhibitor. The nicotinic receptor agonists carbachol and 1,1-dimethyl-4-phenylpiperazinium iodide also inhibited uptake, whereas the nicotinic antagonists chlorisondamine and mecamylamine blocked nicotine's effect. Thus, the effect of nicotine on dopamine uptake appears to be mediated by a receptor similar to the nicotinic acetylcholine receptor. These receptors do not seem to be on the terminals that are accumulating dopamine, however, since tetrodotoxin prevented the effect of nicotine on [3H]dopamine uptake and nicotine had no effect on uptake in a synaptosomal preparation.  相似文献   

16.
Cocaine inhibits both [3H]dopamine and [3H]serotonin uptake in rat striatum and nucleus accumbens. In a chopped tissue slice preparation, the inhibition curve for [3H]dopamine uptake is biphasic, suggesting two components of uptake, whereas the curve for [3H]serotonin uptake is steep and apparently monophasic. In synaptosomal preparations, both curves are monophasic. Monensin, a sodium ionophore, inhibits uptake but does not change the shape of the cocaine inhibition curve in synaptosomes, suggesting that the biphasic inhibition curves in slices are not likely due to differential sodium gradients across the slices. In tissue slices, only the component which is more sensitive to inhibition by cocaine and related drugs is inhibitable by nicotine. This suggests that the two components of dopamine uptake in tissue slices may be differentially regulated.  相似文献   

17.
The uptake of [3H]dopamine (DA) into rat striatal synaptosomes in the presence of a monoamine oxidase inhibitor was studied using a filtration technique. After a 10-min preincubation period, a fast initial uptake of [3H] DA was seen. Uptake reached a maximum after 4 min of incubation. If incubation was continued for more than 7 min, a gradual decrease in synaptosomal [3H]DA levels was found. Uptake was dependent on preincubation time; initial uptake velocity and maximal uptake decreased irreversibly with increasing preincubation periods. Moreover, the capacity of the synaptosomes to retain the [3H]DA during longer incubation times was progressively affected. The decrease in initial uptake activity was due to a decrease in the Vmax of the transport system. Dithiothreitol (2.8 mM) protected synaptosomal uptake activity against deterioration at 37°C. Also, DA itself (10-7M) stabilized the uptake mechanism if added to the suspension before preincubation was started. Since [3H]DA uptake observed after loading the synaptosomes with labeled DA was similar to the uptake seen if the synaptosomes were not previously loaded with DA, it was concluded that under these conditions synaptosomal DA is completely exchangeable with exogenous substrate. Prolonged storage of the synaptosomes at 0°C also resulted in a time-dependent decrease in uptake activity (t1/2= 116 min). The addition of unlabeled DA or dithiothreitol to the suspension did not affect instability at 0°C.  相似文献   

18.
It has been proposed that (-)-nicotine can activate release-stimulating presynaptic nicotinic acetylcholine receptors (nAChRs) on glutamatergic nerve terminals to release glutamate, which in turn stimulates the release of noradrenaline (NA) and dopamine (DA) via presynaptic ionotropic glutamate receptors on catecholaminergic terminals. The objective of this study was to compare the function of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazide-4-propionic acid (AMPA) glutamate receptors in synaptosomes of rat hippocampus and striatum following acute and chronic (-)-nicotine administration. In hippocampal synaptosomes, prelabeled with [3H]NA, both the NMDA- and AMPA-evoked releases were higher in (-)-nicotine-treated (10 days) than in (-)-nicotine-treated (1 day) or vehicle-treated (1 or 10 days) rats. In striatal synaptosomes prelabeled with [3H]DA, the NMDA-evoked, but not the AMPA-evoked, release of [3H]DA was higher in (-)-nicotine-treated (10 days) than in nicotine-treated (1 day) or vehicle-treated (1 or 10 days) animals. Chronic (-)-nicotine did not affect catecholamine uptake, basal release and release evoked by high-K+ depolarization. Thus, chronic exposure to nicotine enhances the function of ionotropic glutamate receptors mediating noradrenaline release in the hippocampus and dopamine release in the striatum.  相似文献   

19.
Active uptake of MPP+, a metabolite of MPTP, by brain synaptosomes   总被引:20,自引:0,他引:20  
Mouse brain synaptosomal preparations were used to study uptake of N-methyl-4-phenylpyridine (MPP+), a metabolite of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). The uptake of [3H]-MPP+ by striatal synaptosomes was approximately 25 X greater than that of [3H]-MPTP, with a KM of 0.48 microM and a Vmax of 5.3 nmoles/g tissue/min. Uptake was Na+ dependent and inhibited by ouabain, cocaine and dopamine (Ki 0.12 microM). Synaptosomes prepared from the corpus striatum accumulated [3H]-MPP+ at a rate 5-10 times higher than preparations from other brain regions. This selective uptake of MPP+ may contribute to the specificity of the toxic effects of MPTP on nigrostriatal dopaminergic neurons.  相似文献   

20.
KCl (16 mM) stimulated the release of [3H]noradrenaline ([3H]NA) from rat hypothalamic synaptosomes in a Ca2+-dependent manner; this release was attenuated by clonidine (0.01-100 microM). Changes in the release of [3H]NA and the functional status of alpha 2-adrenoceptors in the medial hypothalamus of rats treated acutely and chronically with clorgyline (1 mg/kg/day) or desipramine (DMI, 10 mg/kg/day) were assessed using superfused synaptosomes in which the attenuating effects of clonidine (1 microM) or the potentiating effects of yohimbine (1 microM) on K+-evoked release of [3H]NA were measured. After acute administration of DMI, significantly less [3H]NA was accumulated into synaptosomes. Although total (spontaneous + K+-evoked) [3H]NA release from these synaptosomes was unchanged, a significant reduction was apparent in the K+-evoked release from the DMI-treated tissue. Attenuation of K+-evoked release by clonidine was abolished in both these acute treatment groups. Following the chronic antidepressant drug regimens, [3H]NA uptake into DMI-treated tissue remained significantly reduced although total percent and K+-evoked [3H]NA release were unchanged. The K+-evoked release of [3H]NA in S1 was significantly enhanced (by 22%) in the clorgyline treatment group. Attenuation of K+-evoked [3H]NA release by clonidine in both chronic antidepressant-treated tissues was not significantly changed. It is concluded that the functional sensitivity of alpha 2-adrenoceptors on nerve endings in the medial hypothalamus is unchanged by these chronic antidepressant drug regimens. In synaptosomes from untreated tissue, yohimbine significantly potentiated K+-evoked release of [3H]NA; this effect was unchanged after acute regimens and reduced after chronic administration of both the antidepressants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号