首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
The effects of ammonium ions on the frequency of spontaneous action potentials in guinea-pig cerebellar slices, recorded with an extracellular microelectrode, and on the contents of sodium, potassium and chloride ions in incubated guinea-pig cerebellar, and rat brain cortex, slices have been investigated. The frequencies of the spontaneous action potentials are partially suppressed by concentrations of NH4Cl less than 2 mm and completely abolished by concentrations exceeding 2 mm . The amplitudes of the spike discharges are unaffected. A lag period of at least 15 s precedes the inhibition. The suppressing action of NH on the spike frequency is reversible, as shown by complete recovery on removal of NH after short time intervals. Deficiency of Cl? in the superfusion medium causes conversion of inhibition by NH to excitation. Reduction of [K+], or of [Na+], causes increase of inhibition by NH in a normal [Cl1], and reduction of excitation in a low [Cl1], medium. The inhibitory effects of NH on spike frequency are unaffected by picrotoxin or strychnine. NH4Cl, even at 1 or 2 mm , causes a significant increase of aerobic glycolysis. It is suggested that the lag period preceding the suppression of the frequency of spike discharges by NH is partly due to a metabolic change induced by NH, perhaps a transient lowering of pH in the responsible neurons, causing changed permeability to Cl? and possibly to K+ and Na+, NH promotes, in guinea-pig cerebellar slices, an inward flow of Na+ and an outward flow of K+, the latter being greater than that due to exchange of K+ for NH. NH4Cl at 1 or 2 mm causes an outward flow of K+ and an inward flow of Cl? in rat brain cortex slices. The movement of Cl? is biphasic, the first phase, seen with low [NH], consisting of an increase of tissue content of Cl? with little or no fluid uptake and a second phase, seen with high (> 5 mm ) concentrations of NH, in which the uptake of Cl? is directly proportional to the fluid uptake. It is suggested that the first phase is largely neuronal in location whilst the second is largely glial. In infant rat brain cortex slices, there seems to be predominantly an equal exchange of NH for K+. There is little evidence of energy assisted concentrative uptake of NH by brain slices and this is thought to be due largely to the rapid diffusion of undissociated NH3 across cell membranes. It is suggested that some NH (amounting to about 2 mequiv/1) may be bound in the brain. It is concluded that changes in ionic permeabilities, particularly that of Cl?, partly due to a metabolic action, may be responsible for some of the acute cerebral effects of NH administration.  相似文献   

7.
The mechanism of ion transport in the epithelium of rabbit cornea was studied by determining the intracellular ion activity of Cl-, Na+ and K+ under various conditions. Ionic activities were measured by means of microelectrodes containing liquid ion-exchangers selective for Cl-, Na+ or K+. The Cl- activity in basal cells of the epithelium in Na+ containing bathing solutions amounts to 28 +/- 2 mM (n = 11). This value is 1.9-times greater than expected on the basis of passive distribution across the tear side membrane. This finding suggests the existence of a Cl- accumulating process. Replacement of Na+ in the aqueous bathing solution by choline or tetraethylammonium results in a reversible decrease in Cl- activity to 22 +/- 1 mM (n = 11, P less than 0.025). The ratio of observed and predicted Cl- activity decreased significantly from 1.9 to 1.4 (P less than 0.05). The decrease in Cl- activity due to Na+ replacement was rather slow. In contrast, after readmittance of Na+ to the aqueous bathing solution, Cl- activity rose to a stable level within 30 min. These results indicate involvement of Na+ in Cl- accumulation into the basal cells of the epithelium. The K+ and Na+ activities of the basal cells of rabbit corneal epithelium in control bathing solutions were 75 +/- 4 mM (n = 13) and 24 +/- 3 mM (n = 12), respectively. The results can be summarized in the following model for Cl- transport across corneal epithelium. Cl- is accumulated in the basal cells across the aqueous side membrane, energized by a favourable Na+ gradient. Cl- will subsequently leak out across the tear side membranes. Na+ is extruded again across the aqueous side membrane of the epithelium by the (Na+ + K+)-ATPase.  相似文献   

8.
9.
Summary Conventional and Cl-selective liquid ion-exchanger intracellular microelectrodes were employed to study the effects of extracellular ionic substitutions on intracellular Cl activity (aCl i ) inNecturus gallbladder epithelium. As shown previously (Reuss, L., Weinman, S.A., 1979;J. Membrane Biol. 49:345), when the tissue was exposed to NaCl-Ringer on both sidesaCl i was about 30mm, i.e., much higher than the activity predicted from equilibrium distribution (aCleq) across either membrane (5–9mm). Removal of Cl from the apical side caused a reversible decrease ofaCl i towards the equilibrium value across the basolateral membrane. A new steady-stateaCl i was reached in about 10 min. Removal of Na from the mucosal medium or from both media also caused reversible decreases ofaCl i when Li, choline, tetramethylammonium or N-methyl-d-glucamine (NMDG) were employed to replace Na. During bilateral Na substitutions with choline the cells depolarized significantly. However, no change of cell potential was observed when NMDG was employed as Na substitute. Na replacements with choline or NMDG on the serosal side only did not changeaCl i . When K substituted for mucosal Na, the cells depolarized andaCl i rose significantly. Combinations of K for Na and Cl for SO4 substitutions showed that net Cl entry during cell depolarization can take place across either membrane. The increase ofaCl i in depolarized cells exposed to K2SO4-Ringer on the mucosal side indicates that the basolateral membrane Cl permeability, (P Cl) increased. These results support the hypothesis that NaCl entry at the apical membrane occurs by an electroneutral mechanism, driven by the Na electrochemical gradient. In addition, we suggest that Cl entry during cell depolarization is downhill and involves an increase of basolateral membraneP Cl.  相似文献   

10.
Summary Internodal cells ofChara australis were made tonoplast-free by replacing the cell sap with EGTA-containing media; then the involvement of internal Cl and K+ in the excitation of the plasmalemma was studied.[Cl] i was drastically decreased by perfusing the cell interior twice with a medium lacking Cl. The lowered [Cl] i was about 0.01mm. Cells with this low [Cl] i generated action potential and showed anN-shapedV–I curve under voltage clamped depolarization like Cl-rich cells containing 13 or 29mm Cl.E m at the peak of the action potential was constant at [Cl] i between 0.01 and 29mm. The possibility that the plasmalemma becomes as permeable to other anions as to Cl during excitation is discussed.At [Cl] i higher than 48mm, cells were inexcitable. When anions were added to the perfusion medium to bring the K+ concentration to 100mm, NO 3 , F, SO 4 2– , acetate, and propionate inhibited the generation of action potentials like Cl, while methane sulfonate, PIPES, and phosphate did not inhibit excitability.The duration of the action potential depended strongly on the intracellular K+ concentration. It decreased as [K+] i (K-methane sulfonate) increased. Increase in [Na+] i (Na-methane sulfonate) also caused its decrease, although this effect was weaker than that of K+. The action of these monovalent cations on the duration of the action potential is the opposite of their action on the membrane from the outside (cf. Shimmen, Kikuyama & Tazawa, 1976,J. Membrane Biol. 30:249).  相似文献   

11.
12.
The effects of saline conditions on the K+ (86Rb), Na+ and Cl- uptake and growth of 6-day-old wheat (Triticum aestivum L. cv. GK Szeged) seedlings were studied in the absence and presence of Ca2+. It was found that on direct NaCl treatment the K+ uptake of the roots in the absence of Ca2+ declined significantly with increasing salinity. The reverse was true, however, in the case of NaCl pretreatment: seedlings grown under highly saline conditions (50 mM NaCl) absorbed more K+ than those pretreated with low levels of NaCl (1 or 10 mM NaCl). The data indicate a definite Na(+)-induced K+ uptake inhibition and/or feed-back regulation in the K+ uptake of roots under the above-mentioned growth conditions. As regards the Ca2+ effect, it was established that supplemental Ca2+ counteracts the unfavourable effect of saline conditions as concerns both the K+ uptake of the roots and the dry matter yield of the seedlings. The internal concentrations of Na+ and Cl- in the seedlings increased in proportion to increasing salinity. Marked differences were experienced, however, in the internal concentrations of Na+ and Cl- in the roots and shoots, respectively. It was concluded that under these experimental conditions the salt tolerance of wheat could be related to its capability of restricting the transport of Na+ at low and moderate levels to the shoots, where it is highly toxic.  相似文献   

13.
1. The effects of Na, Ca and membrane potential on desensitization of postjunctional glutamate receptors on locust muscle were investigated. 2. The kinetics of desensitization were measured ionophoretically. 3. Replacement of Na by equimolar concentrations of the permeant cations Li, NH4 and guanidine and the impermeant cation choline accelerated desensitization onset, increased the steady-state leve of desensitization and reduced the rate of recovery from desensitization. 4. Desensitization onset rates and steady-state levels of desensitization were not significantly altered either by changing the extracellular Ca concentration or by changing the membrane potential of voltage clamped muscle fibres.  相似文献   

14.
1. The metabolism of K(+), Na(+) and Cl(-) has been investigated in isolated fat-cells prepared from the epididymal adipose tissue of rats. 2. Methods are described for measuring the intracellular water space, the rates of loss of intracellular (42)K(+), (22)Na(+) and (36)Cl(-) and the intracellular concentrations of K(+), Na(+) and Cl(-) in isolated fat-cells. 3. The intracellular water space, measured as the [(3)H]water space minus the [carboxylic acid-(14)C]inulin space, was 3.93+/-0.38mul./100mg. cell dry wt. 4. The first-order rate constants for radioisotope effluxes from isolated fat-cells were 0.029min.(-1) for (42)K(+), 0.245min.(-1) for (22)Na(+) and 0.158min.(-1) for (36)Cl(-). 5. The intracellular concentrations of K(+), Na(+) and Cl(-) were 146m-equiv./l., 18.6+/-2.9m-equiv./l. and 43+/-2.4m-equiv./l. respectively. 6. The total intracellular K(+) content of isolated fat-cells was determined by atomic-absorption spectrophotometry to confirm the value obtained from the radioisotope-efflux data. 7. The ion effluxes from isolated fat-cells were: K(+), 1.5pmoles/cm.(2)/sec., Na(+), 1.6pmoles/cm.(2)/sec., and Cl(-), 2.4pmoles/cm.(2)/sec. 8. The membrane potential of isolated fat-cells calculated from the Cl(-) distribution ratio was -28.7mv.  相似文献   

15.
Serum concentrations of Na+, K+ and Cl- are studied, as well as the elimination of these ions in urine, in patients suffering from chronic respiratory insufficiency, being classified in two groups according to the level of hypoxemia: group A (PO2 less than 6.66 KPa) and group B (PO2 less than 8 KPa). A third group C of healthy patients with analogous anthropological characteristics has served as a control group. The concentrations of serum of the three ions are noticeably similar in the three groups, but the daily elimination of Na+, K+ and Cl- is less in those suffering from respiratory insufficiency than in those of the control group, with significant statistical differences in all cases except with K+ in those suffering from pronounced hypoxemia. On analysing the correlation between the rates of elimination of ions in urine, with the plasmatic values of PO2, PCO2 and [H+] of all the patients studied, the highest values of the Pearson coefficient are found on correlating the elimination of ions with the partial pressures of oxygen, therefore suggesting that hypoxia could be the main motor inducing metabolic changes.  相似文献   

16.
17.
18.
J Bruinvels 《Life sciences》1977,20(3):437-443
The effects of the monovalent cations Na+ and K+ were studied on the uptake of noradrenaline and tyrosine by a crude synaptosomal fraction in vitro. Sodium ions produced opposite effects on the uptake of noradrenaline and the uptake of tyrosine viz. an increase in noradrenaline uptake and a decrease in the uptake of its precursor tyrosine. A low concentration of K+ stimulated the uptake of noradrenaline in the presence of Na+, while in the absence of Na+ K+ had no effect. However, the uptake of tyrosine could be stimulated by low K+ in the absence of Na+. Besides the increased uptake in the absence of Na+, a second uptake was found which was Na+, K+ activated ATPase dependent. The contribution of this uptake system to the total uptake of tyrosine was about 20%. No evidence was obtained for the involvement of a Na+, K+ activated ATPase in noradrenaline uptake. It is suggested that another ATPase might be involved in the latter uptake system.  相似文献   

19.
V F Antonov  A S Ivanov 《Biofizika》1975,20(4):642-645
In energized rat liver mitochondria the simultaneous H+, K+ and C1- transport was studied by corresponding ion selective electrodes. It was shown that the C1- transport induced by valinomycin, by valinomycin plus carbonyclyanide m-chlorophenylhydrazone was governed by the membrane potential. It is suggested that observed in energized mitochondria the C1- electrophoresis may servt as an indicator of membrane potential changes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号