首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants as well as pro- and eukaryotic microorganisms are able to synthesise lysine via de novo synthesis. While plants and bacteria, with some exceptions, rely on variations of the meso-diaminopimelate pathway for lysine biosynthesis, fungi exclusively use the α-aminoadipate pathway. Although bacteria and fungi are, in principle, both suitable as lysine producers, current industrial fermentations rely on the use of bacteria. In contrast, fungi are important producers of β-lactam antibiotics such as penicillins or cephalosporins. The synthesis of these antibiotics strictly depends on α-aminoadipate deriving from lysine biosynthesis. Interestingly, despite the resulting industrial importance of the fungal α-aminoadipate pathway, biochemical reactions leading to α-aminoadipate formation have only been studied on a limited number of fungal species. In this respect, just recently an essential isomerisation reaction required for the formation of α-aminoadipate has been elucidated in detail. This review summarises biochemical pathways leading to lysine production, discusses the suitability of interrupting lysine biosynthesis as target for new antibacterial and antifungal compounds and emphasises on biochemical reactions involved in the formation of α-aminoadipate in fungi as an essential intermediate for both, lysine and β-lactam antibiotics production.  相似文献   

2.
Almost 50 antibiotics have been reported to be modified microbiologically and the changes observed were grouped into 16 types of reactions. Most of the products of the reactions were antibiotically inactive, several have assumed a considerable clinical significance and others are of real or potential economic value. The catalysis in most instances has been effected by whole cells and in a few cases the respective enzymes were isolated, purified and crystallized.  相似文献   

3.
Nonribosomal biosynthesis of peptide antibiotics   总被引:22,自引:0,他引:22  
Peptide antibiotics are known to contain non-protein amino acids, D-amino acids, hydroxy acids, and other unusual constituents. In addition they may be modified by N-methylation and cyclization reactions. Their biosynthetic origin has been connected in many cases to an enzymatic system referred to as the 'thiotemplate multienzymic mechanism'. This mechanism includes the activation of the constituent residues as adenylates on the enzymic template, the acylation of specific template thiol groups, epimerization or N-methylation at this thioester stage, and polymerization in the sequence directed by the multienzymic structure with the aid of 4'-phosphopantetheine as a cofactor, including possible cyclization or terminal modification reactions. The reaction sequences leading to gramicidin S, tyrocidine, cyclosporine, bacitracin, polymyxin, actinomycin, enniatin, beauvericin, delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine and linear gramicidin are discussed. The structures of the multienzymes, their genetic organization, the biological functions of these peptides and results on related systems are discussed.  相似文献   

4.
从临床化脓性感染中分离到九株革兰氏阴性产生脂溶性红色素的小杆菌。经详细鉴定(20种生化反应,120种底物利用试验及G+C mol%测定)为粘质沙雷氏菌(Serratia marcescens)。其中两株能利用3,4-二羟基苯甲酸盐为唯一的碳源而生长,证明此试验适用于本属的种型鉴定。9株菌中有7株细菌属于粘质沙雷氏菌A2型。药敏试验显示青霉素及其它作用于细胞壁的抗生素对这些菌无效而所试验的氨基糖苷类抗生素几乎全有效。红霉紊、链霉素和复方增效磺胺则各株间的敏感性不同;磺胺虽  相似文献   

5.
A Tekitek  S J Kerr  M Barbier  E Lederer 《Biochimie》1975,57(10):1185-1188
Contrary to some previous reports on the absence of biological transmethylation reactions in some insect species, the transfer of the methyl group of methionine-methyl 14C leading to choline and to methylated bases in tRNA was shown in the honeybee Apis mellifica. The addition of antibiotics to the food of the insect does not diminish the incorporation of radioactivity, proving that intestinal bacteria are not responsible for the methylation reactions observed.  相似文献   

6.
Anaphylactic reactions following the injection of penicillin or other antibiotics have increased greatly during the past several years. These untoward reactions to penicillin were infrequent during the first nine years of penicillin therapy and there can be no doubt that hypersensitivity to these drugs is developing in many people. Therefore promiscuous use of them is to be condemned. It is safer not to use antibiotics parenterally in patients with allergic conditions such as bronchial asthma. The further use of a particular antibiotic should be avoided if the patient has previously shown any hypersensitivity to that drug.A questionnaire was answered by more than 1,000 California physicians who reported that over 300 patients had severe anaphylactic reactions from parenteral penicillin and streptomycin. There were seven deaths.Since the antibiotics should still be used when needed, prevention of anaphylaxis is of fundamental importance. The frequency of these reactions can be greatly reduced by the use of antihistaminic solutions combined with the antibiotics. Treatment of these shock-like reactions demands the prompt administration of epinephrine intramuscularly, antihistaminic solutions intravenously and oxygen.  相似文献   

7.
Penicillin G acylases (PGAs) are robust industrial catalysts used for biotransformation of β-lactams into key intermediates for chemical production of semi-synthetic β-lactam antibiotics by hydrolysis of natural penicillins. They are used also in reverse, kinetically controlled synthetic reactions for large-scale productions of these antibiotics from corresponding beta-lactam nuclei and activated acyl donors. Further biocatalytic applications of PGAs have recently been described: catalysis of peptide syntheses and the resolutions of racemic mixtures for the production of enantiopure active pharmaceutical ingredients that are based on enantioselective acylation or chiral hydrolysis. Moreover, PGAs rank among promiscuous enzymes because they also catalyze reactions such as trans-esterification, Markovnikov addition or Henry reaction. This particular biocatalytic versatility represents a driving force for the discovery of novel members of this enzyme family and further research into the catalytic potential of PGAs. This review deals with biocatalytic applications exploiting enantioselectivity and promiscuity of prokaryotic PGAs that have been recently reported. Biocatalytic applications are discussed and presented with reaction substrates converted into active compounds useful for the pharmaceutical industry.  相似文献   

8.
Wright GD 《Cell》2007,130(5):781-783
How do antibiotics actually work? Although the primary cellular targets of many antimicrobial agents have been identified, the downstream events leading to bacterial cell death remain unclear. In this issue, Kohanski et al. (2007) provide evidence that the production of reactive oxygen species is a shared mechanism of cell death initiated by bactericidal antibiotics.  相似文献   

9.
Enterococcus faecalis and Enterococcus faecium are among the leading causative agents of nosocomial infections and are infamous for their resistance to many antibiotics. They cause difficult-to-treat infections, often originating from biofilm-mediated infections associated with implanted medical devices or endocarditis. Biofilms protect bacteria against antibiotics and phagocytosis, and physical removal of devices or infected tissue is often needed but is frequently not possible. Currently there are no clinically available compounds that disassemble biofilms. In this review we discuss all known structural and regulatory genes involved in enterococcal biofilm formation, the compounds directed against biofilm formation that have been studied, and potentially useful targets for future drugs to treat enterococcal biofilm-associated infections.  相似文献   

10.

Background  

Although rare, serum sickness-like reactions have been documented to occur following the administration of many antibiotics. Cefazolin, a first generation cephalosporin, is a commonly prescribed antibiotic which is considered to be generally safe and well tolerated. There have been no prior reports linking this drug with sickness-like reactions. We report a probable case of serum sickness-like reaction following a single dose of cefazolin.  相似文献   

11.
Adverse reactions (ARs) to drugs administered during general anesthesia may be very severe and life-threatening, with a mortality rate ranging from 3 to 9%. The adverse reactions to drugs may be IgE and non-IgE-mediated. Neuromuscular blocking agents (NMBA) represent the first cause of perioperative reactions during general anesthesia followed by latex, antibiotics, hypnotic agents, opioids, colloids, dyes and antiseptics (chlorhexidine). All these substances (i.e. NMBA, anesthetics, antibiotics, latex devices) may cause severe systemic non-IgE-mediated reactions or fatal anaphylactic events even in the absence of any evident risk factor in the patient’s anamnesis. For this reason, in order to minimize perioperative anaphylactic reactions, it is important to have rapid, specific, sensitive in vitro diagnostic tests able to confirm the clinical diagnosis of acute anaphylaxis.  相似文献   

12.
OBJECTIVE--To assess the prevalence of colourings and preservatives in drug formulations in the United Kingdom. DESIGN--Postal survey. PARTICIPANTS--All pharmaceutical manufacturers in the United Kingdom were requested to supply data on drug formulations with particular regard to the content of colourings and preservatives. MAIN OUTCOME MEASURE--Prevalence in proprietary drugs of colourings or preservatives, or both, that have been implicated in adverse reactions. Computation of a list of formulations of bronchodilators, antihistamines, and antibiotics that are free of such additives. RESULTS--A total of 118 out of 120 pharmaceutical companies supplied the data requested. In all, 2204 drug formulations were analysed and found to contain 419 different additives, of which 52 were colourings and preservatives that have been implicated in adverse reactions; 930 formulations contained such an additive. Tartrazine was the fourth most commonly occurring colouring, being present in 124 drug formulations. CONCLUSION--Many drugs contain additives that help to identify them and prolong their shelf life but are implicated in adverse reactions in some people. Some form of labelling of drug additives would enable these people to avoid drugs containing such additives.  相似文献   

13.
Although antibiotics are generally well tolerated, their toxic effects on the central nervous system have been gained attention. In this study, we systematically investigated the neuron toxicity of antibiotics from six different classes. We show that clinically relevant concentrations of metronidazole, tigecycline, azithromycin and clindamycin but not ampicillin or sulfamethoxazole induce apoptosis of human primary neuron cells and lines. Notably, tigecycline, azithromycin and clindamycin cause neuron cell oxidative damage whereas metronidazole has no effect on reactive oxygen species (ROS) production, suggesting that metronidazole induces neuron death via ROS‐independent mechanism. Tigecycline, azithromycin and clindamycin induce mitochondrial dysfunctions via targeting different mitochondrial respiratory complexes, leading to mitochondrial membrane potential disruption and energy crisis. The deleterious effects of antibiotics are reversed by pretreatment of neuron cells with antioxidant. Our work highlights the different influences of antibiotics on mitochondrial dysfunction, oxidative damage and cytotoxicity in neuron cells. We also provide a strategy to prevent the neurotoxicity.  相似文献   

14.
Antibiotics are widely used to improve human and animal health and treat infections. Antibiotics are often used in livestock farms and fisheries to prevent diseases and promote growth. Recently, there has been increasing interest in the presence of antibiotics in aquatic environments. Low levels of antibiotic components are frequently detected in surface water, seawater, groundwater, and even drinking water. Antibiotics are consistently and continually discharged into the natural environment as parent molecules or metabolites, which are usually soluble and bioactive, and this results in a pseudo and persistent pollution. The effects of environmental antibiotic toxicity on non-target organisms, especially aquatic organisms, have become an increasing concern. Although antibiotics have been detected worldwide, their ecological and developmental effects have been poorly investigated, particularly in non-target organisms. This review describes the toxicity and underlying mechanism of antibiotic contamination in aquatic organisms, including the effects on vertebrate development. A considerable number of antibiotic effects on aquatic organisms have been investigated using acute toxicity assays, but only very little is known about the long-term effects. Aquatic photosynthetic autotrophs, such as Pseudokirchneriella subcapitata, Anabaena flos-aquae, and Lemna minor, were previously used for antibiotic toxicity tests because of low cost, simple operation, and high sensitivity. Certain antibiotics show a different degree of potency in algal toxicity tests on the basis of different test algae. Antibiotics inhibit protein synthesis, chloroplast development, and photosynthesis, ultimately leading to growth inhibition; some organisms exhibit growth stimulation at certain antibiotic concentrations. Daphnia magna and other aquatic invertebrates have also been used for checking the toxicity priority of antibiotics. When investigating the acute effect of antibiotics (e.g., growth inhibition), concentrations in standard laboratory organisms are usually about two or three orders of magnitude higher than the maximal concentrations in the aquatic environment, resulting in the underestimation of antibiotic hazards. Vertebrate organisms show a promising potential for chronic toxicity and potentially subtle effects of antibiotics, particularly on biochemical processes and molecular targets. The adverse developmental effects of macrolides, tetracyclines, sulfonamides, quinolones, and other antibiotic groups have been evaluated in aquatic vertebrates such as Danio rerio and Xenopus tropicalis. In acute toxicity tests, low levels of antibiotics have systematic teratogenic effects on fish. The effects of antibiotics on oxidative stress enzymes and cytochrome P450 have been investigated. Cytotoxicity, neurotoxicity, and genotoxicity have been observed for certain antibiotic amounts. However, there are no firm conclusions regarding the chronic toxicity of antibiotics at environmentally relevant levels because of the lack of long-term exposure studies. Herein, future perspectives and challenges of antibiotic toxicology were discussed. Researchers should pay more attention to the following points: chronic toxicity and potentially subtle effects of environmentally relevant antibiotics on vertebrates; effects of toxicity on biochemical processes and mode of action; combined toxicity of antibiotics and other antibiotics, metabolites, and heavy metals; and environmental factors such as temperature and pH.  相似文献   

15.
M M Lleo  P Canepari    G Satta 《Journal of bacteriology》1990,172(7):3758-3771
The two-competing-sites model for peptidoglycan assembly for bacterial cell shape regulation suggests that in rods, bacterial cell shape depends on the balance between two reactions (sites), one responsible for lateral wall elongation and the other responsible for septum formation. The two reactions compete with each other so that no lateral wall can be formed during septum formation and vice versa. When the site for lateral wall elongation overcomes that for septum formation, long rods or filaments are formed and cell division may be blocked. When the reaction leading to septum formation is hyperactive compared with the other, coccobacilli or cocci are formed. Other bacteria carry only one site for peptidoglycan assembly and can grow only as cocci. The two-competing-sites model predicts that two different types of cocci exist (among both morphology mutants and wild-type strains); one carries only the site for septum formation, whereas the other also carries the site for lateral wall elongation, the former site predominating over the latter. As a consequence of the inhibition (by antibiotics or by mutations) of septum formation in wild-type cocci of various species and in coccoid morphology mutants, some cocci are expected to undergo transition to rod shape and others are not. We have evaluated these predictions and show that they are in agreement. In fact, we found that among wild-type cocci belonging to 13 species, those of 6 species formed rods, whereas the remaining organisms maintained their coccal shape when septa were inhibited by antibiotics. Some coccoid morphology mutants of rod-shaped bacteria underwent coccus-to-rod transition after septum inhibition by antibiotics, whereas others maintained their coccal shape. When a mutation that causes septum inhibition was expressed in a morphology mutant of Klebsiella pneumoniae grown as a coccus, transition to rod shape was observed. A total of 914 mutants unable to form colonies at 42 degrees C were isolated from the coccoid species mentioned above. Between 75 and 95% of the mutants isolated from the species that formed rods when septum formation was inhibited by antibiotics but none of those isolated from the others underwent coccus-to-rod transition upon incubation at the nonpermissive temperature.  相似文献   

16.
Enzymes continue to be used as important catalysts, for the generation of rare and 'unnatural' monosaccharides and for the selective formation of glycosidic linkages. Multi-enzyme systems have been employed in one-pot strategies for multistep reaction sequences and for co-factor regeneration. The efficiency of glycosidases for glycosylation reactions has been dramatically increased by active-site mutagenesis to generate glycosynthases. First reports have detailed the expansion and optimization of glycosynthase substrate specificity by directed evolution. Novel glycosyltransferases are being identified from genomic databases and have been shown to glycosylate complex metabolites, such as glycopeptide antibiotics, with exquisite selectivity and in good yields. An emerging field is the application of glycosynthases and glycosyltransferases to reactions on solid support, generating potential applications in microarrays.  相似文献   

17.
Cytochrome P450s belong to a family of heme-binding monooxygenases, which catalyze regio- and stereospecific functionalisation of C–H, C–C, and C–N bonds, including heteroatom oxidation, oxidative C–C bond cleavages, and nitrene transfer. P450s are considered useful biocatalysts for the production of pharmaceutical products, fine chemicals, and bioremediating agents. Despite having tremendous biotechnological potential, being heme-monooxygenases, P450s require either autologous or heterologous redox partner(s) to perform chemical transformations. Randomly distributed P450s throughout a bacterial genome and devoid of particular redox partners in natural products biosynthetic gene clusters (BGCs) showed an extra challenge to reveal their pharmaceutical potential. However, continuous efforts have been made to understand their involvement in antibiotic biosynthesis and their modification, and this review focused on such BGCs. Here, particularly, we have discussed the role of P450s involved in the production of macrolides and aminocoumarin antibiotics, nonribosomal peptide (NRPSs) antibiotics, ribosomally synthesized and post-translationally modified peptide (RiPPs) antibiotics, and others. Several reactions catalyzed by P450s, as well as the role of their redox partners involved in the BGCs of various antibiotics and their derivatives, have been primarily addressed in this review, which would be useful in further exploration of P450s for the biosynthesis of new therapeutics.  相似文献   

18.
Genome‐scale metabolic network reconstructions are built from all of the known metabolic reactions and genes in a target organism. However, since our knowledge of any organism is incomplete, these network reconstructions contain gaps. Reactions may be missing, resulting in dead‐ends in pathways, while unknown gene products may catalyze known reactions. New computational methods that analyze data, such as growth phenotypes or gene essentiality, in the context of genome‐scale metabolic networks, have been developed to predict these missing reactions or genes likely to fill these knowledge gaps. A growing number of experimental studies are appearing that address these computational predictions, leading to discovery of new metabolic capabilities in the target organism. Gap‐filling methods can thus be used to improve metabolic network models while simultaneously leading to discovery of new metabolic gene functions. Biotechnol. Bioeng. 2010;107: 403–412. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
四环素类抗生素降解途径及其主要降解产物研究进展   总被引:13,自引:0,他引:13  
四环素类抗生素在生产和贮存过程中会发生一系列非生物降解反应,其中某些代谢及降解产物,与母体相比,虽然其活性降低,但毒性却大大增强.此类抗生素随着畜禽废弃物等途径进入到环境中,随环境条件的不同将发生一种或多种降解反应,其降解方式除了非生物降解外,还包括生物降解.本文综述了四环素类抗生素在不同生态环境中的降解途径以及降解产物,并对今后的研究方向进行了探计,旨在为其生态风险评价提供有价值的参考.  相似文献   

20.
Biomimetic hydrolysis of DNA or RNA is of increasing importance in biotechnology and medicine. Most natural nuclease enzymes that mediate such reactions utilize metal ion cofactors. Recent progress in the design of synthetic metallonucleases has included complexes of antibiotics, peptides, nucleic acids, and other organic ligands. In this article, we review a number of synthetic catalyst systems that have been developed to achieve efficient DNA hydrolysis. Methods to evaluate their catalytic efficiencies are critically discussed, and a prognosis for future work in this area is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号