共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Under normal homeostasis, melanocyte growth and behaviour is tightly controlled by the surrounding keratinocytes. Keratinocytes regulate melanocyte behaviour through a complex system of paracrine growth factors and cell-cell adhesion molecules. Pathological changes, leading to development of malignant melanoma, upset this delicate homeostatic balance and can lead to altered expression of cell-cell adhesion and cell-cell communication molecules. In particular, there is a switch from the E-cadherin-mediated keratinocyte-melanocyte partnership to the N-cadherin-mediated melanoma-melanoma and melanoma-fibroblast interaction. Other changes include the alteration in the gap junctions formed between the melanocyte and keratinocyte. Changes in the connexin expression, in particular the loss of connexin 43, may result in a reduction or a loss of gap junctional activity, which is thought to contribute towards tumour progression. In the current review we describe the alterations in cell-cell adhesion and communication associated with melanoma development and progression, and discuss how a greater understanding of these processes may aid the future therapy of this disease. 相似文献
4.
Tin Kyaw Peng Cui Christopher Tay Peter Kanellakis Hamid Hosseini Edgar Liu Antonius G. Rolink Peter Tipping Alex Bobik Ban-Hock Toh 《PloS one》2013,8(4)
Aims
Option to attenuate atherosclerosis by depleting B2 cells is currently limited to anti-CD20 antibodies which deplete all B-cell subtypes. In the present study we evaluated the capacity of a monoclonal antibody to B cell activating factor-receptor (BAFFR) to selectively deplete atherogenic B2 cells to prevent both development and progression of atherosclerosis in the ApoE−/− mouse.Methods and Results
To determine whether the BAFFR antibody prevents atherosclerosis development, we treated ApoE−/− mice with the antibody while feeding them a high fat diet (HFD) for 8 weeks. Mature CD93− CD19+ B2 cells were reduced by treatment, spleen B-cell zones disrupted and spleen CD20 mRNA expression decreased while B1a cells and non-B cells were spared. Atherosclerosis was ameliorated in the hyperlipidemic mice and CD19+ B cells, CD4+ and CD8+ T cells were reduced in atherosclerotic lesions. Expressions of proinflammatory cytokines, IL1β, TNFα, and IFNγ in the lesions were also reduced, while MCP1, MIF and VCAM-1 expressions were unaffected. Plasma immunoglobulins were reduced, but MDA-oxLDL specific antibodies were unaffected. To determine whether anti-BAFFR antibody ameliorates progression of atherosclerosis, we first fed ApoE−/− mice a HFD for 6 weeks, and then instigated anti-BAFFR antibody treatment for a further 6 week-HFD. CD93− CD19+ B2 cells were selectively decreased and atherosclerotic lesions were reduced by this treatment.Conclusion
Anti-BAFFR monoclonal antibody selectively depletes mature B2 cells while sparing B1a cells, disrupts spleen B-cell zones and ameliorates atherosclerosis development and progression in hyperlipidemic ApoE−/− mice. Our findings have potential for clinical translation to manage atherosclerosis-based cardiovascular diseases. 相似文献5.
Maya Vladova Gulubova 《Journal of molecular histology》2002,34(1-2):67-77
The expression of the following cell adhesion molecules, their β1 and β2 integrin ligands and the cytokine tumour necrosis factor-α (TNF-α) was investigated by light and electron microscope immunohistochemistry in the liver tissue in 20 patients with colorectal and gastric cancer also presenting with liver metastases: intercellular adhesion molecule-1 (ICAM-1), vascular endothelial adhesion molecule-1 (VCAM-1), E-selectin, leucocyte function-associated antigen-1 (LFA-1), macrophage antigen-1 (Mac-1), and very late antigen-4 (VLA-4). We have found a parallel enhancement of the adhesion molecules and of TNF-α in liver sinusoids surrounding metastases. The expression of ICAM-1 was enhanced on sinusoidal cells in all zones of the acinus. VCAM-1 immune reactivity was diffuse but less intensive in the lobule. E-selectin expression was observed in sinusoidal cells attached to metastases. In tumour metastases the expression of ICAM-1, VCAM-1, and E-selectin was visible on the tumour vascular endothelium. Tumour infiltrating host cells sowing positive immunoreactivity for ICAM-1, VCAM-1, LFA-1, Mac-1, and VLA-4 were located mainly at the boundary between liver parenchyma and the metastasis. At the ultrastructural level, ICAM-1-positive immune deposits were observed on the cellular membrane and in some transport vesicles of gastric metastatic cells. Further, the expression of all adhesion molecules was confirmed to sinusoidal endothelial cells and tumour vessels. It is concluded that the enhanced expression of adhesion molecules in liver sinusoids could be a marker for the assessment of the ability of sinusoidal endothelial cells to control the recruitment of leukocytes and monocytes to the metastatic site. They could also direct the adhesion of new circulating tumour cells to sinusoidal endothelium. 相似文献
6.
Benoit Boivin Fauzia Chaudhary Bryan C. Dickinson Aftabul Haque Stephanie C. Pero Christopher J. Chang Nicholas K. Tonks 《The Journal of biological chemistry》2013,288(52):36926-36935
We investigated the role of protein-tyrosine phosphatase α (PTPα) in regulating signaling by the ErbB2 oncoprotein in mammary epithelial cells. Using this model, we demonstrated that activation of ErbB2 led to the transient inactivation of PTPα, suggesting that attenuation of PTPα activity may contribute to enhanced ErbB2 signaling. Furthermore, RNAi-induced suppression of PTPα led to increased cell migration in an ErbB2-dependent manner. The ability of ErbB2 to increase cell motility in the absence of PTPα was characterized by prolonged interaction of GRB7 with ErbB2 and increased association of ErbB2 with a β1-integrin-rich complex, which depended on GRB7-SH2 domain interactions. Finally, suppression of PTPα resulted in increased phosphorylation of focal adhesion kinase on Tyr-407, which induced the recruitment of vinculin and the formation of a novel focal adhesion kinase complex in response to ErbB2 activation in mammary epithelial cells. Collectively, these results reveal a new role for PTPα in the regulation of motility of mammary epithelial cells in response to ErbB2 activation. 相似文献
7.
The mammary gland is an organ that at once gives life to the young, but at the same time poses one of the greatest threats to the mother. Understanding how the tissue develops and functions is of pressing importance in determining how its control mechanisms break down in breast cancer. Here we argue that the interactions between mammary epithelial cells and their extracellular matrix (ECM) are crucial in the development and function of the tissue. Current strategies for treating breast cancer take advantage of our knowledge of the endocrine regulation of breast development, and the emerging role of stromal–epithelial interactions (Fig. 1). Focusing, in addition, on the microenvironmental influences that arise from cell–matrix interactions will open new opportunities for therapeutic intervention. We suggest that ultimately a three-pronged approach targeting endocrine, growth factor, and cell-matrix interactions will provide the best chance of curing the disease.Cellular interactions with the ECM are one of the defining features of metazoans (Huxley-Jones et al. 2007). Matrix proteins are among the most abundant in the body, and are integral components of cell regulation and developmental programs operating in all tissues. They provide structure and support to tissues, and they interact with cells through diverse receptors to guide development, patterning, and cell fate decisions (Streuli 2009). Together with cytokines and growth factors, and cell–cell interactions, the ECM determines whether cells survive, proliferate, differentiate, or migrate, and it influences cell shape and polarity (Streuli and Akhtar 2009). Cell–ECM interactions also are central in the assembly of the matrix itself, and in determining ECM organization and rigidity (Kadler et al. 2008; Kass et al. 2007). The cell–matrix interface is therefore pivotal in controlling both cell function and tissue structure, which together build organs into operational structures. Thus, elucidating precisely how the matrix directs cell phenotype is crucial for understanding mechanisms of development and disease.Mammary gland tissue contains epithelium and stroma ((Fig.Fig. 2). Mammary epithelial cells (MEC) form collecting ducts and, in pregnancy and lactation, milk-secreting alveoli (or lobules). The mammary epithelium is bilayered, with the inner luminal cells facing a central apical cavity and surrounded by the outer basal, myoepithelial cells. It also harbors stem and progenitor cells, which are the source of both luminal and myoepithelial cells (Visvader 2009). The epithelium is ensheathed by one of the main types of ECM, basement membrane (BM), which separates epithelium from stroma, and profoundly influences the development and biology of the gland (Streuli 2003). The stroma includes fibrous connective tissue ECM proteins, and a wide variety of cell types, including inter- and intralobular fibroblasts, adipocytes, endothelial cells, and innate immune cells (both macrophages and mast cells). The stroma is the support network for the epithelium, providing both nutrients and blood supply, and immune defenses, as well as physical structure to the gland. Importantly, each of the different stromal cell types secrete instructive signals that are crucial for various aspects of the development and function of the epithelium (Sternlicht 2006).Open in a separate windowFigure 1.Mammary gland development. Whole mounts of (A) virgin and (B) mid-pregnant mouse mammary gland. The thin, branched epithelial ducts that are characteristic of nonpregnant gland undergo dramatic alterations in pregnancy, when new types of epithelial structures, the milk-producing alveoli, emerge. The huge amount of proliferation that accompanies this change occurs in a discrete and controlled fashion. The formation of ducts and alveoli is under three types of environmental control. The first is long-range endocrine hormones, which includes estrogen, progesterone, glucocorticoids, and prolactin. The second is locally acting growth factors, which arise from stromal–epithelial conversation, and includes amphiregulin, FGF, HGF, and IGF. Finally, microenvironmental adhesive signals from adjacent cells (e.g., via cadherins) and from the ECM (e.g., integrin) have an equally central role in all aspects of mammary development and function. Importantly, the proliferation that occurs in breast cancer is not well controlled, indicating not only defects in growth signaling, but also in cellular organization. Chronologically, breast cancer drugs were initially developed against endocrine regulators, e.g., estrogen, and more recently against the stromal/epithelial regulators, e.g., receptor tyrosine kinases. A complete control of the disease will only happen when therapies targeting the microenvironmental adhesion breast regulators, e.g., cell–matrix interactions, are formulated, and used in combination.Open in a separate windowFigure 2.Ducts and alveoli in early pregnancy. Transverse section of ducts surrounded by a thick layer of collagenous (stromal) connective tissue containing fibroblasts and the fat pad. Also visible are small alveoli, which fill the fat pad by the time the gland lactates, but note that they are not surrounded collagen. A capillary is evident, and macrophages and mast cells are also present, though they require specific staining to visualize. A basement membrane is present directly at the basal surface of both ductal and alveolar epithelium (see Fig. 3).BMs surround three cell types in the mammary gland: the epithelium, the endothelium of the vasculature, and adipocytes (Fig. 3). These ECMs are thin, ∼100-nm thick sheets of glycoproteins and proteoglycans, which are constructed around an assembled polymer of laminins and a cross-linked network of collagen IV fibrils (Yurchenco and Patton 2009). Laminins form αβγ trimers, and in the breast at least four distinct isoforms are present: laminin-111, -322, and -511 and -521 (previously known as LM-1, 5, 10, and 11) (Aumailley et al. 2005; Prince et al. 2002). Similarly, BM proteoglycans are diverse and show complexity in their GAG chain modifications that vary with development of the mammary gland, though the major species is perlecan (Delehedde et al. 2001). BM proteins interact with MEC via integrins and transmembrane proteoglycans dystroglycan and syndecan, which all couple to the cytoskeleton and assemble signaling platforms to control cell fate (Barresi and Campbell 2006; Morgan et al. 2007). The best-studied MEC BM receptors are integrins, which are αβ heterodimers: they include receptors for collagen (α1β1 and α2β1), LM-111, -511, -521 (α3β1, α6β1, and α6β4), LM-322 (α3β1 and α6β4), and in some MECs fibronectin and vitronectin (α5β1 and β3 integrins) (Naylor and Streuli 2006). BM proteoglycans have a further signaling role via their capacity to bind growth factors and cytokines: They act both as a reservoir and a delivery vehicle to GF receptors, thereby controlling the passage of GFs across the BM (Iozzo 2005). Because of these diverse roles, the BM is a dominant regulator of the mammary epithelial phenotype.Open in a separate windowFigure 3.Alveolar and ductal architecture of breast epithelia shown through fluorescence and histological images. (A) An alveolus from a lactating mammary gland, showing luminal epithelial cells with cell–cell adhesion junctions (green, E-cadherin) and cell–matrix interactions (red, laminin-111). The central lumen is where milk collects. (B) The duct of a nonpregnant gland is stained with an antibody to laminin (brown) and counterstained with hematoxylin. Note that the laminin-containing basement membrane surrounds the ductal epithelial cells, and outside this lie collagenous connective tissue and adipocytes. Figure B courtesy of Dr. Rama Khokha.Apart from the endothelium and adipocytes, which contact BMs, the mammary stromal cells are mostly solitary and embedded within a fibrous ECM. Stromal matrix components include collagens type I and III, proteoglycans and hyaluronic acid, fibronectin and tenascins, and the composition varies with development and pregnancy (Schedin et al. 2004). Not a great deal is known about the specific interactions between breast stromal cells and their ECM, or how the matrix composition and density determines stromal cell function. However, it is becoming evident that the stromal matrix exerts a powerful influence on malignant breast epithelial cells, which invade the stroma and are further transformed by exposure to this distinct microenvironment (Kumar and Weaver 2009; Streuli 2006).In this article we focus on cell–matrix interactions within mammary epithelium, and reveal known and possible mechanisms for its control on ductal development, alveolar function, and cancer progression. 相似文献
8.
《Cell communication & adhesion》2013,20(6):139-146
AbstractOn a recent visit Richard O Hynes, FRS, HHMI, Daniel K. Ludwig Professor for Cancer Research at the Koch Institute for Integrative Cancer Research, MIT, graciously agreed to be interviewed in person for the first in Cell Communication and Adhesion's series on “Leaders in Cell Adhesion”. In this interview we discussed three things: 1) the early role of family, mentors, and luck on his career path; 2) his major discoveries of fibronectin, integrins and the evolution of extracellular matrix proteins; and 3) his role in, and thoughts on, current science policy. This interview reveals his characteristic calmness and infectious optimism, his spontaneous and down to earth sense of humor, and his great ability to place scientific questions in perspective. The interview, carried out on April 30th 2013 is reported here verbatim with only minor editing for clarity. 相似文献
9.
Narayan S 《Journal of molecular histology》2004,35(3):301-307
Colorectal cancer, the second most frequent diagnosed cancer in the US, causes significant morbidity and mortality in humans. Over the past several years, the molecular and biochemical pathways that influence the development of colon cancer have been extensively characterized. Since the development of colon cancer involves multi-step events, the available drug therapies for colorectal cancer are largely ineffective. The radiotherapy, photodynamic therapy, and chemotherapy are associated with severe side effects and offer no firm expectation for a cure. Thus, there is a constant need for the investigation of other potentially useful options. One of the widely sought approaches is cancer chemoprevention that uses natural agents to reverse or inhibit the malignant transformation of colon cancer cells and to prevent invasion and metastasis. Curcumin (diferuloylmethane), a natural plant product, possesses such chemopreventive activity that targets multiple signalling pathways in the prevention of colon cancer development. 相似文献
10.
Sergey V. Litvinov Maarten Balzar Manon J. Winter Hellen A.M. Bakker Inge H. Briaire-de Bruijn Frans Prins Gert Jan Fleuren Sven O. Warnaar 《The Journal of cell biology》1997,139(5):1337-1348
The contribution of noncadherin-type, Ca2+-independent cell–cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM–positive transfectants behave like cells with a decreased strength of cell–cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM–cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of α- and β-catenins decreased in cells overexpressing Ep-CAM. While the total β-catenin content remains unchanged, a reduction in total cellular α-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell–cell adhesions diminish, Ep-CAM–mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell–cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell–cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in association with hyperplastic and malignant proliferation of epithelial cells.Tissue and organ morphogenesis can be viewed as the result of interactions of various cell populations. One important type of intercellular interaction involved in the processes of tissue morphogenesis, morphogenetic movements of cells, and segregation of cell types, are adhesions mediated by cell adhesion molecules (Steinberg and Pool, 1982; Edelman, 1986; Cunningham, 1995; Takeichi, 1995; Gumbiner, 1996). Except for their direct mechanical role as interconnectors of cells and connectors of cells to substrates, cell adhesion molecules are also believed to be responsible for a variety of dynamic processes including cell locomotion, proliferation, and differentiation. There is also evidence that the adhesion systems within a cell may act as regulators of other cell adhesions, thereby offering a means of signaling that is relevant for rearrangements in cell or tissue organization (Edelman, 1993; Rosales et al., 1995; Gumbiner, 1996).In many tissues, a critical role in the maintenance of multicellular structures is assigned to cadherins, a family of Ca2+-dependent, homophilic cell–cell adhesion molecules (Takeichi, 1991, 1995; Gumbiner, 1996). In epithelia this critical role belongs to E-cadherin, which is crucial for the establishment and maintenance of epithelial cell polarity (McNeil et al., 1990; Näthke et al., 1993), morphogenesis of epithelial tissues (Wheelock and Jensen, 1992; Larue et al., 1996), and regulation of cell proliferation and programmed cell death (Hermiston and Gordon, 1995; Hermiston et al., 1996; Takahashi and Suzuki, 1996; Wilding et al., 1996; Zhu and Watt, 1996). Expression of different types of classic cadherin molecules (Nose et al., 1988; Friedlander et al., 1989; Daniel et al., 1995), and even quantitative differences in the levels of the same type of cadherin (Steinberg and Takeichi, 1994), may be responsible for segregation of cell types in epithelial tissues. The phenotype of epithelial cells may be modulated by expression of combinations of different types of cadherins (Marrs et al., 1995; Islam et al., 1996). However, cadherins represent only one of the intercellular adhesion systems that are present in epithelia, along with adhesion molecules of the immunoglobulin superfamily, such as carcinoembryonic antigen (Benchimol et al., 1989), and others. The actual contribution of Ca2+-independent nonjunctional adhesion molecules to the formation and maintenance of the epithelial tissue architecture and epithelial cell morphology is not clear.We have recently demonstrated that a 40-kD epithelial glycoprotein, which we have designated epithelial cell adhesion molecule (Ep-CAM)1 (Litvinov et al., 1994a
), may perform as a homophilic, Ca2+-independent intercellular adhesion molecule, capable of mediating cell aggregation, preventing cell scattering, and directing cell segregation. This type I transmembrane glycoprotein consists of two EGF-like domains followed by a cysteine-poor region, a transmembrane domain, and a short (26-amino acid) cytoplasmic tail, and is not structurally related to the four major types of CAMs, such as cadherins, integrins, selectins, and the immunoglobulin superfamily (for review see Litvinov, 1995). Ep-CAM demonstrates adhesion properties when introduced into cell systems that are deficient in intercellular adhesive interactions (Litvinov et al., 1994a
). However, the participation of the Ep-CAM molecule in supporting cell–cell interactions of epithelial cells was not evident (Litvinov et al., 1994b
).Most epithelial cell types coexpress E-cadherin (and sometimes other classic cadherins) and Ep-CAM (for review see Litvinov, 1995) during some stage of embryogenesis. In adult squamous epithelia, which are Ep-CAM negative, de novo expression of this molecule is associated with metaplastic or neoplastic changes. Thus, in ectocervical epithelia, expression of Ep-CAM occurs in early preneoplastic lesions (Litvinov et al., 1996); most squamous carcinomas of the head and neck region are Ep-CAM positive (Quak et al., 1990), and basal cell carcinomas are Ep-CAM positive in contrast to the normal epidermis (Tsubura et al., 1992).In many tumors that express Ep-CAM heterogeneously, an Ep-CAM–positive cell population may be found within an Ep-CAM–negative cell population, with both cell types expressing approximately equal levels of cadherins, as illustrated in Fig. Fig.11
A by a case of basal cell carcinoma. In glandular tissues such as gastric epithelium, which are low/ negative for Ep-CAM, expression of Ep-CAM is related to the development of early stages of intestinal metaplasia (our unpublished observation). Even in tissues with relatively high Ep-CAM expression, such as colon, the development of polyps is accompanied by an increase in Ep-CAM expression (Salem et al., 1993). In intestinal metaplasia one may observe Ep-CAM–positive cells bordering morphologically identical normal cells that are Ep-CAM–negative (as illustrated in Fig. Fig.11
B) Ep-CAM–positive cells bordering Ep-CAM–negative epithelial cells may also be found in some normal tissues such as hair follicles (Tsubura et al., 1992). Open in a separate windowFigure 1Examples of Ep-CAM expression by some cells within the E-cadherin–positive cell population. (A) Heterogeneous expression of Ep-CAM in a basal cell carcinoma, as detected by immunofluorescent staining with mAb 323/A3 to Ep-CAM (green fluorescence); the red fluorescence indicates the expression of E-cadherin (mAb HECD-1). (B) The de novo expression of Ep-CAM in gastric mucosa in relation to the development of intestinal metaplasia; immunohistochemical staining with mAb 323/A3. Note the bordering Ep-CAM–positive and –negative cells. Bars, 30 μM.From the examples presented, an increased or de novo expression of Ep-CAM is often observed in epithelial tissues in vivo. Expression of an additional molecule that may participate in cell adhesion in the context of other adhesion systems may have certain effects on the cell–cell interactions. Therefore, we have investigated whether the increased/de novo expression of Ep-CAM in epithelial cells (a) has any impact on interactions of positive cells with the parental Ep-CAM–negative cells, and (b) modulates in any way intercellular adhesive interactions of cells interconnected by E-cadherin, which is the major morphoregulatory molecule in epithelia.Here we demonstrate that expression of Ep-CAM by some cells in a mixed cell population expressing classical cadherins induces segregation of the Ep-CAM–positive cells from the parental cell population due to a negative effect on cadherin junctions caused by expression of Ep-CAM. The cadherin-modulating properties observed for Ep-CAM suggest a role for this molecule in the development of a proliferative and metaplastic cell phenotype, and probably in the development and progression of malignancies. 相似文献
11.
CXCR4–SDF-1 Signalling, Locomotion, Chemotaxis and Adhesion 总被引:23,自引:0,他引:23
Kucia M Jankowski K Reca R Wysoczynski M Bandura L Allendorf DJ Zhang J Ratajczak J Ratajczak MZ 《Journal of molecular histology》2004,35(3):233-245
Chemokines, small pro-inflammatory chemoattractant cytokines, that bind to specific G-protein-coupled seven-span transmembrane receptors present on plasma membranes of target cells are the major regulators of cell trafficking. In addition some chemokines have been reported to modulate cell survival and growth. Moreover, compelling evidence is accumulating that cancer cells may employ several mechanisms involving chemokine-chemokine receptor axes during their metastasis that also regulate the trafficking of normal cells. Of all the chemokines, stromal-derived factor-1 (SDF-1), an alpha-chemokine that binds to G-protein-coupled CXCR4, plays an important and unique role in the regulation of stem/progenitor cell trafficking. First, SDF-1 regulates the trafficking of CXCR4+ haemato/lymphopoietic cells, their homing/retention in major haemato/lymphopoietic organs and accumulation of CXCR4+ immune cells in tissues affected by inflammation. Second, CXCR4 plays an essential role in the trafficking of other tissue/organ specific stem/progenitor cells expressing CXCR4 on their surface, e.g., during embryo/organogenesis and tissue/organ regeneration. Third, since CXCR4 is expressed on several tumour cells, these CXCR4 positive tumour cells may metastasize to the organs that secrete/express SDF-1 (e.g., bones, lymph nodes, lung and liver). SDF-1 exerts pleiotropic effects regulating processes essential to tumour metastasis such as locomotion of malignant cells, their chemoattraction and adhesion, as well as plays an important role in tumour vascularization. This implies that new therapeutic strategies aimed at blocking the SDF-1-CXCR4 axis could have important applications in the clinic by modulating the trafficking of haemato/lymphopoietic cells and inhibiting the metastatic behaviour of tumour cells as well. In this review, we focus on a role of the SDF-1-CXCR4 axis in regulating the metastatic behaviour of tumour cells and discuss the molecular mechanisms that are essential to this process. 相似文献
12.
Gerald Burgstaller Martin Gregor Lilli Winter Gerhard Wiche 《Molecular biology of the cell》2010,21(19):3362-3375
Focal adhesions (FAs) located at the ends of actin/myosin-containing contractile stress fibers form tight connections between fibroblasts and their underlying extracellular matrix. We show here that mature FAs and their derivative fibronectin fibril-aligned fibrillar adhesions (FbAs) serve as docking sites for vimentin intermediate filaments (IFs) in a plectin isoform 1f (P1f)-dependent manner. Time-lapse video microscopy revealed that FA-associated P1f captures mobile vimentin filament precursors, which then serve as seeds for de novo IF network formation via end-to-end fusion with other mobile precursors. As a consequence of IF association, the turnover of FAs is reduced. P1f-mediated IF network formation at FbAs creates a resilient cage-like core structure that encases and positions the nucleus while being stably connected to the exterior of the cell. We show that the formation of this structure affects cell shape with consequences for cell polarization. 相似文献
13.
14.
Minjing Li Yancun Yin Hui Hua Xiangming Sun Ting Luo Jiao Wang Yangfu Jiang 《The Journal of biological chemistry》2010,285(40):30480-30488
Insulin-like growth factor (IGF) system plays important roles in carcinogenesis and maintenance of the malignant phenotype. Signaling through the IGF-I receptor (IGF-IR) has been shown to stimulate the growth and motility of a wide range of cancer cells. γ-Synuclein (SNCG) is primarily expressed in peripheral neurons but also overexpressed in various cancer cells. Overexpression of SNCG correlates with tumor progression. In the present study we demonstrated a reciprocal regulation of IGF-I signaling and SNCG expression. IGF-I induced SNCG expression in various cancer cells. IGF-IR knockdown or IGF-IR inhibitor repressed SNCG expression. Both phosphatidylinositol 3-kinase and mitogen-activated protein kinase were involved in IGF-I induction of SNCG expression. Interestingly, SNCG knockdown led to proteasomal degradation of IGF-IR, thereby decreasing the steady-state levels of IGF-IR. Silencing of SNCG resulted in a decrease in ligand-induced phosphorylation of IGF-IR and its downstream signaling components, including insulin receptor substrate (IRS), Akt, and ERK1/2. Strikingly, SNCG physically interacted with IGF-IR and IRS-2. Silencing of IRS-2 impaired the interaction between SNCG and IGF-IR. Finally, SNCG knockdown suppressed IGF-I-induced cell proliferation and migration. These data reveal that SNCG and IGF-IR are mutually regulated by each other. SNCG blockade may suppress IGF-I-induced cell proliferation and migration. Conversely, IGF-IR inhibitors may be of utility in suppressing the aberrant expression of SNCG in cancer cells and thereby block its pro-tumor effects. 相似文献
15.
16.
The prognosis for patients with malignant gliomas is poor, but improvements may emerge from a better understanding of the pathophysiology of glioma signalling. Recent therapeutic developments have implicated lipid signalling in glioma cell death. Stress signalling in glioma cell death involves mitochondria and endoplasmic reticulum. Lipid mediators also signal via extrinsic pathways in glioma cell proliferation, migration and interaction with endothelial and microglial cells. Glioma cell death and tumour regression have been reported using polyunsaturated fatty acids in animal models, human ex vivo explants, glioma cell preparations and in clinical case reports involving intratumoral infusion. Cell death signalling was associated with generation of reactive oxygen intermediates and mitochondrial and other signalling pathways. In this review, evidence for mitochondrial responses to stress signals, including polyunsaturated fatty acids, peroxidising agents and calcium is presented. Additionally, evidence for interaction of glioma cells with primary brain endothelial cells is described, modulating human glioma peroxidative signalling. Glioma responses to potential therapeutic agents should be analysed in systems reflecting tumour connectivity and CNS structural and functional integrity. Future insights may also be derived from studies of signalling in glioma-derived tumour stem cells. 相似文献
17.
Marion Richard Sophie Jamet Coralie Fouquet Caroline Dubacq Nicole Boggetto Frédéric Pincet Christine Gourier Alain Trembleau 《PloS one》2013,8(12)
In the mouse olfactory system regulated expression of a large family of G Protein-Coupled Receptors (GPCRs), the Odorant Receptors (ORs), provides each sensory neuron with a single OR identity. In the wiring of the olfactory sensory neuron projections, a complex axon sorting process ensures the segregation of >1,000 subpopulations of axons of the same OR identity into homogeneously innervated glomeruli. ORs are critical determinants in axon sorting, and their presence on olfactory axons raises the intriguing possibility that they may participate in axonal wiring through direct or indirect trans-interactions mediating adhesion or repulsion between axons. In the present work, we used a biophysical assay to test the capacity of ORs to induce adhesion of cell doublets overexpressing these receptors. We also tested the β2 Adrenergic Receptor, a non-OR GPCR known to recapitulate the functions of ORs in olfactory axon sorting. We report here the first evidence for homo- and heterotypic adhesion between cells overexpressing the ORs MOR256-17 or M71, supporting the hypothesis that ORs may contribute to olfactory axon sorting by mediating differential adhesion between axons. 相似文献
18.
Eva E. Sander Sanne van Delft Jean P. ten Klooster Tim Reid Rob A. van der Kammen Frits Michiels John G. Collard 《The Journal of cell biology》1998,143(5):1385-1398
We previously demonstrated that both Tiam1, an activator of Rac, and constitutively active V12Rac promote E-cadherin–mediated cell–cell adhesion in epithelial Madin Darby canine kidney (MDCK) cells. Moreover, Tiam1 and V12Rac inhibit invasion of Ras-transformed, fibroblastoid MDCK-f3 cells by restoring E-cadherin–mediated cell–cell adhesion. Here we show that the Tiam1/Rac-induced cellular response is dependent on the cell substrate. On fibronectin and laminin 1, Tiam1/Rac signaling inhibits migration of MDCK-f3 cells by restoring E-cadherin–mediated cell– cell adhesion. On different collagens, however, expression of Tiam1 and V12Rac promotes motile behavior, under conditions that prevent formation of E-cadherin adhesions. In nonmotile cells, Tiam1 is present in adherens junctions, whereas Tiam1 localizes to lamellae of migrating cells. The level of Rac activation by Tiam1, as determined by binding to a glutathione-S-transferase– PAK protein, is similar on fibronectin or collagen I, suggesting that rather the localization of the Tiam1/Rac signaling complex determines the substrate-dependent cellular responses. Rac activation by Tiam1 requires PI3-kinase activity. Moreover, Tiam1- but not V12Rac-induced migration as well as E-cadherin–mediated cell– cell adhesion are dependent on PI3-kinase, indicating that PI3-kinase acts upstream of Tiam1 and Rac. 相似文献
19.
Clathrin-dependent endocytosis is a major route for the cellular import of macromolecules and occurs at the interface between the cell and its surroundings. However, little is known about the influences of cell–substrate attachment in clathrin-coated vesicle formation. Using biochemical and imaging-based methods, we find that cell–substrate adhesion reduces the rate of endocytosis. Clathrin-coated pits (CCPs) in proximity to substrate contacts exhibit slower dynamics in comparison to CCPs found more distant from adhesions. Direct manipulation of the extracellular matrix (ECM) to modulate adhesion demonstrates that tight adhesion dramatically reduces clathrin-dependent endocytosis and extends the lifetimes of clathrin structures. This reduction is in part mediated by integrin-matrix engagement. In addition, we demonstrate that actin cytoskeletal dynamics are differentially required for efficient endocytosis, with a stronger requirement for actin polymerization in areas of adhesion. Together, these results reveal that cell–substrate adhesion regulates clathrin-dependent endocytosis and suggests that actin assembly facilitates vesicle formation at sites of adhesion. 相似文献