首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the earliest actions of thrombin in fibroblasts is stimulation of a phospholipase C (PLC) that hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. In membranes prepared from WI-38 human lung fibroblasts, thrombin activated an inositol-lipid-specific PLC that hydrolysed [32P]PIP2 and [32P]phosphatidylinositol 4-monophosphate (PIP) to [32P]IP3 and [32P]inositol 1,4-bisphosphate (IP2) respectively. Degradation of [32P]phosphatidylinositol was not detected. PLC activation by thrombin was dependent on GTP, and was completely inhibited by a 15-fold excess of the non-hydrolysable GDP analogue guanosine 5'-[beta-thio]diphosphate (GDP[S]). Neither ATP nor cytosol was required. Guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) also stimulated polyphosphoinositide hydrolysis, and this activation was inhibited by GDP[S]. Stimulation of PLC by either thrombin or p[NH]ppG was dependent on Ca2+. Activation by thrombin required Ca2+ concentrations between 1 and 100 nM, whereas stimulation of PLC activity by GTP required concentrations of Ca2+ above 100 nM. Thus the mitogen thrombin increased the sensitivity of PLC to concentrations of free Ca2+ similar to those found in quiescent fibroblasts. Under identical conditions, another mitogen, platelet-derived growth factor, did not stimulate polyphosphoinositide hydrolysis. It is concluded that an early post-receptor effect of thrombin is the activation of a Ca2+- and GTP-dependent membrane-associated PLC that specifically cleaves PIP2 and PIP. This result suggests that the cell-surface receptor for thrombin is coupled to a polyphosphoinositide-specific PLC by a GTP-binding protein that regulates PLC activity by increasing its sensitivity to Ca2+.  相似文献   

2.
Phospholipase C (PLC)-mediated degradation of polyphosphoinositides (phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP] was found to be present in rat heart ventricular soluble and total membrane fractions (100,000g supernatant and pellet). Distribution of polyphosphoinositide-specific phospholipase C activity between the membrane and soluble fraction was approximately 63 and 33% of total activity, respectively, whereas, phosphatidylinositol (PI) degradation could be detected only in the soluble fraction. Optimal PIP2-PLC activity occurred at a pCa2+ of 4.5. A similar peak in PIP-PLC activity could be demonstrated in soluble and membrane preparations; however, the rate of PIP degradation in the soluble fraction continued to increase at the highest calcium level tested (pCa2+ 3). With the exception of Sr2+, other noncalcium polycations did not support homogenate PIP2-PLC activity. In the presence of Ca2+, addition of Mg2+, La3+, or Sr2+ (10(-3) M) inhibited PIP2-PLC while Mn2+ and Gd3+ stimulated activity. In both the total membrane and soluble fractions, maximal polyphosphoinositide degradation occurs at pH 5.5 and 6.8. The detergents deoxycholate, cholate, and saponin exert a biphasic effect on PIP2-PLC activity (stimulating at lower concentrations and inhibiting at higher concentrations). The deoxycholate effect is observed in both the cytosolic and membrane fractions. Neutral and cationic detergents inhibit PIP2-PLC activity in a concentration-dependent manner. Similar to cytosolic PI-PLC activity, PIP2-PLC appears to depend on intact sulfhydryl groups. In the presence of a mixture of all three inositol phospholipids or the three phosphoinositides plus noninositol phospholipids, polyphosphoinositides are preferentially degraded.  相似文献   

3.
Regulation of polyphosphoinositide synthesis in cardiac membranes   总被引:1,自引:0,他引:1  
The relative distribution of phosphatidylinositol (PI) and phosphatidylinositol-4-phosphate (PIP) kinase activities in enriched cardiac sarcolemma (SL), sarcoplasmic reticulum (SR), and mitochondrial fractions was investigated. PI and PIP kinase activities were assayed by measuring 32P incorporation into PIP and phosphatidylinositol 4,5-bisphosphate (PIP2) from endogenous and exogenous PI in the presence of [gamma-32P]ATP. PI and PIP kinase activities were present in SL, SR, and mitochondrial fractions prepared from atria and ventricles although the highest activities were found in SL. A similar membrane distribution was found for PI kinase activity measured in the presence of detergent and exogenous PI. PI and PIP kinase activities were detectable in the cytosol providing exogenous PI and PIP and Triton X-100 were present. Further studies focused on characterizing the properties and regulation of PI and PIP kinase activities in ventricular SL. Alamethacin, a membrane permeabilizing antibiotic, increased 32P incorporation into PIP and PIP2 4-fold. PI and PIP kinase activities were Mg2+ dependent and plateaued within 15-20 min at 25 degrees C. Exogenous PIP and PIP2 (0.1 mM) had no effect on PIP and PIP2 labeling in SL in the absence of Triton X-100 but inhibited PI kinase activity in the presence of exogenous PI and Triton X-100. Apparent Km's of ATP for PI and PIP kinase were 133 and 57 microM, respectively. Neomycin increased PIP kinase activity 2- to 3-fold with minor effects on PI kinase activity. Calmidazolium and trifluoperazine activated PI kinase activity 5- to 20-fold and completely inhibited PIP kinase activity. Quercetin inhibited PIP kinase 66% without affecting PI kinase activity. NaF and guanosine 5'-O-(3-thiotriphosphate) had no effect on PI and PIP kinase activities, indicating that these enzymes were not modulated by G proteins. The probability that PIP and PIP2 synthesis in cardiac sarcolemma is regulated by product inhibition and phospholipase C was discussed.  相似文献   

4.
Membrane-bound and cytosolic phosphatidylinositol (PI)-specific phospholipases C in murine thymocytes have been partially purified and characterized. The membrane-bound enzyme was extracted from microsomes with sodium cholate and purified by sequential column chromatographies on Sephadex G-100, heparin-Sepharose CL-6B, and Sephadex G-100. The cytosolic enzyme was purified from the cytosol by sequential column chromatographies on Sephadex G-100 and FPLC-Mono S. Specific activities of the membrane-bound enzyme and the cytosolic enzyme increased more than 1,800- and 1,400-fold, respectively, compared with those of microsomes and the cytosol. The molecular weights of the both enzymes were estimated to be about 70,000 by gel filtration. These purified enzymes also hydrolyzed phosphatidylinositol 4,5-bisphosphate (PIP2). At neutral pH and low Ca2+ concentrations, the membrane-bound enzyme hydrolyzed PIP2 in preference to PI and showed higher activity than the cytosolic enzyme. These activities were also affected differently by various lipids. For PIP2 hydrolysis, all lipids investigated except lysophosphatidylcholine enhanced the activity of the membrane-bound enzyme, while phosphatidylcholine (PC) and phosphatidylserine (PS) did not significantly affect the activity of the cytosolic enzyme. PC, PE, and PS inhibited the activities of the membrane-bound and cytosolic enzymes for PI hydrolysis. The physiological implications of these results are discussed.  相似文献   

5.
The effective resolution of human platelet cytosolic phosphoinositide-phospholipase C (PLC) revealed five distinct activity peaks by Q-Sepharose and heparin-Sepharose column chromatographies when assayed using phosphatidylinositol (PI) and phosphatidylinositol 4,5-bisphosphate (PIP2). The results of Western blotting analysis with various antibodies against PLC isozymes showed that peak-Ia (PLC-delta type), peak-Ib (PLC-gamma 1 type), and peak-IIc (PLC-beta type) and two unidentified activity peaks (PLC-IIa and PLC-IIb) were present in human platelet cytosol. A protein with guanosine 5'-3-O-(thio)triphosphate-binding activity was coeluted with the PLC-IIa and was purified to homogeneity. It exhibited 86- and 42-kDa polypeptide bands upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis which were identified as gelsolin and actin by immunostaining, respectively. Large amounts of gelsolin/actin (1:1) complex "gelsolin complex" were detected in the PLC-delta and PLC-gamma 1 fractions. The PLC-gamma 1 and the gelsolin complex were co-immunoprecipitated by the antibody raised against PLC-gamma 1. Furthermore, the partially purified bovine brain PLC-gamma 1 fraction also was found to be associated with the gelsolin complex and the association was released by the addition of 1% sodium cholate. This finding has prompted us to examine effects of the gelsolin complex and the free gelsolin on activities of the above PLC isoforms from platelet cytosol. The gelsolin complex did not affect the PIP2 hydrolyzing activities of all PLC isoforms. In contrast, the purified gelsolin inhibited distinctly PIP2 hydrolyses by PLC-Ia (delta), PLC-Ib (gamma 1), and PLC-IIa (unidentified), whereas the inhibitory effects for PLC-IIb (unidentified) and PLC-IIc (beta) were moderate. The inhibitory effect of gelsolin on PIP2-hydrolysis by PLC-gamma 1 was diminished by a large amount of PIP2 substrate. These results suggested that the inhibition of PLC by gelsolin is due to sequestration of substrate PIP2 by its competitive binding.  相似文献   

6.
Phosphatases and phosphodiesterases that hydrolyse polyphosphoinositides are described in both membrane and cytosol fractions of human, pig, rat, rabbit, and sheep erythrocytes using exogenous substrates. With suitably optimized assay conditions, Ca2+-dependent phosphatidylinositol bisphosphate (PIP2) phosphodiesterase activity was found in the hemoglobin-free cytosol fraction, as well as the membrane. Membrane activity is completely dependent upon Triton X-100 and salt and inhibited by cetyltrimethylammonium bromide (CTAB), while the soluble activity requires CTAB and is inhibited by Triton. A low Ca2+-dependent PIP2 phosphatase activity, not present in other tissues, was also detected. The cation-independent phosphatidylinositol phosphate (PIP) phosphatase is localized in the membrane in most species, while the diesterase and the PIP2 phosphatases (both Mg2+ and Ca2+ dependent) are localized in the cytosol. Rat and rabbit erythrocytes are atypical in having a substantial proportion of their Mg2+-dependent PIP2 phosphatase activities in the membrane. All activities are lowest in sheep erythrocytes, except the PIP phosphatase, most of which is soluble in this species. Ca2+-dependent PIP2 phosphatase activity is not correlated with the activity or subcellular distribution of any of the other hydrolases and seems to be a separate enzyme. All the phosphoinositide hydrolase activities, particularly the diesterase, are orders of magnitude lower in erythrocytes than in other tissues. Both soluble and membrane diesterase activities are lost as erythrocytes age. Soluble polyphosphoinositide diesterase does not seem to be active with membrane-bound substrate, since pig and sheep erythrocytes that have negligible membrane activity do not respond to Ca2+ loading, yet have substantial diesterase activity in the cytosol. This supports the view that the diesterase is not physiologically functional in normal erythrocytes.  相似文献   

7.
Although fibroblast growth factor-2 (FGF-2) plays an important role in cardioprotection and growth, little is known about the signals triggered by it in the adult heart. We therefore examined FGF-2-induced effects on phosphoinositide-specific phospholipase C (PI-PLC) isozymes, which produce second messengers linked to the inotropic and hypertrophic response of the myocardium. FGF-2, administered by retrograde perfusion to the isolated heart, induced an increase in inositol-1,4,5-trisphosphate levels in the cytosol, as well as an increase in total PI-PLC activity associated with sarcolemmal and cytosolic fractions. Furthermore FGF-2 induced a time-dependent elevation in cardiomyocyte membrane-associated PLC gamma1 and PLC beta1 activities, assayed in immunoprecipitated fractions, and moreover, increased the membrane levels of PLC beta1 and PLC beta3. Activation of PLC beta is suggestive of FGF-2-induced cross-talk between FGF-receptor tyrosine kinase and G-protein-coupled signaling in adult cardiomyocytes and underscores the importance of FGF-2 in cardiac physiology.  相似文献   

8.
Different forms of phospholipase D (dependent on and independent of the presence of phosphatidylinositol 4,5-bisphosphate, PIP(2)) were identified in maturing and germinating seeds of Brassica napus. Both forms were present in cytosolic and membrane fractions of maturing seeds. PIP(2)-dependent activity increased continuously during seed germination, while PIP(2)-independent activity appeared mostly at the very beginning of seed maturation. PIP(2)-dependent activity was detected mainly in the plasma-membrane fraction. Phosphatidylinositol-specific phospholipase C (PI-PLC) was found only in membrane fractions of both types of developing rape seed tissues. The increasing activities of PLC and PIP(2)-dependent PLD were mainly detected in hypocotyls of seedlings. Some biochemical characteristics of both described enzymes are also presented.  相似文献   

9.
Three soluble enzyme fractions (F-I, F-II, and F-III) that hydrolyze phophoinositides were separated from soybean sprouts by using Matrex green gel column chromatography. Among the three phosphatidylinositol (PI)-specific phopholipsase C (PLC) enzymes, only the third fraction (F-III) was able to hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) as well as phosphatidylinositol (PI) and phosphatidylinositol phosphate (PIP) as substrates. The F-I and F-II fractions only showed enzymatic activities for PI and PIP. The PIP2-hydrolyzing PLC protein, F-III, was partially purified using the chromatographic steps of the Matrex green gel, phenyl Toyopearl, Matrex orange gel, Mono S cation exchange, and superose 6 gel filtration columns. The molecular weight of the F-III protein was estimated to be about 64 kDa on SDS-PAGE. The protein showed immunocross-reactivity with a polyclonal antibody that was prepared against the X and Y motifs of animal PLC enzymes, the conserved catalytic domains. Ca2+ ion critically affected the PIP2-hydrolyzing PLC activity of the F-III protein, representing maximal activity at 10 microM Ca2+ concentration. The PIP2-hydrolyzing PLC activity of the protein was also significantly increased by sodium deoxycholate (SDC) from 0.05 to 0.08%. However, the activity was greatly reduced above the concentration, and no activity was detected at 0.3% SDC. In addition, the protein exhibited maximal PIP2-hydrolyzing PLC activity at pH, in the range of 6.5-7.5.  相似文献   

10.
The subcellular distribution of phospholipase C (PLC) activity in rabbit thymocytes was examined by measuring the enzyme's activity in different subcellular fractions. PLC activity was determined using exogenously added [3H]PIP2 as substrate. Approx. 80% of the activity of the cell homogenate was found in the cytosolic fraction. A minor portion of PLC activity was attached to the particulate fraction. This membrane-associated PLC activity was found to be predominantly bound to the plasma membrane. Both PIP2-cleaving PLCs (the PLC associated with the plasma membrane and the PLC in the cytosol) exhibited maximum activity at pH 5. GTP gamma S stimulated the cytosolic and the membrane-bound PLC. As revealed by computer analysis of the substrate dependence of both basal and GTP gamma S-stimulated PLC activity, GTP gamma S enhanced the Vmax of the enzymes. Calcium, at a concentration of 1 mM, decreased PLC activity, as compared to a calcium concentration of 100 nM. The characteristic increase in Vmax induced by GTP gamma S was observed at a concentration of 1 mM calcium and was similar to that at 100 nM. These data suggest that the stimulatory effect of GTP gamma S is not due to an increased affinity of PLCs to calcium.  相似文献   

11.
We have characterized a plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phospholipase C (PLC) and a cytosolic phosphatidylinositol (PI)-specific PLC in human liver. Epinephrine, 1 x 10(-5) M, and vasopressin, 1 x 10(-8) M, stimulated PIP2-PLC which was enhanced by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S). PI-PLC stimulation was not observed by these agents. Insulin and insulin-like growth factors (IGF-I and IGF-II) in the presence and absence of GTP gamma S did not stimulate PIP2-PLC or PI-PLC in plasma membranes and cytosol preparations nor phosphoinositide breakdown in isolated human hepatocytes. Furthermore, serendipitly we found that PIP2-PLC activity was increased in liver membranes from obese patients with type II diabetes when compared to obese and lean controls. We conclude that in human liver, insulin and IGFs are not members of the family of hormones generating inositol trisphosphate (IP3) as a second messenger. Furthermore, the increased PIP2-PLC in diabetic liver may result in: (a) increased intracellular concentrations of IP3 and thus increased Ca2+, which has been postulated to induce insulin resistance; and (b) increased diacylglycerol and thus increased protein kinase C which phosphorylates the insulin receptor at serine residues inactivating the insulin receptor kinase. While the mechanism of increased PIP2-PLC activity in diabetes is unknown, it may initiate a cascade of events that result in insulin resistance.  相似文献   

12.
Concanavalin A (Con A) stimulation resulted in the rapid redistribution of part of the GTP-binding activity from the membrane to the cytosol in murine thymocytes. This change in GTP-binding activity was dependent on the Con A concentration. To investigate the relationship between this redistribution and phospholipase C (PLC) activity, the effect of GTP gamma S on the cytosol PLC activity was also examined, and it was found that GTP gamma S enhanced the phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis activity in the cytosol of Con A-stimulated thymocytes more than in that of unstimulated thymocytes. This enhancement by GTP gamma S was also dependent on the Con A concentration. The results suggest that in murine thymocytes, the GTP-binding protein (G-protein) involved in the regulation of PLC activity may be translocated from the membrane to the cytosol upon Con A stimulation. Besides, the dose dependence curve for the change in the GTP gamma S-binding activity was similar to that for inositol phosphates formation in Con A-stimulated thymocytes, suggesting that the translocation of the G-protein is closely related to PLC activation. Furthermore, the effects of cytosol fractions containing the 38-43 and 23-28 kDa GTP-binding subunits of G-proteins on the PIP2 hydrolysis activity of partially purified PLC were examined. The fraction containing the 23-28 kDa subunit evidently enhanced the PLC activity but that containing the 38-43 kDa subunit enhanced the activity to a much lower extent. Moreover, the 23-28 kDa subunit fraction of Con A-stimulated thymocytes was more effective as to enhancement of the PLC activity than that of unstimulated thymocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The hydrolysis of [3H]phosphatidylinositol 4,5-bisphosphate (PIP2) by cytosolic phospholipase C from human platelets was determined. Cytosolic fractions were prepared from platelets that had or had not been preactivated with thrombin. Thrombin pretreatment did not affect cytosolic phospholipase C activity. In both cytosolic fractions, phospholipase C was activated by GTP and GTP gamma S. This action is observed in the presence of 2 mM EGTA. GDP was as effective as GTP in stimulating cytosolic phospholipase C in the presence of Ca2+ or EGTA. Partially purified phospholipase C obtained from platelet cytosol is activated by GTP, but not by GTP gamma S, in the presence of 2 mM EGTA. However, in the presence of 6 microM Ca2+, both GTP and GTP gamma S stimulated the partially purified phospholipase C. Our present information indicates that GTP and GDP have a direct effect on the cytosolic phospholipase C.  相似文献   

14.
R Graber  G A Losa 《Enzyme》1989,41(1):17-26
Peripheral blood mononuclear cells from normal donors exhibited phosphatidylinositol 4,5-bisphosphate phospholipase C (PIP2-PLC), inositol 1,4,5-trisphosphate (IP3) and inositol 1-phosphate (IP)-monophosphatase activities which were mostly recovered in the cytosol fraction. In both cytosol and particulate fractions PIP2-PLC displayed the highest activity at pH 6.2, whereas IP3 and IP-monophosphatases showed the same optimal pH at 7.0. While the PIP2-PLC displayed close apparent Km values in cytosol and particulate fractions, both inositol-monophosphatases were found to show substrate affinities for IP and IP3 characteristic of these two fractions, with an higher affinity in the soluble fraction.  相似文献   

15.
Summary In contrast to several sterol carrier proteins isolated from soluble cytosolic fractions, a cholesterol transfer protein (CHTP) with an apparent molecular weight of 73,000 was isolated from a cardiac sarcolemmal fraction by detergent solubilization, column chromatography, and preparative electrophoresis using nondissociating polyacrylamide gels. This protein must be reconstituted into an artificial membrane in order to mediate cholesterol transfer activity. For the expression of its full activity, CHTP must also be present in the membrane in a multimeric form, since the monomer was shown not to be active. We believe this novel protein might represent an important molecule in the regulation of the homeostasis of cholesterol in cardiac sarcolemma.  相似文献   

16.
Subcellular fractions isolated and purified from rat brain cerebral cortices were assayed for phosphatidylinositol (PI-), phosphatidylinositol-4-phosphate (PIP-), and diacylglycerol (DG-) kinase activities in the presence of endogenous or exogenously added lipid substrates and [γ-32P]ATP. Measurable amounts of all three kinase activities were observed in each subcellular fraction, including the cytosol. However, their subcellular profiles were uniquely distinct. In the absence of exogenous lipid substrates, PI-kinase specific activity was greatest in the microsomal and non-synaptic plasma membrane fractions (150–200 pmol/min per mg protein), whereas PIP-kinase was predominantly active in the synaptosomal fraction (136 pmol/min per mg protein). Based on percentage of total protein, total recovered PI-kinase activity was most abundant in the cytosolic, synaptosomal, microsomal and mitochondrial fractions (4–11 nmol/min). With the exception of the microsomal fraction, a similar profile was observed for PIP-kinase activity when assayed in the presence of exogenous PIP (4 nmol/20 mg protein in a final assay volume of 0.1 ml). Exogenous PIP (4 nmol/20 mg protein) inhibited PI-kinase activity in most fractions by 40–70%, while enhancing PIP-kinase activity. PI- and PIP-kinase activities were observed in the cytosolic fraction when assayed in the presence of exogenously added PI or PIP, respectively, but not in heat-inactivated membranes containing these substrates. When subcellular fractions were assayed for DG-kinase activity using heat-inactivated DG-enriched membranes as substrate, DG-kinase specific activity was predominantly present in the cytosol. However, incubation of subcellular fractions in the presence of deoxycholate resulted in a striking enhancement of DG-kinase activities in all membrane fractions. These findings demonstrate a bimodal distribution between particulate and soluble fractions of all three lipid kinases, with each exhibiting its own unique subcellular topography. The preferential expression of PIP-kinase specific activity in the synaptic membranes is suggestive of the involvement of PIP2 in synaptic function, while the expression of PI-kinase specific activity in the microsomal fraction suggests additional, yet unknown, functions for PIP in these membranes.  相似文献   

17.
Inositol Phospholipid Hydrolysis by Rat Sciatic Nerve Phospholipase C   总被引:2,自引:1,他引:1  
Rat sciatic nerve cytosol contains a phosphodiesterase of the phospholipase C type that catalyzes the hydrolysis of inositol phospholipids, with preferences of phosphatidylinositol 4'-phosphate (PIP) greater than phosphatidylinositol (PI) much greater than phosphatidylinositol 4',5'-bisphosphate (PIP2), at a pH optimum of 5.5-6.0 and at maximum rates of 55, 13, and 0.7 nmol/min/mg protein, respectively. Analysis of reaction products by TLC and formate exchange chromatography shows that inositol 1,2-cyclic phosphate (83%) and diacylglycerol are the major products of PI hydrolysis. [32P]-PIP hydrolysis yields inositol bisphosphate, inositol phosphate, and inorganic phosphate, indicating the presence of phosphodiesterase, phosphomonoesterase, and/or inositol phosphate phosphatase activities in nerve cytosol. Phosphodiesterase activity is Ca2+-dependent and completely inhibited by EGTA, but phosphomonoesterase activity is independent of divalent cations or chelating agents. Phosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) inhibit PI hydrolysis. They stimulate PIP and PIP2 hydrolysis up to equimolar concentrations, but are inhibitory at higher concentrations. Both diacylglycerols and free fatty acids stimulate PI hydrolysis and counteract its inhibition by PC and lysoPC. PIP2 is a poor substrate for the cytosolic phospholipase C and strongly inhibits hydrolysis of PI. However, it enhances PIP hydrolysis up to an equimolar concentration.  相似文献   

18.
The purpose of this investigation was to study the effects of a distinct type of phospholipase C on sarcolemmal Na+-Ca2+ exchange. With this phospholipase C (Staphylococcus aureus), treatment of cardiac sarcolemmal vesicles resulted in a specific hydrolysis of membrane phosphatidylinositol. This hydrolysis of phosphatidylinositol also released two proteins (110 and 36 kDa) from the sarcolemmal membrane. Phospholipase C pretreatment of the sarcolemma resulted in an unexpected stimulation of Na+-Ca2+ exchange. The Vmax of Na+-Ca2+ exchange was increased but the Km for Ca2+ was not altered. This stimulation was specific to the Na+-Ca2+ exchange pathway. ATP-dependent Ca2+ uptake was depressed after phospholipase C treatment, but passive membrane permeability to Ca2+ was unaffected. Sarcolemmal Na+,K+-ATPase activity was not altered, whereas passive Ca2+ binding was modestly decreased after phospholipase C pretreatment. The stimulation of Na+-Ca2+ exchange after phosphatidylinositol hydrolysis was greater in inside-out vesicles than in a total population of vesicles of mixed orientation. This finding suggests that the cardiac sarcolemmal Na+-Ca2+ exchanger is functionally asymmetrical. The results also suggest that membrane phosphatidylinositol is inhibitory to the Na+-Ca2+ exchanger or, alternatively, this phospholipid may anchor an endogenous inhibitory protein in the sarcolemmal membrane. The observation that a transsarcolemmal Ca2+ flux pathway may be stimulated solely by phosphatidylinositol hydrolysis independently of phosphoinositide metabolic products like inositol triphosphate is novel.  相似文献   

19.
Incubation of purified bovine photoreceptor rod outer segments with [gamma-32P]ATP resulted in the labeling of phosphatidylinositol 4-phosphate (PIP) and phosphatidic acid (PA) with little labeling of phosphatidylinositol 4,5-bisphosphate (PIP2). Propranolol inhibited in a dose-dependent manner the labeling of PA and enhanced that of PIP. Various cationic amphiphilic drugs also were tested for these effects. Propranolol had the same effects on high-speed rat brain particulate material. While this particular preparation displayed more labeling of PIP2, propranolol was ineffective, as it was on retinal PIP-kinase. Ca2+-activated polyphosphoinositide phosphodiesterase activity in nerve-ending membranes also was inhibited by propranolol. It is concluded that cationic amphiphilic drugs can inhibit diacylglycerol kinase and the polyphosphoinositide phosphodiesterase and stimulate the phosphatidylinositol-kinase (but not PIP-kinase).  相似文献   

20.
J Strosznajder 《FEBS letters》1989,257(1):110-112
The effect of 10 min ischemia on the activity of phospholipase C acting against [3H]inositol-phosphatidylinositol (PI) and [3H]inositol-phosphatidylinositol 4,5-bisphosphate (PIP2) in the brain subsynaptosomal fractions was investigated. In the presence of endogenous CaCl2, specific activity of phospholipase C acting on phosphatidylinositol was as follows: synaptic cytosol (SC) greater than synaptic vesicles (SV) greater than synaptic plasma membrane SPM). Brain ischemia activated phospholipase C acting on PI by about 60% and 40% in SV and SPM, respectively. The enzyme of synaptic cytosol was not affected by ischemic insult. Phospholipase C acting against PIP2 in the presence of endogenous calcium expressed the specific activity in the following order: SV greater than SPM greater than SC. After 10 min of brain ischemia, activity of phospholipase C acting on PIP2 was significantly suppressed in all subsynaptosomal fractions by about 50-60%. These results indicate that prolonged ischemia produced activation exclusively of phospholipase C acting against phosphatidylinositol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号