首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell death: programmed, apoptosis, necrosis, or other?   总被引:8,自引:0,他引:8  
There are at least two major types of active or physiological cell death. The most well-known form, apoptosis or Type I, involves early nuclear collapse, condensation of chromatin, generation of nucleosomal ladders, and cell fragmentation with little or no early alteration of lysosomes. It is most commonly seen in cells deriving from highly mitotic lines, and the cells are phagocytosed by neighboring cells or infiltrating macrophages. In metamorphosing or secretory cells, and under conditions where the majority of cells die, the bulk of the cytoplasm is consumed by expansion of the lysosomal system well before nuclear collapse is manifest. This form of cell death has been termed Type II cell death, and we revert to this terminology. The requirement for protein synthesis is more characteristic of Type II cell death in developmental situations than it is for Type I cell death. The variations seen force a reassessment of those aspects of physiological cell death that are truly universal, thereby focusing attention on the biology of the process. A better understanding of the biology and morphology of dying cells will help clarify the significance of the molecular and biochemical findings.  相似文献   

2.
The prognosis for patients with malignant gliomas is poor, but improvements may emerge from a better understanding of the pathophysiology of glioma signalling. Recent therapeutic developments have implicated lipid signalling in glioma cell death. Stress signalling in glioma cell death involves mitochondria and endoplasmic reticulum. Lipid mediators also signal via extrinsic pathways in glioma cell proliferation, migration and interaction with endothelial and microglial cells. Glioma cell death and tumour regression have been reported using polyunsaturated fatty acids in animal models, human ex vivo explants, glioma cell preparations and in clinical case reports involving intratumoral infusion. Cell death signalling was associated with generation of reactive oxygen intermediates and mitochondrial and other signalling pathways. In this review, evidence for mitochondrial responses to stress signals, including polyunsaturated fatty acids, peroxidising agents and calcium is presented. Additionally, evidence for interaction of glioma cells with primary brain endothelial cells is described, modulating human glioma peroxidative signalling. Glioma responses to potential therapeutic agents should be analysed in systems reflecting tumour connectivity and CNS structural and functional integrity. Future insights may also be derived from studies of signalling in glioma-derived tumour stem cells.  相似文献   

3.
4.
The use of mesenchymal stem cells (MSCs) for therapeutic applications has attracted great attention because MSCs home to and engraft to injured tissues after in vivo administration. The expression of osteopontin (OPN) is elevated in response to injury and inflammation, and its role on rat bone marrow-derived mesenchymal stem cells (rMSCs)-directed migration has been elucidated. However, the signaling pathways through the activation of which OPN promotes rMSCs migration and the involvement of cell mechanics during OPN-mediating rMSCs migration have not been well studied. In this study, we found that OPN activated focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK) signaling pathways by the ligation of integrin β1 in rMSCs. Inhibitors of FAK and ERK pathways inhibited OPN-induced rMSCs migration, indicating the possible involvement of FAK and ERK activation in OPN-induced migration in rMSCs. In addition, atomic force microscopy analysis showed that OPN reduced cell stiffness in rMSCs via integrin β1, FAK, and ERK pathways, suggesting that the promotion of rMSCs migration might partially be contributing to the decrease in cell stiffness stimulated by OPN. To further examine the role of OPN on cell motility and stiffness, actin cytoskeleton of rMSCs was observed. The reduced well-defined F-actin filaments and the promoted formation of pseudopodia in rMSCs induced by OPN explained the reduction in cell stiffness and the increase in cell migration. The current study data have shown for the first time that OPN binding to integrin β1 promotes rMSCs migration through the activation of FAK and ERK pathways, which may be attributed to the change in cell stiffness caused by the reduction in the amount of organized actin cytoskeleton.  相似文献   

5.
6.
Cell Research     
《Cell research》2006,16(2):I0001-I0001
  相似文献   

7.
Cell Research     
《Cell research》2008,18(1):F0004-F0004
  相似文献   

8.
Cell Research     
《Cell research》2006,16(11):I0001-I0001
  相似文献   

9.
Cell Research     
《Cell research》2006,16(1):F0004-F0004
  相似文献   

10.
Cell Research     
《Cell research》2006,16(3):I0001-I0001
  相似文献   

11.
Cell Research     
《Cell research》2007,17(12):I0001-I0001
  相似文献   

12.
Cell Research     
  相似文献   

13.
Cell Research     
《Cell research》2006,16(12):I0001-I0001
  相似文献   

14.
15.
Abstract

On a recent visit Richard O Hynes, FRS, HHMI, Daniel K. Ludwig Professor for Cancer Research at the Koch Institute for Integrative Cancer Research, MIT, graciously agreed to be interviewed in person for the first in Cell Communication and Adhesion's series on “Leaders in Cell Adhesion”. In this interview we discussed three things: 1) the early role of family, mentors, and luck on his career path; 2) his major discoveries of fibronectin, integrins and the evolution of extracellular matrix proteins; and 3) his role in, and thoughts on, current science policy. This interview reveals his characteristic calmness and infectious optimism, his spontaneous and down to earth sense of humor, and his great ability to place scientific questions in perspective. The interview, carried out on April 30th 2013 is reported here verbatim with only minor editing for clarity.  相似文献   

16.
This article revisits the development of the protoplasm concept as it originally arose from critiques of the cell theory, and examines how the term “protoplasm” transformed from a botanical term of art in the 1840s to the so-called “living substance” and “the physical basis of life” two decades later. I show that there were two major shifts in biological materialism that needed to occur before protoplasm theory could be elevated to have equal status with cell theory in the nineteenth century. First, I argue that biologists had to accept that life could inhere in matter alone, regardless of form. Second, I argue that in the 1840s, ideas of what formless, biological matter was capable of dramatically changed: going from a “coagulation paradigm” (Pickstone, 1973) that had existed since Theophrastus, to a more robust conception of matter that was itself capable of movement and self-maintenance. In addition to revisiting Schleiden and Schwann’s original writings on cell theory, this article looks especially closely at Hugo von Mohl’s definition of the protoplasm concept in 1846, how it differed from his primordial utricle theory of cell structure two years earlier. This article draws on Lakoff and Johnson’s theory of “ontological metaphors” to show that the cell, primordial utricle, and protoplasm can be understood as material container, object, and substance, and that these overlapping distinctions help explain the chaotic and confusing early history of cell theory.  相似文献   

17.
18.
19.
Biochemical mechanisms for the orchestration of cell populations are discussed in view of direct cell?cell inter-actions and composition of the intercellular medium. In our works of the last 20 years, we used circahoralian (ultradian) rhythm of protein synthesis as a marker of cell interactions. Experiments in cell cultures are described; some influences on the organism native medium were performed. Information is presented on the signaling membrane factors that trigger a cascade of processes in the cytoplasm and lead to the orchestration of cell activity in vitro and in vivo. Among these factors are blood serum neurotransmitters, gangliosides, and some hormones. Studying protein synthesis kinetics allowed us to understand the importance of maintaining the constant levels of signaling factors in mammalian blood. The literature on protein phosphorylation as a key process of cell organization is reviewed. The persistence of the organizing signal for several days is described as a type of cell “memory”. It seems promising to extend the area for application of direct cell?cell interactions (respiration of cells, proliferation, etc.) to study possibilities of epigenetic regulation. It is important to continue the studies on the mechanisms of biochemical action of the known drugs as signaling factors.  相似文献   

20.
《Cell research》2005,15(11):F0002-F0002
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号