首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Metabolism of arginine by aging and 7 day old pumpkin seedlings   总被引:4,自引:3,他引:1       下载免费PDF全文
The metabolism of arginine by etiolated pumpkin (Cucurbita moschata) seedlings was studied over various time and age intervals by injecting arginine-U-14C into the cotyledons. At most, 25% of the 14C was transported from the cotyledon to the axis tissue and the amount of this transport decreased with increasing age of the seedlings. The cotyledons of 25 day old plants contained 60% of the administered 14C as unmetabolized arginine. Little 14C was in sugars and it appeared that arginine was the primary translocation product. Time course studies showed that arginine was extensively metabolized and the labeling patterns suggest that different pathways were in operation in the axis and cotyledons. The amount of arginine incorporated into cotyledonary protein show that synthesis and turnover were occurring at rapid rate. Only 25% of the label incorporated into protein by 1.5 hr remained after 96 hr. The label in protein was stable in the axis tissue. By 96 hr 50% of the administered label occurred as 14CO2 and it appeared that arginine was metabolized, through glutamate, by the citrio acid cycle in the cotyledons. The experiments showed that an extensive conversion of arginine carbon into other amino acids did not occur.  相似文献   

2.
Ungerminated pumpkin (Cucurbita moschata Poir.) cotyledons contained 30 % of their dry weight as lipid and 26 % as protein, of which 93 % was globulin. There was a rapid degradation of these reserves 4 to 8 days after planting when the cotyledons had their maximum metabolic activity. About half of the mole percent of amino acids found in the globulin reserve was in arginine, glutamate, aspartate, and their amides. The cotyledons had a large soluble pool of arginine, glutamine, glutamate, and leucine. Most amino acids increased steadily in amount in the cotyledons during germination, except glutamine, ornithine, alanine, serine, glycine, and γ-aminobutyrate and these appeared in large amounts in the translocation stream to the axis tissue. Little arginine or proline was translocated. By 10 days, when translocation had decreased, amino acids accumulated. Ornithine, γ-aminobutyrate, and aspartate were rapidly utilized in the hypocotyl, while glutamine, glycine, and alanine accumulated there. Cysteine and methionine levels were low in the reserve, trans-location stream and soluble fractions. γ-Aminobutyrate-U?14C injected into cotyledons or incubated with hypocotyls was utilized in a similar fashion. The label appeared in citric acid cycle acids and in the amino acids closely related to this cycle, but the bulk of the label appeared in CO2. The labeling pattern suggests that γ-aminobutyrate was utilized via succinate, and thus entered the citric acid cycle. A close relationship between arginine, ornithine, glutamate, and γ-aminobutyrate exists in the cotyledon with all but arginine being translocated rapidly to the axis tissue where these amino acids are rapidly metabolized.  相似文献   

3.
Utilization of reserve lipid and carbohydrates during germination (0–12 h) and postgerminative growth (12–48 h) was studied in cotton (Gossypium hirsutum L.) seedlings. Raffinose and stachyose were utilized during the germination period and early growth; mobilization was associated with -galactosidase (EC 3.2.1.22) activity. Results from pulse-chase experiments with [3H]raffinose supplied exogenously to 4-h soaked seeds indicated that raffinose-derived catabolites contributed to the coincident increase in cotyledon sucrose and starch, and to the small increase in axis dry weight. Starch appears to be an alternative sink for end products of hydrolysis of reserve carbohydrates prior to the onset of rapid axis growth and cotyledon expansion. Mobilization of neutral lipid commenced at about 16 h after soaking, concomitant with development of key glyoxylate-cycle and other gluconeogenesis-related enzyme activities. Axis dry weight increased three-fold between 24 and 48 h. Results from pulse-chase (3 h, 16 h) experiments in which [2-14C]acetate was supplied to cotyledons of intact 22-h-old seedlings showed that acetate-derived metabolites were not transported exclusively to the axes, but were partitioned between axes and cotyledons. Only 27% of total incorporated radioactivity was recovered in axes following the chase, 18% was evolved as CO2, and the rest was recovered in water-soluble substances (20%) and polymers (31%) within the cotyledons. Of the polymers, 55% of the activity was in polysaccharides (Starch, pectic substances, hemicellulose, cellulose), 25% in protein, and 20% in unidentified neutral and acidic compounds. Considering these data, the amount of lipid mobilized, and various routes by which supplied [2-14C]acetate could be metabolized, it appears that lipidderived compounds contribute only 25–40% of axis dry-weight gain. Lipid-derived substances retained in the cotyledons likely are utilized for expansion and differentiation of the cotyledons into photosynthetic organs.  相似文献   

4.
From autoradiographical experiments on water-imbibing pea (Pisum sativum) or Phaseolus mungo cotyledons supplied with glucose-14C or iodoacetic acid-14C, it was shown that the compounds did not penetrate into the innermost part of the cotyledons but remained in the peripheral region during the early germination period. Changes in the rates of incorporation of 14C into alcohol from glucose-14C were examined during the early period of germination, and it was concluded that glucose supplied exo-genously was actively metabolized in the peripheral region. Endogenous alcohol formation was supposed to occur mainly in the peripheral region in the early phases of germination. On the basis of these results, the heterogeneity of the distribution of physiological activities in the cotyledon is discussed.  相似文献   

5.
Ozone treatment affects pigment precursor metabolism in pine seedlings   总被引:1,自引:0,他引:1  
Five‐week‐old seedlings of Pinus halepensis Mill. and Pinus brutia Ten. were exposed to air polluted with ozone (O3) (250 nl l?1, 12 h day?1 for 4 days) or to ambient air containing ca 10–20 nl l?1 O3, in the light (180 μmol m?2 s?1 photosynthetic photon flux density [PPFD], 12 h day?1) and then fed for 24 h in the light (100 μmol m?2 s?1 PPFD) with various radioactive precursors of chlorophyll (Chl) and carotene biosynthesis: 5‐[4‐14C]‐aminolevulinic acid (14C‐ALA), l ‐[14C(U)]‐glutamic acid (14C‐Glu), or d ,l ‐[2‐14C]‐mevalonic acid (14C‐MVA). Pigments were then extracted from cotyledons and fully expanded needles. Chl a and carotene were separated by thin‐layer chromatography and high‐performance liquid chromatography and their specific activities were determined. 14C‐ALA and 14C‐Glu labels were incorporated into Chl a and carotene. Exposure to O3 did not inhibit incorporation of 14C‐ALA into Chl a molecules, but hydrolysis of Chl a showed that O3 inhibited phytol labelling of Chl a. Labelling of carotene was also inhibited by O3, but not when 14C‐MVA was used as the label. These data suggest that O3 treatment inhibits (directly or indirectly) the biosynthesis of isoprenoids from products of ALA and Glu metabolism in the plastid, but not from MVA in the cytosol. This inhibition was more prominent when 14C‐ALA was used as the label than when 14C‐Glu was the labelling precursor. A significant increase in pheophorbide a, a tetrapyrrole component of Chl a labelling, and a concomitant decrease in phytol labelling was observed following incubation of O3‐treated pine seedlings with 14C‐ALA and 14C‐Glu. Stronger inhibition of carotene biosynthesis and activation of Chl a tetrapyrrole labelling by 14C‐ALA (in comparison with 14C‐Glu) indicated that exposure to O3 inhibits the conversion of ALA to Glu as the first step in ALA catabolism. These results also suggested a more intensive Glu metabolism (in comparison with ALA) for carotene biosynthesis in the cytosol, as well as cooperation between two pathways of isopentenyl diphosphate biosynthesis.  相似文献   

6.
Goldraij A  Polacco JC 《Planta》2000,210(4):652-658
 Arginase (EC 3.5.3.1) localization was studied in soybean (Glycine max L.) seedling cotyledons. Subcellular fractionation in a discontinuous Percoll gradient showed that arginase was localized in the mitochondrion. Arginine (Arg) uptake by mitochondria was demonstrated by co-sedimentation of [3H]Arg-derived label and the mitochondrial marker enzyme cytochrome c oxidase. Arginine uptake was complete in about 10 min. Since detergent but not NaCl released most label, we conclude that Arg was taken up and not bound to the organellar surface. Arginine transport was not saturable, at least up to 20 mM. Basic amino acids were the best inhibitors of Arg uptake. The uncoupler 2,4-dinitrophenol did not inhibit Arg uptake. At least 30% of l-[guanido-14C]Arg taken up by mitochondria was degraded by arginase in seedling cotyledons, while little or no degradation was detected in mitochondria from developing embryos, even though the Arg uptake level was similar in both mitochondrial preparations. These results are consistent with our previously reported pattern of arginase expression and urea accumulation during embryo development and seed germination (A. Goldraij and J.C. Polacco, 1999, Plant Physiol. 119: 297–303). The lack of Arg degradation allows developing embryos to conserve Arg, the main N-reserve amino acid utilized by germinating soybean. Received: 7 July 1999 / Accepted: 21 September 1999  相似文献   

7.
Root formation was found to extend the life-span of excised cotyledons of Helianthus annuus L. markedly. Excised cotyledons of 12-day-old plants attained longer life-span, higher root number and total root length than cotyledons excised before or after 12 days. Protein content of attached cotyledons reached a maximum level 12 days after the commencement of germination followed by a decrease. Cotyledons excised 8 days after sowing showed maximum level of protein content 44 days after excision followed by a decrease. The increase was correlated with the full development of roots. The incorporation of 14C-glycine into protein followed a pattern similar to the protein content, both in attached and detached cotyledons.  相似文献   

8.
Seedling of Euphorbia lambii Svent. were grown in the dark, and the levels of organic acids in the endosperm were monitored during the 6–7 day period in which all the reserves were depleted. Glycolate, glyoxylate, succinate, fumarate and 2-oxoglutarate occurred in traces only, the citrate concentration remained rather constant (0.4 μmol endosperm?1), malate varied from 0.2 to 0.4 μmol endosperm?1, but malonate appeared to be the major organic acid in the endosperm ranging from 0.75 to 1.25 μmol endosperm?1. Radioactive malonate was easily taken up by the cotyledons of growing seedlings, and up to 11.2% of the label proceeded to the sterols, the triterpenes and triterpene esters in a 48 h incorporation period. No label from [14C]-malonate was built into the triacylglycerols in the seedling. Maximum uptake values of 0.6 μmol malonate seedling?1 day?1 were measured, and this value was not altered by a simultaneous uptake of sucrose. Conversely, the uptake of labeled sucrose and its subsequent conversion into sterols and (latex) triterpenes was not altered by a simultaneous uptake of low concentrations of malonate. Increased amounts (from 0.25 μmol malonate seedling?1 and up) caused a 75–90% reduction of both uptake and conversion of sucrose into neutral lipids. To maintain a daily uptake of 4 μmol of sucrose by the cotyledons (required to maintain seedling growth) the simultaneous in vivo uptake of malonate from the endosperm was supposed not to exceed 0.2 μmol seedling?1 day?1. Thin sections of the endosperm revealed the morphology of the process of reserve depletion. The occurrence of vacuoles 2 days after germination, coincided with the increase in the malonate level. The protein bodies first disappeared completely from the outer layers, whereas the triacylglycerols gradually disappeared from the entire endosperm. About 80% of the endosperm cells contained a large vacuole until the stage of complete depletion, probably serving as the major site of malonate storage.  相似文献   

9.
Tracer kinetic experiments were performed using [ureido-14C] citrulline, [1-14C]ornithine, and isotope trapping techniques to determine if arginine is synthesized via the urea cycle in developing cotyledons of Glycine max (L.) Merrill. Excised cotyledons were injected with the 14C-solution and incubated in sealed vials containing a CO2 trap. The free and protein amino acids were analyzed using high performance liquid chromatography and arginine-specific enzyme-linked assays. In the 14C-citrulline feeding experiment argininosuccinate was the most highly labeled compound after 5 minutes and it was the first compound to lose 14C later in the time course. Carbon-14 was also recovered in free arginine, protein arginine, and CO2 up to 4 hours after introduction of label. All of the 14C in free and protein arginine could be accounted for in the C-6 position. Metabolism of 14C-ornithine resulted in 14C-incorporation into citrulline and free and protein arginine and the evolution of 14CO2. Citrulline was the most highly labeled compound after 15 minutes and was the first compound to reach a steady state level of 14C. With the addition of 800 nanomoles unlabeled citrulline to the 14C-ornithine feeding solution citrulline was the only compound labeled after 5 minutes and the steady state level of 14C-citrulline increased 12-fold. The appearance of 14C in free arginine and protein arginine was also delayed. In both 14C-ornithine feedings all of the 14C in free and protein arginine could be accounted for in the C-1 position. Together, the data support the reaction sequence: ornithine → citrulline → argininosuccinate → arginine → protein arginine.  相似文献   

10.
Tracerkinetic experiments were performed using l-[guanidino-14C]arginine, l-[U-14C]arginine, l-[ureido-14C]citrulline, and l-[1-14C]ornithine to investigate arginine utilization in developing cotyledons of Glycine max (L.) Merrill. Excised cotyledons were injected with carrier-free 14C compounds and incubated in sealed vials containing a CO2 trap. The free and protein amino acids were analyzed using high performance liquid chromatography and arginine-specific enzyme-linked assays. After 4 hours, 75% and 90% of the 14C metabolized from [guanidino-14C]arginine and [U-14C]arginine, respectively, was in protein arginine. The net protein arginine accumulation rate, calculated from the depletion of nitrogenous solutes in the cotyledon during incubation, was 17 nanomoles per cotyledon per hour. The data indicated that arginine was also catabolized by the arginase-urease reactions at a rate of 5.5 nanomoles per cotyledon per hour. Between 2 and 4 hours 14CO2 was also evolved from carbons other than C-6 of arginine at a rate of 11.0 nanomoles per cotyledon per hour. It is suggested that this extra 14CO2 was evolved during the catabolism of ornithine-derived glutamate; 14C-ornithine was a product of the arginase reaction. A model for the estimated fluxes associated with arginine utilization in developing soybean cotyledons is presented.  相似文献   

11.
The importance of glyoxylate in amino acid biosynthesis in plants   总被引:3,自引:1,他引:2       下载免费PDF全文
1. [14C2]Glyoxylate was rapidly metabolized by carrot storage tissues, pea leaves, pea cotyledons, sunflower cotyledons, corn coleoptiles, corn roots and pea roots. In many tissues over 70% of the supplied [14C2]glyoxylate was utilized during the 6hr. experimental periods. 2. In all tissues, the chief products of [14C2]-glyoxylate metabolism were carbon dioxide, glycine and serine. In several of the tissues, there was also a considerable incorporation of the label into the organic acids, particularly into glycollate. 3. Degradations of the labelled serine produced during [14C2]glyoxylate metabolism showed that glyoxylate carbon was incorporated into all three positions of the serine molecule. 4. The results are interpreted as indicating that glyoxylate is utilized by the tissues by pathways involving transamination, transmethylation, reduction and oxidative decarboxylation of the supplied glyoxylate.  相似文献   

12.
Asparagine is present in the mature leaves of young pea (Pisum sativum cv Little Marvel) seedlings, and is synthesized in detached shoots. This accumulation and synthesis is greatly enhanced by darkening. In detached control shoots, [14C]aspartate was metabolized predominantly to organic acids and, as other workers have shown, there was little labeling of asparagine (after 5 hours, 3.1% of metabolized label). Addition of the aminotransferase inhibitor aminooxyacetate decreased the flow of aspartate carbon to organic acids and enhanced (about 3-fold) the labeling of asparagine. The same treatment applied to darkened shoots resulted in a substantial conversion of [14C]aspartate to asparagine, over 10-fold greater than in control shoots (66% of metabolized label), suggesting that aspartate is the normal precursor of asparagine.

Only traces of glutamine-dependent asparagine synthetase activity could be detected in pea leaf or root extracts; activity was not enhanced by sulfhydryl reagents, oxidizing conditions, or protease inhibitors. Asparagine synthetase is readily extracted from lupin cotyledons, but yield was greatly reduced by extraction in the presence of pea leaf tissue; pea leaf homogenates contained an inhibitor which produced over 95% inhibition of an asparagine synthetase preparation from lupin cotyledons. The inhibitor was heat stable, with a low molecular weight. Presence of an inhibitor may prevent detection of asparagine synthetase in pea extracts and in Asparagus, where a cyanide-dependent pathway has been proposed to account for asparagine synthesis: an inhibitor with similar properties was present in Asparagus shoot tissue.

  相似文献   

13.
The aim of this work was to investigate the extent of glycolysis during gluconeogenesis in the germination of marrow (Cucurbita pepo L. var. medullosa Alef.). The activities of phosphofructokinase (E.C. 2.7.1.11) in extracts of cotyledons, of seeds, and seedlings grown in the dark for 2, 5, and 8 days were 3·5, 4·8, 9·4, and 11·8 nmol substrate consumed per cotyledon per min, respectively. The comparable figures for pyruvate kinase (E.C. 2.7.1.41) were 16·3, 72·3, 974, and 1485. The patterns of 14CO2 production from [1-14C], [2-14C], [3,4-14C], and [6-14C]glucose indicated that at all the above stages of germination glycolysis was appreciable and predominated over the pentose phosphate pathway. These patterns, and the distribution of label from [1-14C], and [3-14C]pyruvate supplied to 5-day-old cotyledons, indicated that the pyruvate formed in glycolysis was converted to acetyl units that were used primarily in biosyntheses. It is concluded that glycolysis occurred at all the stages of germination examined and was particularly active during gluconeogenesis. It is suggested that the significance of this glycolysis is the provision of intermediates for biosyntheses, a need that may not be met by corresponding gluconeogenic intermediates as these may be retained within organelles.  相似文献   

14.
Arginine is the predominant free amino acid in the cotyledons of developing seeds of Pisum sativum L. cv Marzia. Breakdown of arginine was measured by injecting l-[guanido-14C]arginine into detached cotyledons. Cotyledons of developing seeds showed a low rate of 14CO2 evolution whereas a much higher rate of 14CO2 evolution was measured from cotyledons of seeds 4 days after the onset of germination. The activities of the catabolic enzymes arginase, urease, and ornithine aminotransferase were measured throughout development and germination. Arginase and ornithine aminotransferase were present at an early stage of development. Urease activity appeared later as the seeds started to desiccate. During germination, all three enzymes were present. The different course of activity of these enzymes indicates that they are controlled separately.  相似文献   

15.
The activities of ribulose bisphosphate carboxylase (RuBPC) and phosphoenolpyruvate carboxylase (PEPC), as indicators of autotrophic and nonautotrophic CO2 fixation, were measured in excised cotyledons of Pinus radiata D. Don cultured for 21 days under shoot-forming (SF) and nonshoot-forming (NSF) conditions. The activity of RuBPC was found to increase in both SF and NSF cultures during the initial 5 days of culture. However, it leveled off from day 5 to day 10 and subsequently began to decrease until the end of the culture period under the SF conditions. In contrast, in the NSF cultures, RuBPC activity increased until day 15, when it was twofold higher than the maximum activity found in the SF cultures. An increase in PEPC activity of about 2.5 times the level of activity in freshly excised cotyledons was observed during the initial 5 days of culture under the SF conditions. PEPC activity began to decline after day 5 until it reached the level of activity seen in NSF cotyledons by day 15. In contrast, the activity of PEPC did not show any significant increase during the initial 10 days of culture under the NSF conditions. The Km (phosphoenolpyruvate) of PEPC from SF cotyledons was about 35% higher than that of NSF cotyledons. Cotyledons from two culture periods (days 5 and 15) were incubated for 15 seconds with NaH14CO3. The label in the malate and asparatate fractions as a percentage of total 14C incorporation was 3 times higher in the SF cotyledons than in the NSF cotyledons. A higher incorporation of 14C into products of photosynthesis under the NSF conditions was also observed.  相似文献   

16.
R. -A. Walk  B. Hock 《Planta》1977,134(3):277-285
The development of glyoxysomal malate dehydrogenase (gMDH, EC 1.1.1.37) during early germination of watermelon seedlings (Citrullus vulgaris Schrad.) was determined in the cotyledons by means of radial immunodiffusion. The active isoenzyme was found to be absent in dry seeds. By density labelling with deuterium oxide and incorporation of [14C] amino acids it was shown that the marked increase of gMDH activity in the cotyledons during the first 4 days of germination was due to de novo synthesis of the isoenzyme. The effects of protein synthesis inhibitors (cycloheximide and chloramphenicol) on the synthesis of gMDH indicated that the glyoxysomal isoenzyme was synthesized on cytoplasmic ribosomes. Possible mechanisms by which the glyoxysomal malate dehydrogenase isoenzyme reaches its final location in the cell are discussed.Abbreviations mMDH mitochondrial malate dehydrogenase - gMDH glyoxysomal malate dehydrogenase - D2O deuterium oxide - EDTA ethylenediaminetetraacetic acid, disodium salt  相似文献   

17.
Changes in fatty-acid metabolism were studied in soybean (Glycine max Merr.) cotyledons during senescence as well as in cotyledons which had been caused to regreen by removal of the epicotyl from the seedling. The activities of the enzymes acetyl-CoA synthetase (EC 6.2.1.1) and fatty-acid synthetase in plastids isolated from the cotyledons decreased during senescence but increased in response to regreening. These changes in enzyme activities followed the same pattern as changes in the quantities of chlorophyll and polyunsaturated fatty acids in this tissue. The in-vivo incorporation of [14C]acetate into total fatty acids in the senescing and regreening cotyledons did not vary markedly with age. In addition, the quantity of label in fatty acids did not decrease for as much as 60 h after the removal of the substrate. During this 60-h period however, there was substantial redistribution of the label among the individual fatty acids. While the labelling pattern of the individual fatty acids did not vary significantly with respect to age in the senescing cotyledons, there was a substantial increase in the synthesis of labelled polyunsaturated fatty acids in the regreening tissue. Thus, the incorporation of [14C]acetate into fatty acids did not reflect the changes in the quantities of the individual fatty acids in senescing tissue as well as they did in regreening tissue.  相似文献   

18.
Activities of nitrate reductase (NR; EC 1.6.6.1), nitrite reductase (NiR; EC 1.7.7.1), glutamine synthetase (GS; EC 6.3.1.2) and glutamate dehydrogenase (GDH; EC 1.4.1.3) were measured in cotyledons of sunflower (Helianthus annuus L. cv Peredovic) seedlings during germination and early growth under various external nitrogen sources. The presence of NO 3 - in the medium promoted a gradual increase in the levels of NR and NiR activities during the first 7 d of germination. Neither NR nor NiR activities were increased in a nitrogen-free medium or in media with either NH 4 + or urea as nitrogen sources. Moreover, the presence of NH 4 + did not abolish the NO 3 - -dependent appearance of NR and NiR activities. The increase of NR activity was impaired both by cycloheximide and chloramphenicol, which indicates that both cytoplasmic 80S and plastidic 70S ribosomes are involved in the synthesis of the NR molecule. By contrast, the appearance of NiR activity was only inhibited by cycloheximide, indicating that NiR seems to be exclusively synthesized on the cytoplasmic 80S ribosomes. Glutamine-synthetase activity was also strongly increased by external NO 3 - but not by NH 4 + or urea. The appearance of GS activity was more efficiently suppressed by cycloheximide than chloramphenicol. This indicates that GS is mostly synthesized in the cytoplasm. The cotyledons of the dry seed contain high levels of GDH activity which decline during germination independently of the presence or absence of a nitrogen source. Cycloheximide, but not chloramphenicol, greatly prevented the decrease of GDH activity.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - NiR nitrite reductase - NR nitrate reductase  相似文献   

19.
Metabolism of [14C]gibberellin (GA) A12 (GA12) and [14C]gibberellin A12-aldehyde (GA12-aldehyde) was examined in cotyledons and seed coats from developing seeds of pea (Pisum sativum L.). Both were metabolized to only 13-hydroxylated GAs in cotyledons but to 13-hydroxylated and non-13-hydroxylated GAs in seed coats. The metabolism of [14C]GA12 was slower in seed coats than in cotyledons. [14C]GA12-aldehyde was also metabolized to conjugates in seed coats. Seed coat [14C]-metabolites produced from [14C]GA12-aldehyde were isolated by high-performance liquid chromatography (HPLC). Conjugates were base hydrolyzed and the free GAs reisolated by HPLC and identified by gas chromatography-mass spectrometry. [14C]GA53-aldehyde, [14C]GA12-aldehyde conjugate, and [14C]GA53-aldehyde conjugate were major metabolites produced from [14C]GA12-aldehyde by seed coats aged 20-22 days or older. The dilution of 14C in these compounds by 12C, as compared to the supplied [14C]GA12-aldehyde, indicated that they are endogenous. Feeding [14C]GA53-aldehyde led to the production of [14C]GA53-aldehyde conjugate in seed coats and shoots and also to 13-hydroxylated GAs in shoots. Labeled GAs, recovered from plant tissue incubated with either [14C]GA12, [14C]GA12-aldehyde, or [3H]GA9, were used as appropriate markers for the recovery of endogenous GAs from seed coats or cotyledons. These GAs were purified by HPLC and identified and quantified by gas chromatography-mass spectrometry. GA15, GA24, GA9, GA51, GA51-catabolite, GA20, GA29, and GA29-catabolite were detected in seed coats, whereas GA9, GA53, GA44, GA19, GA20, and GA29 were found in cotyledons. The highest GA levels were for GA20 and GA29 in cotyledons (783 and 912 nanograms per gram fresh weight, respectively) and for GA29 and GA29-catabolite in seed coats (1940 and > 1940 nanograms per gram fresh weight, respectively).  相似文献   

20.
R. C. Leegood  T. ap Rees 《Planta》1978,140(3):275-282
We did this work to discover the pathway of CO2 fixation into sugars in the dark during gluconeogenesis by the cotyledons of 5-day-old seedlings of Cucurbita pepo L. We paid particular attention to the possibility of a contribution from ribulosebisphosphate carboxylase. The detailed distribution of 14C after exposure of excised cotyledons to 14CO2 in the dark was determined in a series of pulse and chase experiments. After 4s in 14CO2, 89% of the 14C fixed was in malate and aspartate. In longer exposures, and in chases in 12CO2, label appeared in alanine, phosphoenolpyruvate, 3-phosphoglycerate and sugar phosphates, and accumulated in sugars. The transfer of label from C-4 acids to sugars was restricted by inhibition of phosphoenolpyruvate carboxykinase in vivo by 3-mercaptopicolinic acid. We conclude as follows. Initial fixation of CO2 in the dark is almost entirely into phosphoenolpyruvate, probably via phosphoenolpyruvate carboxylase (EC 4.1.1.31) which we showed to be present in appreciable amounts. Incorporation into sugars occurs chiefly, if not completely, as a result of randomization of the carboxyl groups of the C-4 acids and subsequent conversion of the oxaloacetate to sugars via the accepted sequence for gluconeogenesis. Ribulosebisphosphate carboxylase appears to make very little contribution to sugar synthesis from fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号