首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Levitt PS  Liu H  Manning C  Weiss RS 《Genomics》2005,86(2):212-224
The Hus1 cell cycle checkpoint protein plays a central role in genome maintenance by mediating cellular responses to DNA damage and replication stress. Targeted deletion of mouse Hus1 results in spontaneous chromosomal abnormalities and embryonic lethality. To study the physiological impact of Hus1 deficiency in adult mice, we generated a conditional Hus1 allele, Hus1(flox), in which exons two and three are flanked by loxP sites. Cre-mediated excision of the loxP-flanked region produces Hus1(Delta2,3), which is capable of encoding only 19 of 281 Hus1 amino acids. Germline homozygosity for Hus1(Delta2,3) resulted in mid-gestational embryonic lethality that was indistinguishable from that caused by an established null allele, Hus1(Delta1n). Hus1 was inactivated in adult mice using a transgenic strain in which Cre is sporadically expressed in a variety of tissues from the Hsp70-1 promoter. Conditional Hus1 knockout mice were produced at unexpectedly low frequency and, unlike control animals, demonstrated limited inactivation of the conditional allele, suggesting that Hus1-deficient cells were at a strong selective disadvantage in adult animals. However, viable conditional Hus1 knockout mice consistently showed the greatest degree of Hus1 inactivation specifically in lung and mammary gland, highlighting varying requirements for Hus1 in different tissues. The novel tools described here hold promise for elucidating how the Hus1-dependent checkpoint mechanism contributes to chromosomal stability, DNA damage responses, and tumor suppression in adult mice.  相似文献   

2.
Cells slow replication in response to DNA damage. This slowing was the first DNA damage checkpoint response discovered and its study led to the discovery of the central checkpoint kinase, Ataxia Telangiectasia Mutated (ATM). Nonetheless, the manner by which the S-phase DNA damage checkpoint slows replication is still unclear. The checkpoint could slow bulk replication by inhibiting replication origin firing or slowing replication fork progression, and both mechanisms appear to be used. However, assays in various systems using different DNA damaging agents have produced conflicting results as to the relative importance of the two mechanisms. Furthermore, although progress has been made in elucidating the mechanism of origin regulation in vertebrates, the mechanism by which forks are slowed remains unknown. We review both past and present efforts towards determining how cells slow replication in response to damage and try to resolve apparent conflicts and discrepancies within the field. We propose that inhibition of origin firing is a global checkpoint mechanism that reduces overall DNA synthesis whenever the checkpoint is activated, whereas slowing of fork progression reflects a local checkpoint mechanism that only affects replisomes as they encounter DNA damage and therefore only affects overall replication rates in cases of high lesion density.  相似文献   

3.
Nonapoptotic role for Apaf-1 in the DNA damage checkpoint   总被引:4,自引:0,他引:4  
Apaf-1 is an essential factor for cytochrome c-driven caspase activation during mitochondrial apoptosis but has also an apoptosis-unrelated function. Knockdown of Apaf-1 in human cells, knockout of apaf-1 in mice, and loss-of-function mutations in the Caenorhabditis elegans apaf-1 homolog ced-4 reveal the implication of Apaf-1/CED-4 in DNA damage-induced cell-cycle arrest. Apaf-1 loss compromised the DNA damage checkpoints elicited by ionizing irradiation or chemotherapy. Apaf-1 depletion reduced the activation of the checkpoint kinase Chk1 provoked by DNA damage, and knockdown of Chk1 abrogated the Apaf-1-mediated cell-cycle arrest. Nuclear translocation of Apaf-1, induced in vitro by exogenous DNA-damaging agents, correlated in non-small cell lung cancer (NSCLC) with the endogenous activation of Chk-1, suggesting that this pathway is clinically relevant. Hence, Apaf-1 exerts two distinct, phylogenetically conserved roles in response to mitochondrial membrane permeabilization and DNA damage. These data point to a role for Apaf-1 as a bona fide tumor suppressor.  相似文献   

4.
Using a nucleus-free DNA replication system we have investigated the roles of Xenopus ATR (XATR) and Hus1 (Xhus1) as the DNA replication checkpoint sensors. Like XATR, Xhus1 is required for the checkpoint-dependent phosphorylation of Xchk1 and associates with chromatin in an initiation-dependent manner. While removal of replication protein A inhibits chromatin association of both XATR and Xhus1, removal of polymerase alpha only disrupts chromatin association of Xhus1. In addition, chromatin association of XATR and Xhus1 are independent of each other. Finally, like XATR, Xhus1 associates with chromatin in unperturbed S phase and dissociates from chromatin following completion of DNA replication.  相似文献   

5.
Comment on: Pabla N, et al. Proc Natl Acad Sci USA 2012; 109:197-202.  相似文献   

6.
7.
Cell cycle checkpoints are regulatory mechanisms that arrest the cell cycle or initiate programmed cell death when critical events such as DNA replication fail to be completed or when DNA or spindle damage occurs. In fission yeast, cell cycle checkpoint responses to DNA replication blocks and DNA damage require the hus1+ gene. Mammalian homologs of hus1+ were recently identified, and here we report a detailed analysis of mouse Hus1. An approximately 4.2-kb full-length cDNA encoding the 32-kDa mouse Hus1 protein was isolated. The genomic structure and exon-intron boundary sequences of the gene were determined, and mouse Hus1 was found to consist of nine exons. Mouse Hus1 was mapped to the proximal end of chromosome 11 and is therefore a candidate gene for the mouse mutation germ cell deficient, which maps to the same genomic region. Finally, mouse Hus1 was found to be expressed in a variety of adult tissues and at several stages of embryonic development.  相似文献   

8.
Certain strains of Pichia acaciae and Wingea robertsiae (synonym Debaryomyces robertsiae) harbour extranuclear genetic elements that confer a killer phenotype to their host. Such killer plasmids (pPac1-2 of P. acaciae and pWR1A of W. robertsiae) were sequenced and compared with the zymocin encoding pGKL1 of Kluyveromyces lactis. Both new elements were found to be closely related to each other, but they are only partly similar to pGKL1. As for the latter, they encode functions mediating binding of the toxin to the target cell's chitin and a hydrophobic region potentially involved in uptake of a toxin subunit by target cells. Consistently, mutations affecting the target cell's major chitin synthase (Chs3) protect it from toxin action. Heterologous intracellular expression of respective open reading frames identified cell cycle-arresting toxin subunits deviating structurally from the likewise imported gamma-subunit of the K. lactis zymocin. Accordingly, toxicity of both P. acaciae and Wingea toxins was shown to be independent of RNA polymerase II Elongator, which is indispensable for zymocin action. Thus, P. acaciae and Wingea toxins differ in their mode of action from the G1-arresting zymocin. Fluorescence-activated cell sorting analysis and determination of budding indices have proved that such novel toxins mediate cell cycle arrest post-G1 during the S phase. Concomitantly, the DNA damage checkpoint kinase Rad53 is phosphorylated. As a mutant carrying the checkpoint-deficient allele rad53-11 displays toxin hypersensitivity, damage checkpoint activation apparently contributes to coping with toxin stress, rather than being functionally implemented in toxin action.  相似文献   

9.
Germline mutations of the breast cancer associated gene 1 (BRCA1) predispose women to breast and ovarian cancers. BRCA1 is a large protein with multiple functional domains and interacts with numerous proteins that are involved in many important biological processes/pathways. Mounting evidence indicates that BRCA1 is involved in all phases of the cell cycle and regulates orderly events during cell cycle progression. BRCA1 deficiency, consequently causes abnormalities in the S-phase checkpoint, the G2/M checkpoint, the spindle checkpoint and centrosome duplication. The genetic instability caused by BRCA1 deficiency, however, also triggers cellular responses to DNA damage that blocks cell proliferation and induces apoptosis. Thus BRCA1 mutant cells cannot develop further into full-grown tumors unless this cellular defense is broken. Functional analysis of BRCA1 in cell cycle checkpoints, genome integrity, DNA damage response (DDR) and tumor evolution should benefit our understanding of the mechanisms underlying BRCA1 associated tumorigenesis, as well as the development of therapeutic approaches for this lethal disease.  相似文献   

10.
ATM and p53, effectors of the DNA damage checkpoint, are generally considered pro-apoptotic in neurons. We show that DNA damage and checkpoint activation occurs in postmitotic neurons in animal models of tauopathy, neurodegenerative disorders that include Alzheimer's disease. Surprisingly, checkpoint attenuation potently increases neurodegeneration through aberrant cell cycle re-entry of postmitotic neurons. These data suggest an unexpected neuroprotective role for the DNA damage checkpoint in tauopathies.  相似文献   

11.
The ataxia telangiectasia-mutated (ATM) and Rad3-related kinase (ATR) is a central component of the cell cycle checkpoint machinery required to induce cell cycle arrest in response to DNA damage. Accumulating evidence suggests a role for ATR in signaling DNA damage during S-phase. Here we show that ATR is recruited to nuclear foci induced by replication fork stalling in a manner that is dependent on the single stranded binding protein replication protein A (RPA). ATR associates with chromatin in asynchronous cell cultures, and we use a variety of approaches to examine the association of ATR with chromatin in the absence of agents that cause genotoxic stress. Under our experimental conditions, ATR exhibits a decreased affinity for chromatin in quiescent cells and cells synchronized at mitosis but an increased affinity for chromatin as cells re-enter the cell cycle. Using centrifugal elutriation to obtain cells enriched at various stages of the cell cycle, we show that ATR associates with chromatin in a cell cycle-dependent manner, specifically during S-phase. Cell cycle association of ATR with chromatin mirrors that of RPA in addition to claspin, a cell cycle checkpoint protein previously shown to be a component of the replication machinery. Furthermore, association of ATR with chromatin occurs in the absence of detectable DNA damage and cell cycle checkpoint activation. These data are consistent with a model whereby ATR is recruited to chromatin during the unperturbed cell cycle and points to a role of ATR in monitoring genome integrity during normal S-phase progression.  相似文献   

12.
Deletion of the Saccharomyces cerevisiae TOP3 gene, encoding Top3p, leads to a slow-growth phenotype characterized by an accumulation of cells with a late S/G2 content of DNA (S. Gangloff, J. P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein, Mol. Cell. Biol. 14:8391-8398, 1994). We have investigated the function of TOP3 during cell cycle progression and the molecular basis for the cell cycle delay seen in top3Delta strains. We show that top3Delta mutants exhibit a RAD24-dependent delay in the G2 phase, suggesting a possible role for Top3p in the resolution of abnormal DNA structures or DNA damage arising during S phase. Consistent with this notion, top3Delta strains are sensitive to killing by a variety of DNA-damaging agents, including UV light and the alkylating agent methyl methanesulfonate, and are partially defective in the intra-S-phase checkpoint that slows the rate of S-phase progression following exposure to DNA-damaging agents. This S-phase checkpoint defect is associated with a defect in phosphorylation of Rad53p, indicating that, in the absence of Top3p, the efficiency of sensing the existence of DNA damage or signaling to the Rad53 kinase is impaired. Consistent with a role for Top3p specifically during S phase, top3Delta mutants are sensitive to the replication inhibitor hydroxyurea, expression of the TOP3 mRNA is activated in late G1 phase, and DNA damage checkpoints operating outside of S phase are unaffected by deletion of TOP3. All of these phenotypic consequences of loss of Top3p function are at least partially suppressed by deletion of SGS1, the yeast homologue of the human Bloom's and Werner's syndrome genes. These data implicate Top3p and, by inference, Sgs1p in an S-phase-specific role in the cellular response to DNA damage. A model proposing a role for these proteins in S phase is presented.  相似文献   

13.
Cell cycle checkpoints are evolutionarily conserved signaling pathways that uphold genomic integrity. Complete inactivation of the mouse checkpoint gene Hus1 results in chromosomal instability, genotoxin hypersensitivity, and embryonic lethality. To determine the functional consequences of partial Hus1 impairment, we generated an allelic series in which Hus1 expression was incrementally reduced by combining a hypomorphic Hus1 allele, Hus1(neo), with either wild-type or null (Hus1(Delta1)) alleles. Primary Hus1(neo/Delta1) embryonic fibroblasts exhibited spontaneous chromosomal abnormalities and underwent premature senescence, while higher Hus1 expression in Hus1(neo/neo) cells allowed for normal proliferation. Antioxidant treatment almost fully suppressed premature senescence in Hus1(neo/Delta1) cultures, suggesting a critical role for Hus1 in oxidative stress responses. Treatment of Hus1(neo/neo) and Hus1(neo/Delta1) cells with the DNA adducting agent benzo(a)pyrene dihydrodriol epoxide resulted in a loss of cell viability that was associated with S-phase DNA damage checkpoint failure. Likewise, the DNA polymerase inhibitor aphidicolin triggered increased cell death, chromosomal aberrations, and H2AX phosphorylation, a marker for double-stranded DNA breaks, in Hus1(neo/neo) and Hus1(neo/Delta1) cultures compared to controls. Despite these pronounced genome maintenance defects in cultured Hus1(neo/Delta1) and Hus1(neo/neo) cells, mice of the same genotypes were born at expected frequencies and appeared grossly normal. A significant increase in micronucleus formation was observed in peripheral blood cells from Hus1(neo/Delta1) mice, but reduced Hus1 expression did not cause an elevated predisposition to spontaneous tumor development or accelerate tumorigenesis in p53-deficient mice. These results identify differential effects of altered Hus1 gene dosage on genome maintenance during in vitro culture, genotoxic stress responses, embryonic development, and adult homeostasis.  相似文献   

14.
BRCA1 is a tumor suppressor involved in DNA repair and damage-induced checkpoint controls. In response to DNA damage, BRCA1 relocalizes to nuclear foci at the sites of DNA lesions. However, little is known about the regulation of BRCA1 relocalization following DNA damage. Here we show that mediator of DNA damage checkpoint protein 1 (MDC1), previously named NFBD1 or Kiaa0170, is a proximate mediator of DNA damage responses that regulates BRCA1 function. MDC1 regulates ataxia-telangiectasia-mutated (ATM)-dependent phosphorylation events at the site of DNA damage. Importantly down-regulation of MDC1 abolishes the relocalization and hyperphosphorylation of BRCA1 following DNA damage, which coincides with defective G(2)/M checkpoint control in response to DNA damage. Taken together these data suggest that MDC1 regulates BRCA1 function in DNA damage checkpoint control.  相似文献   

15.
DNA replication is a highly conserved and controlled process. To maintain genome integrity, the DNA must be faithfully duplicated once before chromosomes are segregated to daughter cells. Experimental insults to cells during DNA replication trigger an array of responses to help cells cope with DNA damage and replication stress. This has been coined the DNA damage response. During an unperturbed S-phase, DNA lesions and aberrant DNA structures arise as a consequence of normal DNA replication. Recent data suggest that the same pathways regulating the response to acute DNA damage also operate during normal S-phase to maintain genome integrity in the face of low levels of damage. This review will focus on the role of key proteins and signaling pathways, originally identified by their requirement to maintain genome stability during DNA replication following experimental insults, in the regulation of progression through normal S-phase.  相似文献   

16.
The DDC1 gene was identified, together with MEC3 and other checkpoint genes, during a screening for mutations causing synthetic lethality when combined with a conditional allele altering DNA primase. Deletion of DDC1 causes sensitivity to UV radiation, methyl methanesulfonate (MMS) and hydroxyurea (HU). ddc1Delta mutants are defective in delaying G1-S and G2-M transition and in slowing down the rate of DNA synthesis when DNA is damaged during G1, G2 or S phase, respectively. Therefore, DDC1 is involved in all the known DNA damage checkpoints. Conversely, Ddc1p is not required for delaying entry into mitosis when DNA synthesis is inhibited. ddc1 and mec3 mutants belong to the same epistasis group, and DDC1 overexpression can partially suppress MMS and HU sensitivity of mec3Delta strains, as well as their checkpoint defects. Moreover, Ddc1p is phosphorylated periodically during a normal cell cycle and becomes hyperphosphorylated in response to DNA damage. Both phosphorylation events are at least partially dependent on a functional MEC3 gene.  相似文献   

17.
One difficulty in analyzing the damage response is that the effect of damage itself and that of cellular response are hard to distinguish in irradiated cells. In mouse zygotes, damage can be introduced by irradiated sperm, while damage response can be studied in the unirradiated maternal pronucleus. We have analyzed the p53-dependent damage responses in irradiated-sperm mouse zygotes and found that a p53-responsive reporter was efficiently activated in the female pronucleus. [(3)H]thymidine labeling experiments indicated that irradiated-sperm zygotes were devoid of G(1)/S arrest, but pronuclear DNA synthesis was suppressed equally in male and female pronuclei. p53(-/-) zygotes lacked this suppression, which was corrected by microinjection of glutathione S-transferase-p53 fusion protein. In contrast, p21(-/-) zygotes exhibited the same level of suppression upon fertilization by irradiated sperm. About a half of the 6-Gy-irradiated-sperm zygotes managed to synthesize a full DNA content by prolonging S phase, while the other half failed to do so. Regardless of the DNA content, all the zygotes cleaved to become two-cell-stage embryos. These results revealed the presence of p53-dependent pronuclear cross talk and a novel function of p53 in the S-phase DNA damage checkpoint of mouse zygotes.  相似文献   

18.
Chemotherapy- or radiotherapy-induced DNA damage activates the Chk1-dependent DNA damage response (DDR) and cell cycle checkpoints to facilitate cell survival. Numerous attempts have been made to identify specific Chk1 inhibitors to enhance the efficiency of chemotherapy or radiotherapy. In this study, we investigated the molecular mechanisms underlying the antitumor activity of LY2603618, a potent and selective small molecule inhibitor of Chk1 protein kinase, in human lung cancer cells. Treatment of cancer cells with LY2603618 caused cell cycle arrest in the G2/M phase. A marked induction of DDR, including the phosphorylation of ATM, Chk2, p53 and histone H2AX, was observed after LY2603618 treatment. LY2603618 inhibited Chk1 autophosphorylation (S296 Chk1) and increased DNA damage-mediated Chk1 phosphorylation (S345 Chk1). In addition, LY2603618-treated lung cancer cells transitioned from LC3-I to LC3-II, a hallmark of autophagy. Blocking autophagy with chloroquine (CQ) further enhanced LY2603618′s inhibitory effect on cell viability/proliferation. LY2603618 also significantly increased p38 and c-Jun N-terminal kinase (JNK) phosphorylation. Pretreatment with the JNK inhibitor reduced cleavage of caspase-3 and PARP levels in LY2603618-treated cells. These results suggest the following: (i) the biological consequences of LY2603618 in lung cancer cells is associated with both inhibition of Chk1 phosphorylation on S296 and activation of the DNA damage response network; and (ii) the anticancer property of LY2603618 might be increased by inhibiting autophagy.  相似文献   

19.
Werner's syndrome (WS) is a rare autosomal recessive disorder that arises as a consequence of mutations in a gene coding for a protein that is a member of RecQ family of DNA helicases, WRN. The cellular function of WRN is still unclear, but on the basis of the cellular phenotypes of WS and of RecQ yeast mutants, its possible role in controlling recombination and/or in maintenance of genomic integrity during S-phase has been envisaged. With the use of two drugs, camptothecin and hydroxyurea, which produce replication-associated DNA damage and/or inhibit replication fork progression, we find that WS cells have a slower rate of repair associated with DNA damage induced in the S-phase and a reduced induction of RAD51 foci. As a consequence, WS cells undergo apoptotic cell death more than normal cells, even if they arrest and resume DNA synthesis at an apparently normal rate. Furthermore, we report that WS cells show a higher background level of DNA strand breaks and an elevated spontaneous induction of RAD51 foci. Our findings support the hypothesis that WRN could be involved in the correct resolution of recombinational intermediates that arise from replication arrest due to either DNA damage or replication fork collapse.  相似文献   

20.
The evolutionarily conserved Hus1 proteins function in DNA damage response pathways that serve to maintain genomic stability. Cells lacking mouse Hus1 are hypersensitive to certain genotoxins, and we have explored the molecular basis for this defect by examining how Hus1 inactivation affects genotoxin-induced signaling events. p53 accumulation and activation in response to DNA damage appeared normal in Hus1 null cells. Likewise, Hus1 was dispensable for genotoxin-induced Chk2 phosphorylation. In contrast, Chk1 phosphorylation after genotoxic stress was greatly reduced in the absence of Hus1, but was restored in Hus1 null fibroblasts complemented by infection with a Hus1-expressing retrovirus. These results demonstrate that mouse Hus1 is required for a specific subset of DNA damage signaling events and functions to promote genotoxin-induced Chk1 phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号