共查询到20条相似文献,搜索用时 9 毫秒
1.
Tat-vaccinated macaques do not control simian immunodeficiency virus SIVmac239 replication 总被引:2,自引:0,他引:2 下载免费PDF全文
Allen TM Mortara L Mothé BR Liebl M Jing P Calore B Piekarczyk M Ruddersdorf R O'Connor DH Wang X Wang C Allison DB Altman JD Sette A Desrosiers RC Sutter G Watkins DI 《Journal of virology》2002,76(8):4108-4112
The regulatory proteins of human immunodeficiency virus may represent important vaccine targets. Here we assessed the role of Tat-specific cytotoxic T lymphocytes (CTL) in controlling pathogenic simian immunodeficiency virus SIVmac239 replication after using a DNA-prime, vaccinia virus Ankara-boost vaccine regimen. Despite the induction of Tat-specific CTL, there was no significant reduction in either peak or viral set point compared to that of controls. 相似文献
2.
Suboptimal nucleotides in the infectious, pathogenic simian immunodeficiency virus clone SIVmac239 下载免费PDF全文
We analyzed virus sequences in two monkeys infected with SIVmac239 and two monkeys infected with SHIVnef that maintained high, persisting viral loads. Sequence changes were observed consistently at four loci in all four animals: a single nucleotide change in the Lys-tRNA primer binding site in the 5' long terminal repeat; two nucleotide changes that resulted in two amino acid changes in the pol gene product; and a single nucleotide change in the region of the simian immunodeficiency virus genome where the rev and env genes overlap, resulting in changes in the predicted amino acid sequences of both gene products. None of these mutations were seen in short-term cultures of CEMx174 cells infected with SIVmac239 or SHIVnef. At all four positions in all four animals, the new sequences represented consensus sequences for primate lentiviruses, whereas the inoculum sequences at these four loci have either never been or rarely been reported outside of SIVmac239. Thus, although cloned SIVmac239 is consistently pathogenic and consistently induces high viral load set points, it is clearly less than optimal at these four nucleotide positions. 相似文献
3.
Vaccine-induced cellular immune responses reduce plasma viral concentrations after repeated low-dose challenge with pathogenic simian immunodeficiency virus SIVmac239 下载免费PDF全文
Wilson NA Reed J Napoe GS Piaskowski S Szymanski A Furlott J Gonzalez EJ Yant LJ Maness NJ May GE Soma T Reynolds MR Rakasz E Rudersdorf R McDermott AB O'Connor DH Friedrich TC Allison DB Patki A Picker LJ Burton DR Lin J Huang L Patel D Heindecker G Fan J Citron M Horton M Wang F Liang X Shiver JW Casimiro DR Watkins DI 《Journal of virology》2006,80(12):5875-5885
The goal of an AIDS vaccine regimen designed to induce cellular immune responses should be to reduce the viral set point and preserve memory CD4 lymphocytes. Here we investigated whether vaccine-induced cellular immunity in the absence of any Env-specific antibodies can control viral replication following multiple low-dose challenges with the highly pathogenic SIVmac239 isolate. Eight Mamu-A*01-positive Indian rhesus macaques were vaccinated with simian immunodeficiency virus (SIV) gag, tat, rev, and nef using a DNA prime-adenovirus boost strategy. Peak viremia (P = 0.007) and the chronic phase set point (P = 0.0192) were significantly decreased in the vaccinated cohort, out to 1 year postinfection. Loss of CD4(+) memory populations was also ameliorated in vaccinated animals. Interestingly, only one of the eight vaccinees developed Env-specific neutralizing antibodies after infection. The control observed was significantly improved over that observed in animals vaccinated with SIV gag only. Vaccine-induced cellular immune responses can, therefore, exert a measure of control over replication of the AIDS virus in the complete absence of neutralizing antibody and give us hope that a vaccine designed to induce cellular immune responses might control viral replication. 相似文献
4.
Retroviral recombination in vivo: viral replication patterns and genetic structure of simian immunodeficiency virus (SIV) populations in rhesus macaques after simultaneous or sequential intravaginal inoculation with SIVmac239Deltavpx/Deltavpr and SIVmac239Deltanef 下载免费PDF全文
Kim EY Busch M Abel K Fritts L Bustamante P Stanton J Lu D Wu S Glowczwskie J Rourke T Bogdan D Piatak M Lifson JD Desrosiers RC Wolinsky S Miller CJ 《Journal of virology》2005,79(8):4886-4895
To characterize the occurrence, frequency, and kinetics of retroviral recombination in vivo, we intravaginally inoculated rhesus macaques, either simultaneously or sequentially, with attenuated simian immunodeficiency virus (SIV) strains having complementary deletions in their accessory genes and various degrees of replication impairment. In monkeys inoculated simultaneously with SIVmac239Deltavpx/Deltavpr and SIVmac239Deltanef, recombinant wild-type (wt) virus and wild-type levels of plasma viral RNA (vRNA) were detected in blood by 2 weeks postinoculation. In monkeys inoculated first with SIVmac239Deltavpx/Deltavpr and then with SIVmac239Deltanef, recombination occurred but was associated with lower plasma vRNA levels than plasma vRNA levels seen for monkeys inoculated intravaginally with wt SIVmac239. In one monkey, recombination occurred 6 weeks after the challenge with SIVmac239Deltanef when plasma SIVmac239Deltavpx/Deltavpr RNA levels were undetectable. In monkeys inoculated first with the more highly replicating strain, SIVmac239Deltanef, and then with SIVmac239Deltavpx/Deltavpr, wild-type recombinant virus was not detected in blood or tissues. Instead, a virus that had repaired the deletion in the nef gene by a compensatory mutation was found in one animal. Overall, recombinant SIV was eventually found in four of six animals intravaginally inoculated with the two SIVmac239 deletion mutants. These findings show that recombination can occur readily in vivo after mucosal SIV exposure and thus contributes to the generation of viral genetic diversity and enhancement of viral fitness. 相似文献
5.
Klatt NR Canary LA Vanderford TH Vinton CL Engram JC Dunham RM Cronise HE Swerczek JM Lafont BA Picker LJ Silvestri G Brenchley JM 《Journal of virology》2012,86(2):1203-1213
Pigtail macaques (PTM) are an excellent model for HIV research; however, the dynamics of simian immunodeficiency virus (SIV) SIVmac239 infection in PTM have not been fully evaluated. We studied nine PTM prior to infection, during acute and chronic SIVmac239 infections, until progression to AIDS. We found PTM manifest clinical AIDS more rapidly than rhesus macaques (RM), as AIDS-defining events occurred at an average of 42.17 weeks after infection in PTM compared to 69.56 weeks in RM (P = 0.0018). However, increased SIV progression was not associated with increased viremia, as both peak and set-point plasma viremias were similar between PTM and RM (P = 0.7953 and P = 0.1006, respectively). Moreover, this increased disease progression was not associated with rapid CD4(+) T cell depletion, as CD4(+) T cell decline resembled other SIV/human immunodeficiency virus (HIV) models. Since immune activation is the best predictor of disease progression during HIV infection, we analyzed immune activation by turnover of T cells by BrdU decay and Ki67 expression. We found increased levels of turnover prior to SIV infection of PTM compared to that observed with RM, which may contribute to their increased disease progression rate. These data evaluate the kinetics of SIVmac239-induced disease progression and highlight PTM as a model for HIV infection and the importance of immune activation in SIV disease progression. 相似文献
6.
Multispecific vaccine-induced mucosal cytotoxic T lymphocytes reduce acute-phase viral replication but fail in long-term control of simian immunodeficiency virus SIVmac239 下载免费PDF全文
Vogel TU Reynolds MR Fuller DH Vielhuber K Shipley T Fuller JT Kunstman KJ Sutter G Marthas ML Erfle V Wolinsky SM Wang C Allison DB Rud EW Wilson N Montefiori D Altman JD Watkins DI 《Journal of virology》2003,77(24):13348-13360
Given the current difficulties generating vaccine-induced neutralizing antibodies to human immunodeficiency virus (HIV), the focus of the vaccine community has shifted toward creating cytotoxic-T-lymphocyte (CTL)-based vaccines. Recent reports of CTL-based vaccine trials in macaques challenged with simian/human immunodeficiency virus SHIV-89.6P have supported the notion that such vaccines can ameliorate the course of disease. However, almost all of these studies included Env as an immunogen and since SHIV-89.6P is sensitive to neutralizing antibodies it is difficult to determine the mechanism(s) of protection. Consequently, SHIV-89.6P challenge of macaques may be a poor model for determining vaccine efficacy in humans. To ascertain the effect of vaccine-induced multispecific mucosal CTL, in the absence of Env-specific antibody, on the control of an immunodeficiency virus challenge, we vaccinated Mamu-A*01(+) macaques with constructs encoding a combination of CTL epitopes and full-length proteins (Tat, Rev, and Nef) by using a DNA prime/recombinant modified vaccinia virus Ankara (rMVA) boost regimen. The vaccination induced virus-specific CTL and CD4(+) helper T lymphocytes with CTL frequencies as high as 20,000/million peripheral blood mononuclear cells. The final rMVA vaccination, delivered intravenously, engendered long-lived mucosal CTL. At 16 weeks after the final rMVA vaccination, the vaccinees and naive, Mamu-A*01(+) controls were challenged intrarectally with SIVmac239. Massive early anamnestic cellular immune responses controlled acute-phase viral replication; however, the three vaccinees were unable to control virus replication in the chronic phase. The present study suggests that multispecific mucosal CTL, in the absence of neutralizing antibodies, can achieve a modicum of control over early viral replication but are unable to control chronic-phase viral replication after a high-dose mucosal challenge with a pathogenic simian immunodeficiency virus. 相似文献
7.
Weiler AM Li Q Duan L Kaizu M Weisgrau KL Friedrich TC Reynolds MR Haase AT Rakasz EG 《Journal of virology》2008,82(8):4154-4158
Here we report the results of studies in the simian immunodeficiency virus (SIV)-rhesus macaque model of intravaginal transmission of human immunodeficiency virus type 1 in the setting of genital ulcerative diseases. We document preferential association of vRNA with induced ulcers during the first days of infection and show that allogeneic cells of the inoculum traffic from the vaginal lumen to lymphatic tissues. This surprisingly rapid systemic dissemination in this cell-associated SIV challenge model thus reveals the challenges of preventing transmission in the setting of genital ulcerative diseases and illustrates the utility of this animal model in tests of strategies aimed at reducing transmission under these conditions. 相似文献
8.
Utilization of C-C chemokine receptor 5 by the envelope glycoproteins of a pathogenic simian immunodeficiency virus, SIVmac239. 总被引:1,自引:4,他引:1 下载免费PDF全文
L Marcon H Choe K A Martin M Farzan P D Ponath L Wu W Newman N Gerard C Gerard J Sodroski 《Journal of virology》1997,71(3):2522-2527
We examined chemokine receptors for the ability to facilitate the infection of CD4-expressing cells by viruses containing the envelope glycoproteins of a pathogenic simian immunodeficiency virus, SIVmac239. Expression of either human or simian C-C chemokine receptor CCR5 allowed the SIVmac239 envelope glycoproteins to mediate virus entry and cell-to-cell fusion. Thus, distantly related immunodeficiency viruses such as SIV and the primary human immunodeficiency virus type 1 isolates can utilize CCR5 as an entry cofactor. 相似文献
9.
Rhesus macaques previously infected with simian/human immunodeficiency virus are protected from vaginal challenge with pathogenic SIVmac239. 总被引:3,自引:7,他引:3 下载免费PDF全文
C J Miller M B McChesney X Lü P J Dailey C Chutkowski D Lu P Brosio B Roberts Y Lu 《Journal of virology》1997,71(3):1911-1921
Nontraumatic vaginal inoculation of rhesus macaques with a simian/human immunodeficiency virus (SIV/HIV) chimera containing the envelope gene from HIV-1 89.6 (SHIV 89.6) results in systemic infection (Y. Lu, B. Brosio, M. Lafaile, J. Li, R. G. Collman, J. Sodroski, and C. J. Miller, J. Virol. 70:3045-3050, 1996). A total of five rhesus macaques have each been infected by exposure to at least three intravaginal inoculations of SHIV 89.6. The SHIV 89.6 infection is characterized by a transient viremia that evokes humoral and cellular immune responses to HIV and SIV antigens, but disease does not develop in animals infected with SHIV 89.6. To determine if a previous infection with SHIV 89.6 by vaginal inoculation could protect animals from vaginal challenge with pathogenic SIV, all five animals were intravaginally inoculated twice with pathogenic SIV-mac239. After challenge, all of the SHIV-immunized animals had low or undetectable viral RNA levels in plasma compared to control animals. Three of the five of the SHIV-immunized animals remained virus isolation negative for more than 8 months, while two became virus isolation positive. The presence of SIV Gag-specific cytotoxic T lymphocytes in peripheral blood mononuclear cells and SIV-specific antibodies in cervicovaginal secretions at the time of challenge was associated with resistance to pathogenic SIV infection after vaginal challenge. These results suggest that protection from sexual transmission of HIV may be possible by effectively stimulating both humoral and cellular antiviral immunity in the systemic and genital mucosal immune compartments. 相似文献
10.
Identification of viral determinants of macrophage tropism for simian immunodeficiency virus SIVmac. 总被引:3,自引:18,他引:3 下载免费PDF全文
B Banapour M L Marthas R A Ramos B L Lohman R E Unger M B Gardner N C Pedersen P A Luciw 《Journal of virology》1991,65(11):5798-5805
Simian immunodeficiency virus (SIV), a lymphocytopathic lentivirus, induces an AIDS-like disease in rhesus macaques (Macaca mulatta). A pathogenic molecular clone of rhesus macaque SIV (SIVmac), SIVmac-239, replicates and induces cytopathology in T lymphocytes but is restricted for replication in macrophages. In contrast, a nonpathogenic molecular clone of SIVmac, SIVmac-1A11, replicates and induces syncytia (multinucleated giant cells) in cultures of both T lymphocytes and macrophages. SIVmac-1A11 does not cause disease in macaques. To map the viral determinants of macrophage tropism, reciprocal recombinant genomes were constructed between molecular clones of SIVmac-239 and SIVmac-1A11. Infectious recombinant viruses were rescued by transfection of cloned viral genomes into permissive lymphoid cells. Analysis of one pair of reciprocal recombinants revealed that an internal 6.2-kb DNA fragment of SIVmac-1A11 was necessary and sufficient for both syncytium formation and efficient replication in macrophages. This region includes the coding sequences for a portion of the gag gene, all of the pol, vif, vpr, and vpx genes, the first coding exons of tat and rev, and the external env glycoprotein gp130. Thus, the transmembrane glycoprotein of env, the nef gene, the second coding exons of tat and rev, and the long terminal repeats are not essential for in vitro macrophage tropism. Analysis of additional recombinants revealed that syncytium formation, but not virus production, was controlled by a 1.4-kb viral DNA fragment in SIVmac-1A11 encoding only the external env glycoprotein gp130. Thus, gp130 env of SIVmac-1A11 is necessary for entry of virus into macrophages but is not sufficient for a complete viral replication cycle in this cell type. We therefore conclude that gp130 env and one or more genetic elements (exclusive of the long terminal repeats, transmembrane glycoprotein of env, and second coding exons of tat and rev, and nef) are essential for a complete replication cycle of SIVmac in rhesus macaque macrophages. 相似文献
11.
Neutralizing antibodies modulate replication of simian immunodeficiency virus SIVmac in primary macaque macrophages. 下载免费PDF全文
M F McEntee M C Zink M G Anderson H Farzadegan R J Adams K A Kent E J Stott J E Clements O Narayan 《Journal of virology》1992,66(10):6200-6203
Cultured macaque macrophages are permissive for the replication of SIVmac251, and inoculation with virus is followed by the production of viral p27. Neutralizing macaque polyclonal and murine monoclonal antibodies preincubated with the virus prevented infection but did not prevent cytopathic virus replication when added more than 3 days after inoculation with virus. However, application of the neutralizing antibodies to macrophages 24 h after inoculation with virus resulted in sustained, low-level production of viral antigen. Cell lysates and individual macrophages from treated cultures contained less viral protein by Western blot (immunoblot) and immunocytochemistry than untreated controls. In situ hybridization and polymerase chain reaction procedures for detecting and estimating relative amounts of viral RNA and DNA showed that both viral nucleic acids failed to increase beyond the levels obtained before the addition of neutralizing antibodies. The data suggest that macrophages may need to be infected with a minimum threshold of virus particles in order to reach their full potential for virus replication and that their exposure to neutralizing antibodies prior to reaching this threshold resulted in limited virus replication. 相似文献
12.
The high-frequency major histocompatibility complex class I allele Mamu-B*17 is associated with control of simian immunodeficiency virus SIVmac239 replication 下载免费PDF全文
Yant LJ Friedrich TC Johnson RC May GE Maness NJ Enz AM Lifson JD O'Connor DH Carrington M Watkins DI 《Journal of virology》2006,80(10):5074-5077
Particular HLA alleles are associated with reduced human immunodeficiency virus replication. It has been difficult, however, to characterize the immune correlates of viral control. An analysis of the influence of major histocompatibility complex class I alleles on viral control in 181 simian immunodeficiency virus SIVmac239-infected rhesus macaques revealed that Mamu-B(*)17 was associated with a 26-fold reduction in plasma virus concentrations (P<0.001). Mamu-B(*)17 was also enriched in a group of animals that controlled viral replication by 1,000-fold [corrected] Even after accounting for this group, Mamu-B(*)17 was associated with an eightfold reduction in plasma virus concentrations (P<0.001). Mamu-B(*)17-positive macaques could, therefore, facilitate our understanding of the correlates of viral control. 相似文献
13.
Expression of the major histocompatibility complex class I molecule Mamu-A*01 is associated with control of simian immunodeficiency virus SIVmac239 replication 下载免费PDF全文
Mothé BR Weinfurter J Wang C Rehrauer W Wilson N Allen TM Allison DB Watkins DI 《Journal of virology》2003,77(4):2736-2740
Several HLA alleles are associated with attenuated human immunodeficiency virus disease progression. We explored the relationship between the expression of particular major histocompatibility complex (MHC) class I alleles and viremia in simian immunodeficiency virus SIV(mac)239-infected macaques. Of the common MHC class I alleles, animals that expressed Mamu-A*01 exhibited the best control of viral replication. 相似文献
14.
Pathogenic conversion of live attenuated simian immunodeficiency virus vaccines is associated with expression of truncated Nef 下载免费PDF全文
Rhesus macaques infected with simian immunodeficiency virus (SIV) containing either a large nef deletion (SIVmac239Delta(152)nef) or interleukin-2 in place of nef developed high virus loads and progressed to simian AIDS. Viruses recovered from both juvenile and neonatal macaques with disease produced a novel truncated Nef protein, tNef. Viruses recovered from juvenile macaques infected with serially passaged virus expressing tNef exhibited a pathogenic phenotype. These findings demonstrated strong selective pressure to restore expression of a truncated Nef protein, and this reversion was linked to increased pathogenic potential in live attenuated SIV vaccines. 相似文献
15.
Genescà M Rourke T Li J Bost K Chohan B McChesney MB Miller CJ 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(7):4732-4740
HIV-specific CD8+ T cells that secrete multiple cytokines in response to Ag stimulation are associated with the control of virus replication during chronic HIV infection. To determine whether the presence of polyfunctional CD8+ T cell responses distinguishes protected and unprotected monkeys in a live attenuated lentivirus model, SIV Gag peptide-specific CD8+ T cell responses of simian HIV (SHIV) 89.6-vaccinated, SIVmac239-challenged rhesus macaques were compared in two monkeys that controlled challenge virus replication and two that did not. The ratio of Bcl-2+ Gag-specific CD8+ T cells to caspase-3+ Gag-specific CD8+ T cells was higher in the vaccinated-protected animals compared with unprotected monkeys. In addition, polyfunctional SIV-specific CD8+ T cells were consistently detected through 12 wk postchallenge in the protected animals but not in the unprotected animals. In the unprotected monkeys, there was an increased frequency of CD8+ T cells expressing markers associated with effector memory T cells. Further, there was increased annexin V expression in central memory T cells of the unprotected animals before challenge. Thus, monkeys that control viral replication after live attenuated SHIV infection have polyfunctional SIV-specific CD8+ T cells with an increased survival potential. Importantly, the differences in the nature of the SIV-specific CD8+ T cell response in the protected and unprotected animals are present during acute stages postchallenge, before different antigenic levels are established. Thus, the polyfunctional capacity and increased survival potential of CD8+ SIV-specific T cells may account for live attenuated, SHIV89.6-mediated protection from uncontrolled SIV replication. 相似文献
16.
Retroviral Gag proteins contain short late-domain motifs that recruit cellular ESCRT pathway proteins to facilitate virus budding. ALIX-binding late domains often contain the core consensus sequence YPX(n)L (where X(n) can vary in sequence and length). However, some simian immunodeficiency virus (SIV) Gag proteins lack this consensus sequence, yet still bind ALIX. We mapped divergent, ALIX-binding late domains within the p6(Gag) proteins of SIV(mac239) ((40)SREKPYKEVTEDLLHLNSLF(59)) and SIV(agmTan-1) ((24)AAGAYDPARKLLEQYAKK(41)). Crystal structures revealed that anchoring tyrosines (in lightface) and nearby hydrophobic residues (underlined) contact the ALIX V domain, revealing how lentiviruses employ a diverse family of late-domain sequences to bind ALIX and promote virus budding. 相似文献
17.
Sato S Yuste E Lauer WA Chang EH Morgan JS Bixby JG Lifson JD Desrosiers RC Johnson WE 《Journal of virology》2008,82(19):9739-9752
Here, we describe the evolution of antigenic escape variants in a rhesus macaque that developed unusually high neutralizing antibody titers to SIVmac239. By 42 weeks postinfection, 50% neutralization of SIVmac239 was achieved with plasma dilutions of 1:1,000. Testing of purified immunoglobulin confirmed that the neutralizing activity was antibody mediated. Despite the potency of the neutralizing antibody response, the animal displayed a typical viral load profile and progressed to terminal AIDS with a normal time course. Viral envelope sequences from week 16 and week 42 plasma contained an excess of nonsynonymous substitutions, predominantly in V1 and V4, including individual sites with ratios of nonsynonymous to synonymous substitution rates (dN/dS) highly suggestive of strong positive selection. Recombinant viruses encoding envelope sequences isolated from these time points remained resistant to neutralization by all longitudinal plasma samples, revealing the failure of the animal to mount secondary responses to the escaped variants. Substitutions at two sites with significant dN/dS values, one in V1 and one in V4, were independently sufficient to confer nearly complete resistance to neutralization. Substitutions at three additional sites, one in V4 and two in gp41, conferred moderate to high levels of resistance when tested individually. All the amino acid changes leading to escape resulted from single nucleotide substitutions. The observation that antigenic escape resulted from individual, single amino acid replacements at sites well separated in current structural models of Env indicates that the virus can utilize multiple independent pathways to rapidly achieve similar levels of resistance. 相似文献
18.
Control of simian immunodeficiency virus SIVmac239 is not predicted by inheritance of Mamu-B*17-containing haplotypes 下载免费PDF全文
It is well established that host genetics, especially major histocompatibility complex (MHC) genes, are important determinants of human immunodeficiency virus disease progression. Studies with simian immunodeficiency virus (SIV)-infected Indian rhesus macaques have associated Mamu-B*17 with control of virus replication. Using microsatellite haplotyping of the 5-Mb MHC region, we compared disease progression among SIVmac239-infected Indian rhesus macaques that possess Mamu-B*17-containing MHC haplotypes that are identical by descent. We discovered that SIV-infected animals possessing identical Mamu-B*17-containing haplotypes had widely divergent disease courses. Our results demonstrate that the inheritance of a particular Mamu-B*17-containing haplotype is not sufficient to predict SIV disease outcome. 相似文献
19.
The role of the simian immunodeficiency virus (SIV) nef gene in viral replication was investigated in several tissue culture systems. SIVmac1A11 is a molecularly cloned virus which replicates in both peripheral blood mononuclear cells (PBMC) and macrophages, although no disease is observed in infected rhesus macaques. In this report, we demonstrate that SIVmac1A11 contains a full open reading frame for nef which specifies a 37-kDa protein. To investigate the effects of nef on viral replication, a 70-bp deletion was introduced into the nef gene of SIVmac1A11. Analysis of infected cell extracts by immunoblotting revealed that both SIVmac1A11 and nef deletion virus SIVmac1A11 delta nef produced the same viral proteins, except that Nef was absent in the mutant virus. The deletion mutation did not affect viral replication in PBMC, in monocyte-derived and alveolar macrophages obtained from rhesus macaques, and in human cell lines HUT-78 and CEMx-174. In addition, SIVmac1A11 and SIVmac1A11 delta nef exhibited similar patterns of cytopathologic changes and ultrastructural appearances in infected cells. SIVmac1A11 and SIVmac1A11 delta nef did not infect human tumor macrophage cell line U937, GCT, THP-1, or HL-60 cells, although virus was produced after these cells were transfected with either wild-type or nef mutant viral DNA. Similar levels of virus were recovered from U937 and THP-1 cells transfected with mutant and parental proviral DNAs. In transient expression assays in a T-cell line and a macrophage line, the nef protein of SIVmac1A11 did not significantly suppress or enhance expression of the chloramphenicol acetyltransferase reporter gene linked to the SIVmac long terminal repeat. Thus, abrogation of nef did not affect several in vitro properties of SIVmac1A11, including patterns of viral infection in rhesus PBMC, rhesus macrophages, or human T-cell lines. 相似文献
20.
Loffredo JT Bean AT Beal DR León EJ May GE Piaskowski SM Furlott JR Reed J Musani SK Rakasz EG Friedrich TC Wilson NA Allison DB Watkins DI 《Journal of virology》2008,82(4):1723-1738
Certain major histocompatibility complex (MHC) class I alleles are strongly associated with control of human immunodeficiency virus and simian immunodeficiency virus (SIV). CD8(+) T cells specific for epitopes restricted by these molecules may be particularly effective. Understanding how CD8(+) T cells contribute to control of viral replication should yield important insights for vaccine design. We have recently identified an Indian rhesus macaque MHC class I allele, Mamu-B*08, associated with elite control and low plasma viremia after infection with the pathogenic isolate SIVmac239. Here, we infected four Mamu-B*08-positive macaques with SIVmac239 to investigate why some of these macaques control viral replication. Three of the four macaques controlled SIVmac239 replication with plasma virus concentrations below 20,000 viral RNA copies/ml at 20 weeks postinfection; two of four macaques were elite controllers (ECs). Interestingly, two of the four macaques preserved their CD4(+) memory T lymphocytes during peak viremia, and all four recovered their CD4(+) memory T lymphocytes in the chronic phase of infection. Mamu-B*08-restricted CD8(+) T-cell responses dominated the acute phase and accounted for 23.3% to 59.6% of the total SIV-specific immune responses. Additionally, the ECs mounted strong and broad CD8(+) T-cell responses against several epitopes in Vif and Nef. Mamu-B*08-specific CD8(+) T cells accounted for the majority of mutations in the virus at 18 weeks postinfection. Interestingly, patterns of viral variation in Nef differed between the ECs and the other two macaques. Natural containment of AIDS virus replication in Mamu-B*08-positive macaques may, therefore, be related to a combination of immunodominance and viral escape from CD8(+) T-cell responses. 相似文献