首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell proliferation and gill morphology in anoxic crucian carp   总被引:1,自引:0,他引:1  
Is DNA replication/cell proliferation in vertebrates possible during anoxia? The oxygen dependence of ribonucleotide reductase (RNR) could lead to a stop in DNA synthesis, thereby making anoxic DNA replication impossible. We have studied this question in an anoxia-tolerant vertebrate, the crucian carp (Carassius carassius), by examining 5'-bromo-2'-deoxyuridine incorporation and proliferating cell nuclear antigen levels in the gills, intestinal crypts, and liver. We exposed crucian carp to 1 and 7 days of anoxia followed by 7 days of reoxygenation. There was a reduced incidence of S-phase cells (from 12.2 to 5.0%) in gills during anoxia, which coincided with a concomitant increase of G(0) cells. Anoxia also decreased the number of S-phase cells in intestine (from 8.1 to 1.8%). No change in the fraction of S-phase cells ( approximately 1%) in liver was found. Thus new S-phase cells after 7 days of anoxia were present in all tissues, revealing a considerable rate of DNA synthesis. Subsequently, the oxygen-dependent subunit of crucian carp RNR (RNRR2) was cloned. We found no differences in amino acids involved in radical generation and availability of the iron center compared with mouse, which could have explained reduced oxygen dependence. Furthermore, the amount of RNRR2 mRNA in gills did not decrease throughout anoxia exposure. These results indicate that crucian carp is able to sustain some cell proliferation in anoxia, possibly because RNRR2 retains its tyrosyl radical in anoxia, and that the replication machinery is still maintained. Although hypoxia triggers a 7.5-fold increase of respiratory surface area in crucian carp, this response was not triggered in anoxia.  相似文献   

2.
Summary Effects of diurnal variation in ambient oxygen tension on acid-base balance and blood respiratory properties were investigated in carp (Cyprinus carpio). The carp were subjected to two cycles in ambient between about 130 mm Hg and about 12 mm Hg at 17°C (cf. Figs. 1 and 2). The first period of hypoxia was characterized by a non-compensated respiratory alkalosis, i.e. whole blood showed an increase in pH from 7.92 to 8.14. During the second hypoxic period, 24 h later, a significantly smaller respiratory alkalosis was present, whole blood pH changed from 7.95 (the value found during the intermediate return to normoxia) to 8.08. The latter increase was associated with a significant increase of 25% in plasma bicarbonate concentration compared with the first period of hypoxia (Fig. 1, Table 1). The erythrocytic concentrations of hemoglobin and ATP were lowered by about 10%, compared with the normoxic values, during the two episodes of hypoxia, and this was due to a swelling of the erythrocytes during hypoxia. The red cell GTP concentration showed an altogether different change during the O2 cycling: the absolute concentration of red cell GTP changed to a steady level, 50% below that present at the onset of the experiment and the major part of this change took place between the two hypoxic periods (Fig. 2, Table 2).The results are discussed with reference to the respiratory function of the blood of carps during subjection to cyclic changes in nature.  相似文献   

3.
为研究青海湖裸鲤(Gymnocypris przewalskii)端脑在低氧胁迫下的生理响应机制,选取体重(97.68±0.12) g、体长(24.11±0.12) cm的健康青海湖裸鲤进行低氧[溶解氧含量(0.7±0.1) mg/L]胁迫,设常氧[溶解氧含量(8.4±0.1) mg/L]为对照组,分别在低氧胁迫8h和24h时采集青海湖裸鲤的端脑组织,进行脑细胞线粒体超微结构和膜电位、抗氧化酶活性、脑细胞凋亡和凋亡相关基因(Caspase 3、Bax和Bcl-2)及低氧诱导反应相关基因(Hif-2α和EGLN1)表达测定。结果显示,在低氧胁迫过程中:(1)端脑神经细胞线粒体出现肿胀、嵴溶解;线粒体膜电位在8h时显著升高, 24h时显著降低,表明随着低氧胁迫时间的延长端脑神经细胞线粒体可能受到了损伤。(2)TUNEL检测显示端脑细胞发生了凋亡,但随着低氧胁迫时间延长端脑细胞凋亡率无显著差异;qPCR显示,随着低氧胁迫时间的延长端脑细胞Caspase 3、Bax和Bcl-2基因表达水平升高; Bcl-2/Bax比值随低氧胁迫时间的延长显著降低; Hif-2α基因表达水平显著升高; EGLN...  相似文献   

4.
Hypoxia inducible factor 1 alpha (HIF-1α) initiates expression of a wide variety of genes, some of which are involved in apoptosis and cell cycle arrest. We have previously shown that crucian carp increases its respiratory surface area 7.5-fold in response to hypoxia. This change is due to apoptosis and cell cycle arrest in specific parts of its gills. Here we have characterized crucian carp HIF-1α, and measured mRNA, protein and DNA binding levels during hypoxia exposure in crucian carp gills. We have also measured an HIF-1α-induced gene, the inducible nitric oxide synthase (iNOS), which has the ability to initiate apoptosis and cell cycle arrest. Crucian carp HIF-1α was found to have all critical domains known to be important for function. Comparison of the peptide sequence with other species indicated high similarity with other cyprinid fish, but a pronounced variation compared to the salmonid, rainbow trout. Further, we found HIF-1α protein to be stabilized during hypoxia. Further, HIF-1α was often present in normoxia, and showed marked individual weight-dependent variation. We found no alteration of iNOS mRNA levels during hypoxia exposure. These findings suggest HIF-1α involvement in hypoxia-induced change of respiratory surface area in crucian carp gills. However, its activity does not seem to be mediated through iNOS.  相似文献   

5.
The expression and regulation of sodium-independent glucose transporter (GLUT)-2, in relation to hypoxia has not yet been explored in fish or other vertebrates. In this study, the complete open-reading frame for sea bass GLUT2 was isolated and deposited in the GenBank. The predicted 12 transmembrane domains of the protein (508 amino acids) are presented. A phylogenetic tree was constructed on GLUT2 sequences of sea bass and those of other teleost, amphibian, avian, and mammalian species. We also analyzed acute and chronic hypoxia-induced changes in the expression of hepatic GLUT2 mRNA, using one-tube, two-temperature, real-time RT-PCR with which gene expression can be absolutely quantified by the standard curve method. The number of GLUT2 mRNA copies was significantly increased in response to both acute (1.9 mg/L, dissolved oxygen for 4 h) and chronic (4.3 mg/L, DO for 15 days) hypoxia conditions. The hypoxia-related changes in GLUT2 mRNA copy number support the view that GLUT2 is involved in the adaptation response to hypoxia in sea bass, a marine hypoxia-sensitive species. We realize that the GLUT2 mRNA levels in our study do not measure the physiological effects produced by the protein. Thus, we can only speculate that, under hypoxic conditions, GLUT2 probably functions to allow the glucose produced from liver glycogen to leave the hepatocytes.  相似文献   

6.
为探究低氧-复氧胁迫对鲢(Hypophthalmichthys molitrix)抗氧化酶活性及Cu/Zn-SOD和Mn-SOD基因表达的影响, 对鲢进行急性低氧、持续低氧及复氧实验, 进而分析血清、心脏和肝脏中不同抗氧化酶和SODs基因表达的变化特征。结果表明: 在急性低氧胁迫后, 血清中总抗氧化能力(T-AOC)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-PX)活性随着氧浓度的降低均呈上升趋势, 但超氧化物歧化酶(SOD)活性呈先升后降的趋势。在持续低氧胁迫后, 血清中T-AOC和GSH-PX活性随着低氧胁迫时间的增加显著升高(P<0.05); 心脏中SOD活性显著高于常氧水平(P<0.05), 但Cu/Zn-SOD和Mn-SOD基因表达在低氧胁迫24h时显著低于常氧水平(P<0.05); 肝脏中SOD活性在低氧胁迫24h时显著高于常氧水平(P<0.05), 且Cu/Zn-SOD和Mn-SOD基因表达在低氧胁迫24h时也显著高于常氧水平(P<0.05)。复氧后, 血清、心脏和肝脏中T-AOC、SOD、CAT和GSH-PX活性均能恢复至常氧水平, 且心脏和肝脏中Cu/Zn-SOD和Mn-SOD基因表达的也能恢复至常氧水平, 但肝脏中Mn-SOD基因表达恢复至常氧水平较在心脏中所需时间更少。因而, 鲢可以通过调节抗氧化酶的活性来保护自身免受氧化应激造成的损伤。研究为解析低氧胁迫下鲢抗氧化应激机制提供了基础。  相似文献   

7.
Continuous exposure of Ehrlich ascites tumour cells to argon-CO2 under in vitro conditions caused rapid cessation of cell proliferation. On fixing the O2 level at 10 ppm in the protective atmosphere (0.001% in comparison with about 20% in normoxic atmosphere), G1 and early S cells remained stationary while G2 cells continued to pass from G2 into mitosis, to remain in a non-growing state in G1 of the subsequent cycle. Re-aeration of cells following 12 h hypoxia induced up to 25% of the population to continue DNA synthesis without a preceding cell division, as revealed by flow-cytometric analysis. Supplementation of cells cultured under hypoxia with a combination of deoxynucleosides (100 microM deoxycytidine, 10 microM deoxyadenosine, 10 microM deoxyguanosine) was found to stimulate reprogression through the cycle, provided the residual oxygen tension in the protective atmosphere exceeded 40 ppm. The increase in the number of cells with a DNA content of more than 4 C and in the number of binucleate cells observed after re-aeration of hypoxic cells was not prevented by deoxynucleosides or by uridine, which were present in the medium either during hypoxia of from the beginning of reoxygenation. These results indicate that the development of polyploidy as a result of oxygen deficiency cannot be influenced by improvement of RNA and DNA synthetic precursors.  相似文献   

8.
The influence of TCT on the proliferation activity of the connective tissue elements of the regenerating skin in normal and lowered partial oxygen tension was studied by means of H3-thymidin autoradiography. Continuous saturation of the organism with exogenous TCT is characterized by an increase in the count of cells during the S-period of mitotic cycle, the DNA synthesis intensification, and a considerable decrease in the number of silver grains over the nuclei in the course of the 24-hour observation period; this can testify to the acceleration of the cell passage of mitotic cycle stages in normal and low partial oxygen tension in hypoxia.  相似文献   

9.
Summary Goldfish, acclimated to 20°C and normal = 130 mmHg) and low ( = 19 mmHg) oxygen levels, were exposed to different periods of hypoxia and anoxia. Experiments were carried out at night. ATP, ADP, AMP, IMP, CrP, glycogen and lactate were determined in red muscle, white muscle and liver. Acclimation to hypoxia resulted in a marked increase of the energy charge of liver and red muscle and of the glycogen content of red and white muscle, indicating an increased anaerobic capacity. Short exposures to anoxia, up to 1 h, had little influence on the value of the measured parameters. Long-term exposures (12 h) to anoxia caused a significant decrease of CrP and glycogen levels in all tissues examined. The energy-charge of red and white muscle was hardly affected by a 12 h exposure to anoxia, but in liver tissue the energy charge decreased from 0.60 to 0.32. It is concluded that during anoxia muscle tissues are able to maintain high energy-charges, probably by means of a yet unknown anaerobic energy-producing system.Abbreviations CrP creatine phosphate - EC energy charge - IMP inosine monophosphate - I.U. International Unit (mole/min)  相似文献   

10.
Erythropoietin receptor signalling is required for normal brain development.   总被引:24,自引:0,他引:24  
Erythropoietin, known for its role in erythroid differentiation, has been shown to be neuroprotective during brain ischaemia in adult animal models. Although high levels of erythropoietin receptor are produced in embryonic brain, the role of erythropoietin during brain development is uncertain. We now provide evidence that erythropoietin acts to stimulate neural progenitor cells and to prevent apoptosis in the embryonic brain. Mice lacking the erythropoietin receptor exhibit severe anaemia and defective cardiac development, and die at embryonic day 13.5 (E13.5). By E12.5, in addition to apoptosis in foetal liver, endocardium and myocardium, the erythropoietin receptor null mouse shows extensive apoptosis in foetal brain. Lack of erythropoietin receptor affects brain development as early as E10.5, resulting in a reduction in the number of neural progenitor cells and increased apoptosis. Corresponding in vitro cultures of cortical cells from Epor(-/-) mice also exhibited decreases in neuron generation compared with normal controls and increased sensitivity to low oxygen tension with no surviving neurons in Epor(-/-) cortical cultures after 24 hour exposure to hypoxia. The viability of primary Epor(+/+) rodent embryonic cortical neurons was further increased by erythropoietin stimulation. Exposure of these cultures to hypoxia induced erythropoietin expression and a tenfold increase in erythropoietin receptor expression, increased cell survival and decreased apoptosis. Cultures of neuronal progenitor cells also exhibited a proliferative response to erythropoietin stimulation. These data demonstrate that the neuroprotective activity of erythropoietin is observed as early as E10.5 in the developing brain, and that induction of erythropoietin and its receptor by hypoxia may contribute to selective cell survival in the brain.  相似文献   

11.
We have studied hypoxia-induced inactivation of cells from three established human cell lines with different p53 status. Hypoxia was found to induce apoptosis in cells expressing wild-type p53 (MCF-7 cells), but not in cells where p53 is either mutated (T-47D cells), or abrogated by expression of the HPV18 E6 oncoprotein (NHIK 3025 cells). Apoptosis was demonstrated by DNA fragmentation, using agarose gel electrophoresis of DNA and DNA nick end labeling (TUNEL). We demonstrate that extremely hypoxic conditions (<4 ppm O2) do not cause any change of expression in the p53 protein level in these three cell lines. In addition, the localization of p53 in MCF-7 cells was found exclusively in the nucleus in only some of the cells both under aerobic and hypoxic conditions. Furthermore, no correlation was found between the p53-expression level and whether or not a cell underwent apoptosis. Flow cytometric TUNEL analysis of MCF-7 cells revealed that initiation of apoptosis occurred in all phases of the cell cycle, although predominantly for cells in S phase. Apoptosis was observed only during a limited time window (i.e., ≈10 to ≈24 h) after the onset of extreme hypoxia. While 66% of the MCF-7 cells lost their ability to form visible colonies following 15 h exposure to extreme hypoxia, only ∼28% were induced to apoptosis, suggesting that ∼38% were inactivated by other death processes. Commitment to apoptotic cell death was observed in MCF-7 cells even for oxygen concentrations as high as 5000 ppm. Our present results indicate that the p53 status in these three tumor cell lines does not have any major influence on cell's survival following exposure to extremely hypoxic conditions, whereas following moderate hypoxia, cells expressing functional p53 enhanced their susceptibility to cell death. Taken together, although these results suggest that functional p53 might play a role in the induction of apoptosis during hypoxia, other factors seem to be equally important.  相似文献   

12.
In vitro cultured Ehrlich ascites tumour (EAT) cells were used because of the ease of their manipulation under different levels of hypoxia. They were used to clarify further the complex mechanism of oxygen-dependent cell proliferation. On reducing the oxygen concentration from 20% to lower levels (1-7%) an increase in the length of the population doubling time with concomitant reductions in protein, RNA and DNA content of cultures were observed. The incorporation of [14C]HCO3- into the RNA fraction of cells by de novo biosynthesis of uridine monophosphate (UMP) was reduced proportionally to the microenvironmental O2 tension. Uptake of this labelled precursor by cells in the presence of N-phosphonoacetyl-L-aspartate was found to be similarly inhibited. To correlate the reduction of cell growth under hypoxia with the functional pyrimidine supply, hypoxic cells were cultured in the presence of a balanced mixture of deoxynucleosides and/or uridine (100 microM deoxycytidine, 10 microM deoxyadenosine, 10 microM deoxyguanosine, 100 microM uridine). Above 3% O2 in the protective atmosphere, no improvement of growth parameters by the exogenous pyrimidinenucleotide precursors was obtained, whereas these compounds had a positive influence below this level. The increase in cell number was raised to about 60% of that of control cultures (20% O2) irrespective of the oxygen tension. In addition, when above 3% O2 the incorporation of HCO3- into RNA was comparable to that of controls, indicating that the pyrimidine de novo pathway is not a limiting factor in RNA biosynthesis. In conclusion, whereas at suboptimal O2 levels (5-7%) no correlation between pyrimidine metabolism and reduction of proliferation rate appears to exist, at low O2 concentrations (less than 3%) the rate of orotate/UMP production seems to be an important factor in the growth cessation of EAT cells; at critical O2 tensions (less than 1%) the lack of pyrimidine-deoxynucleosides substantially reduces cell cycle progression.  相似文献   

13.
Cellular hypoxia response is regulated at the level of hypoxia-inducible factor (HIF) activity. A number of recently identified oxygen sensors are HIF-modifying enzymes that respond to low oxygen by altering HIF modification and thus lead to its activation. In addition to the HIF proline hydroxylases and asparagine hydroxylases, ARD1 is recently described as a HIF-1alpha acetylase that regulates its stability. We found that ARD1 is down-regulated in a number of cell lines in response to hypoxia and hypoxia mimic compounds. After surveying these lines for erythropoietin production and retroviral transfection efficiency, we chose to use HepG2 cells to study the function of ARD1. ARD1 short hairpin RNA delivered by a retroviral vector caused >80% reduction in ARD1 message. We observed decreases in erythropoietin and vascular endothelial growth factor protein production, whereas there was no change in the HIF-1alpha protein level. A gene chip analysis of HepG2 cells transduced with virus expressing ARD1 short hairpin RNA under normoxia and hypoxia conditions or with virus overexpressing recombinant ARD1 confirmed that inhibition of ARD1 does not cause activation of HIF and downstream target genes. However, this analysis revealed that ARD1 is involved in cell proliferation and in regulating a series of cellular metabolic pathways that are regulated during hypoxia response. The role of ARD1 in cell proliferation is confirmed using fluorescence labeling analysis of cell division. From these studies we conclude that ARD1 is not required to suppress HIF but is required to maintain cell proliferation in mammalian cells.  相似文献   

14.
Analyses were made of the phsopholipid fatty acids and the antioxidant enzymes in the carp (Cyprinus carpio morpha) at three different oxygen concentrations, corresponding to hyperoxia, hypoxia and anoxia. Variations of the oxygen concentration were found to influence the quantities of phsopholipid fatty acids, as well as the antioxidant enzyme activities. In hyperoxia and hypoxia the amount of polyunsaturated fatty acids in carp liver was higher than in anoxia, but in other tissues there was no significant differences. As to the antioxidant enzyme system, the glutathione peroxidase activity and the lipid peroxidation value increased significantly with decrease of the oxygen concentration, while the total superoxide dismutase activity decreased on lowering of the oxygen level.  相似文献   

15.
Hypoxia induces apoptosis in primary and transformed cells and in various tumor cell lines in vitro. In contrast, there is little apoptosis and predominant necrosis despite extensive hypoxia in human glioblastomas in vivo. We here characterize ultrastructural and biochemical features of cell death in LN-229, LN-18 and U87MG malignant glioma cells in a paradigm of hypoxia with partial glucose deprivation in vitro. Electron microscopic analysis of hypoxia-challenged glioma cells demonstrated early stages of apoptosis but predominant necrosis. ATP levels declined during hypoxia, but recovered with re-exposure to normoxic conditions unless hypoxia exceeded 8 h. Longer hypoxic exposure resulted in irreversible ATP depletion and delayed cell death. Hypoxia induced mitochondrial release of cytochrome c, but there was no cleavage of caspases 3, 7, 8 or 9, and no DNA fragmentation. Ectopic expression of BCL-XL conferred protection from hypoxia-induced cell death, whereas the overexpression of the antiapoptotic proteins X-linked-inhibitor-of-apoptosis-protein and cytokine response modifier-A had no effect. These findings suggest that glioma cells resist adverse effects of hypoxia until energy stores are depleted and then undergo necrosis rather than apoptosis because of energy deprivation.  相似文献   

16.
Nitric oxide (NO) can induce apoptosis in a variety of cell types. A non-toxic concentration of nitric oxide under normal oxygen conditions triggered cell death under hypoxic conditions (1.5% O(2)) in fibroblasts. Nitric oxide administered during hypoxia induced the release of cytochrome c, caspase-9 activation, and the loss of mitochondrial membrane potential followed by DNA fragmentation and lactate dehydrogenase release (markers of cell death). Bcl-X(L) protected cells from nitric oxide-induced apoptosis during hypoxia by preventing the release of cytochrome c, caspase-9 activation, and by maintaining a mitochondrial membrane potential. Murine embryonic fibroblasts from bax(-/-) bak(-/-) mice exposed to nitric oxide during hypoxia did not die, indicating that pro-apoptotic Bcl-2 family members are required for NO-induced apoptosis during hypoxia. The nitric oxide-induced cell death during hypoxia was independent of cGMP and peroxynitrite. Cells devoid of mitochondrial DNA (rho secondary-cells) lack a functional electron transport chain and were resistant to nitric oxide-induced cell death during hypoxia, suggesting that a functional electron transport chain is required for nitric oxide-induced apoptosis during hypoxia.  相似文献   

17.
Tumor hypoxia is a known driver of angiogenesis that also facilitates tumor growth. Moreover, poorly oxygenated central tumor area remains relatively radio or chemo resistant. HBO therapy is known to elevate the levels of dissolved oxygen and eliminates tumor hypoxia. It has been one of the modalities in cancer treatment; therefore its optimization is important. In this experimental study, no cancer enhancing effect was seen during the course of HBO therapy; however, post therapy there was an accelerated growth and progression of tumor. HBO treated mice lived shorter and the response to therapy was dose & tumor volume dependent. HBO therapy probably exert its effect on the cancer proliferating cells through multiple pathways such as increased DNA damage, apoptosis & geno-toxicity leading to slow cancer progression while post therapy tumorigenic effect could be due to impaired DNA repair mechanism, mutagenic effect & aneuploidy as well as altered blood supply & nutrients. Tumor growth reached plateau with time and this finding validated theoretical model predicting tumor reaching an asymptotic limit. While, marked asymmetry observed in tumor volume progression or cancer cell proliferation rate in each of the experimental C3H mouse suggested a need for an alternate small animal pre-clinical cancer therapeutic model.  相似文献   

18.
Hypoxia restricts cell proliferation and cell cycle progression at the G1/S interface but at least a subpopulation of carcinoma cells can escape the restriction. In carcinoma hypoxia may in fact select for cells with enhanced hypoxic survival and increased aggressiveness. The cellular oxygen sensors HIF proline hydroxylases (PHDs) adapt the cellular functions to lowered environmental oxygen tension. PHD3 isoform has shown the strongest hypoxic upregulation among the family members. We detected a strong PHD3 mRNA expression in tumors of head and neck squamous cell carcinoma (HNSCC). The PHD3 expression associated with expression of hypoxic marker gene. Using siRNA in cell lines derived from HNSCC we show that specific inhibition of PHD3 expression in carcinoma cells caused reduced cell survival in hypoxia. The loss of PHD3, but not that of PHD2, led to marked cell number reduction. Although caspase-3 was activated at early hypoxia no induction of apoptosis was detected. However, hypoxic PHD3 inhibition caused a block in cell cycle progression. Cell population in G1 phase was increased and the population in S phase reduced demonstrating a block in G1 to S transition under PHD3 inhibition. In line with this, the level of hyperphosphorylated retinoblastoma protein Rb was reduced by PHD3 knock-down in hypoxia. PHD3 loss led to increase in cyclin-dependent kinase inhibitor p27 expression but not that of p21 or p16. The data demonstrated that increased PHD3 expression under hypoxia enhances cell cycle progression and survival of carcinoma cells.  相似文献   

19.
Oxidative stress is considered to contribute to aging and is associated with the generation of oxidatively damaged DNA, including 8-oxo-7,8-dihydroguanine. We have identified 69 studies that have measured the level of oxidatively damaged DNA in organs of animals at various ages. In general, organs with limited cell proliferation, i.e., liver, kidney, brain, heart, pancreas, and muscle, tended to show accumulation of DNA damage with age, whereas organs with highly proliferating cells, such as intestine, spleen, and testis, showed more equivocal or no effect of age. A restricted analysis of studies reporting a baseline level of damaged DNA that was fewer than 5 lesions/106 dG showed that 21 of 29 studies reported age-associated accumulation of DNA damage. The standardized mean difference in oxidatively damaged DNA between the oldest and the youngest age groups was 1.49 (95% CI 1.03–1.95). There was no difference between age span, number of tested organs, statistical power, sex, strain, or breeding between the studies showing positive and null effects. Citation and publication bias seems to be a problem in the overall dataset, whereas it is less pronounced in the restricted dataset. There is compelling evidence for aging-associated accumulation of oxidatively damaged DNA in organs with limited cell proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号