首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
邻苯二酚2,3-双加氧酶的结构和功能研究进展   总被引:2,自引:0,他引:2  
邻苯二酚是所有芳香族化合物降解过程中的重要的中间产物,其降解有邻位和间位裂解两条裂解途径,分别由邻苯二酚1,2-双加氧酶(C12O)和邻苯二酚2,3-双加氧酶(C23O)催化裂解。本综述简要介绍了邻苯二酚2,3-双加氧酶的结构和功能的研究进展。  相似文献   

2.
Chen Y-  Liu H  Zhu L-  Jin Y- 《Mikrobiologiia》2004,73(6):802-809
Catechol 2,3-dioxygenase (C23O), one of extradiol-type dioxygenases cleaving the aromatic C-C bond at the meta-position of dihydroxylated aromatic substrates, catalyzes the conversion of catechol to 2-hydroxymuconic semialdehyde. Based on curing experiment, PCR identification, and Southern hybridization, the gene responsible for C23O was localized on a 3.5-kb EcoRI/BamHI fragment and cloned from P. aeruginosa ZD 4-3 able to degrade both single and bicyclic compounds via the meta-cleavage pathway. A complete nucleotide sequence analysis of the C23O revealed that it had one ORF, which showed a strong amino acid sequence similarity to the known C23Os of mesophilic gram-negative bacteria. The alignment analysis indicated that distinct difference existed between the C23O in this study and the 2,3-dihydroxybiphenyl dioxygenases cleaving bicyclic aromatic compounds. The heterogenous expression of the pheB gene in Escherichia coli BL21(DE3) demonstrated that this C23O possessed a meta-cleavage activity.  相似文献   

3.
J. Hollender  J. Hopp    W. Dott 《Applied microbiology》1997,63(11):4567-4572
Comamonas testosteroni JH5 used 4-chlorophenol (4-CP) as its sole source of energy and carbon up to a concentration of 1.8 mM, accompanied by the stoichiometric release of chloride. The degradation of 4-CP mixed with the isomeric 2-CP by resting cells led to the accumulation of 3-chlorocatechol (3-CC), which inactivated the catechol 2,3-dioxygenase. As a result, further 4-CP breakdown was inhibited and 4-CC accumulated as a metabolite. In the crude extract of 4-CP-grown cells, catechol 1,2-dioxygenase and muconate cycloisomerase activities were not detected, whereas the activities of catechol 2,3-dioxygenase, 2-hydroxymuconic semialdehyde dehydrogenase, 2-hydroxymuconic semialdehyde hydrolase, and 2-oxopent-4-enoate hydratase were detected. These enzymes of the meta cleavage pathway showed activity with 4-CC and with 5-chloro-2-hydroxymuconic semialdehyde. The activities of the dioxygenase and semialdehyde dehydrogenase were constitutive. Two key metabolites of the meta cleavage pathway, the meta cleavage product (5-chloro-2-hydroxymuconic semialdehyde) and 5-chloro-2-hydroxymuconic acid, were detected. Thus, our previous postulation that C. testosteroni JH5 uses the meta cleavage pathway for the complete mineralization of 4-CP was confirmed.  相似文献   

4.
M Bartilson  V Shingler 《Gene》1989,85(1):233-238
Pseudomonas CF600 degrades phenol and some of its methylated derivatives via a plasmid-encoded catabolic pathway. The catechol 2,3-dioxygenase (C23O) enzyme of this pathway catalyses the conversion of catechol to 2-hydroxymuconic semialdehyde. We have determined the nucleotide (nt) sequence of the dmpB structural gene for this enzyme, and expressed and identified its polypeptide product in Escherichia coli. The xylE gene of TOL plasmid pWWO and the nahH gene of plasmid NAH7 encode analogous C23O enzymes. Comparison of these three genes shows homology of 78-81% on the nt level and 83-87% homology on the amino acid level.  相似文献   

5.
Catechol 2,3-dioxygenase (C23O), a key enzyme in the meta-cleavage pathway of catechol metabolism, was purified from cell extract of recombinant Escherichia coli JM109 harboring the C23O gene (atdB) cloned from an aniline-degrading bacterium Acinetobacter sp. YAA. SDS–polyacrylamide gel electrophoresis and gel filtration chromatography analysis suggested that the enzyme (AtdB) has a molecular mass of 35 kDa as a monomer and forms a tetrameric structure. It showed relative meta-cleavage activities for the following catechols tested: catechol (100%), 3-methylcatechol (19%), 4-methylcatechol (57%), 4-chlorocatechol (46%), and 2,3-dihydroxybiphenyl (5%). To elevate the activity, a DNA self-shuffling experiment was carried out using the atdB gene. One mutant enzyme, named AtdBE286K, was obtained. It had one amino acid substitution, E286K, and showed 2.4-fold higher C23O activity than the wild-type enzyme at 100 μM. Kinetic analysis of these enzymes revealed that the wild-type enzyme suffered from substrate inhibition at >2 μM, while the mutant enzyme loosened substrate inhibition.  相似文献   

6.
The metabolism of L-tryptophan by isolated liver cells prepared from control, adrenalectomized, glucocorticoid-treated, acute-diabetic, chronic-diabetic and insulin-treated chronic-diabetic rats was studied. Liver cells from adrenalectomized rats metabolized tryptophan at rates comparable with the minimum diurnal rates of controls, but different from rates determined for cells from control rats 4h later. Administration of dexamethasone phosphate increased the activity of tryptophan 2,3-dioxygenase (EC 1.13.11.11) 7-8-fold, and the flux through the kynurenine pathway 3-4-fold, in cells from both control and adrenalectomized rats. Increases in flux through kynureninase (EC 3.7.1.3) and to acetyl-CoA can be explained in terms of increased substrate supply from tryptophan 2,3-dioxygenase. The metabolism of tryptophan was increased 3-fold in liver cells isolated from acutely (3 days) diabetic rats, with a 7-8-fold increase in the maximal activity of tryptophan 2,3-dioxygenase. The oxidation of tryptophan to CO2 and metabolites of the glutarate pathway increased 4-5-fold, consistent with an increase in picolinate carboxylase (EC 4.1.1.45) activity. Liver cells isolated from chronic (10 days) diabetic rats metabolized tryptophan at rates comparable with those of cells from acutely diabetic rats, but with a 50% decrease in the activity of tryptophan 2,3-dioxygenase. The proportion of flux from tryptophan 2,3-dioxygenase to acetyl-CoA, however, was increased by 50%; this was indicative of further increases in the activity of picolinate carboxylase. Administration of insulin partially reversed the effects of chronic diabetes on the activity of tryptophan 2,3-dioxygenase and flux through the kynurenine pathway, but had no effect on the increased activity of picolinate carboxylase. The role of tryptophan 2,3-dioxygenase in regulating the blood tryptophan concentration is discussed with reference to its sensitivity to the above conditions.  相似文献   

7.
Microbial communities on aerial plant leaves may contribute to the degradation of organic air pollutants such as phenol. Epiphytic bacteria capable of phenol degradation were isolated from the leaves of green ash trees grown at a site rich in airborne pollutants. Bacteria from these communities were subjected, in parallel, to serial enrichments with increasing concentrations of phenol and to direct plating followed by a colony autoradiography screen in the presence of radiolabeled phenol. Ten isolates capable of phenol mineralization were identified. Based on 16S rDNA sequence analysis, these isolates included members of the genera Acinetobacter, Alcaligenes, and Rhodococcus. The sequences of the genes encoding the large subunit of a multicomponent phenol hydroxylase (mPH) in these isolates indicated that the mPHs of the gram-negative isolates belonged to a single kinetic class, and that is one with a moderate affinity for phenol; this affinity was consistent with the predicted phenol levels in the phyllosphere. PCR amplification of genes for catechol 1,2-dioxygenase (C12O) and catechol 2,3-dioxygenase (C23O) in combination with a functional assay for C23O activity provided evidence that the gram-negative strains had the C12O−, but not the C23O−, phenol catabolic pathway. Similarly, the Rhodococcus isolates lacked C23O activity, although consensus primers to the C12O and C23O genes of Rhodococcus could not be identified. Collectively, these results demonstrate that these leaf surface communities contained several taxonomically distinct phenol-degrading bacteria that exhibited diversity in their mPH genes but little diversity in the catabolic pathways they employ for phenol degradation.  相似文献   

8.
9.
Pseudomonas putida strain BNF1 was isolated to degrade aromatic hydrocarbons efficiently and use phenol as a main carbon and energy source to support its growth. Catechol 2,3-dioxygenase was found to be the responsible key enzyme for the biodegradation of aromatic hydrocarbons. Catechol 2,3-dioxygenase gene was cloned from plasmid DNA of P. putida strain BNF1. The nucleotide base sequence of a 924 bp segment encoding the catechol 2,3-dioxygenase (C23O) was determined. This segment showed an open reading frame, which encoded a polypeptide of 307 amino acids. C23O gene was inserted into NotI-cut transposon vector pUT/mini-Tn5 (Kmr) to get a novel transposon vector pUT/mini-Tn5-C23O. With the helper plasmid PRK2013, the transposon vector pUT/mini-Tn5-C23O was introduced into one alkanes degrading strain Acinetobacter sp. BS3 by triparental conjugation, and then the C23O gene was integrated into the chromosome of Acinetobacter sp. BS3. And the recombinant BS3-C23O, which could express catechol 2,3-dioxygenase protein, was obtained. The recombinant BS3-C23O was able to degrade various aromatic hydrocarbons and n-alkanes. Broad substrate specificity, high enzyme activity, and the favorable stability suggest that the BS3-C23O was a potential candidate used for the biodegradation of crude oil.  相似文献   

10.
The participation of superoxide anion (O2-) in the intracellular indoleamine 2,3-dioxygenase activity was studied using the dispersed cell suspension of the rabbit small intestine. The dioxygenase activity was assayed by measuring [14C]formate released from DL-[ring-2-14C]tryptophan. The addition of diethyldiethiocarbamate, a superoxide dismutase inhibitor, markedly accelerated the intracellular dioxygenase activity while the superoxide dismutase activity decreased concomitantly. Furthermore, substrates of xanthine oxidase such as inosine, adenosine, and hypoxanthine also increased the dioxygenase activity in the cells, particularly in the presence of methylene blue. This increase was completely abolished by the addition of allopurinol, a specific inhibitor of xanthine oxidase. These results, taken together, indicate that the intracellular accumulation of O2- results in acceleration of the in situ dioxygenase activity, and that indoleamine 2,3-dioxygenase utilizes O2- in the isolated intestinal cells.  相似文献   

11.
Rhodococcus rhodochrous strain CTM degrades 2-methylaniline mainly via the meta-cleavage pathway. Conversion of the metabolite 3-methylcatechol was catalysed by an Mr 156,000 catechol 2,3-dioxygenase (C23OI) comprising four identical subunits of Mr 39,000. The corresponding gene was detected by using an oligonucleotide as a gene probe. This oligonucleotide was synthesized on the basis of a partial amino acid sequence obtained from the purified enzyme from R. rhodochrous. The structural gene of C23OI was located on a 3.5 kb BglII restriction fragment of plasmid pTC1. On the same restriction fragment the gene for a second catechol 2,3-dioxygenase, designated C23OII, was found. This gene coded for the synthesis of the Mr 40,000 polypeptide of the Mr 158,000 tetrameric C23OII. More precise mapping of the structural genes showed that the C23OI gene was located on a 1.2 kb BglII-SmaI fragment and the C23OII gene on the adjacent 1.15 kb SmaI fragment. Comprehensive substrate range analysis showed that C23OII accepted all the substrates that C23OI did, but additionally cleaved 2,3-dihydroxybiphenyl and catechols derived from phenylcarboxylic acids. C23OI exhibited highest activity towards methylcatechols, whereas C23OII cleaved unsubstituted catechol preferentially.  相似文献   

12.
The hybrid pathway for chlorobenzoate metabolism was studied in WR211 and WR216, which were derived from Pseudomonas sp. B13 by acquisition of TOL plasmid pWW0 from Pseudomonas putida mt-2. Chlorobenzoates are utilized readily by these strains when meta cleavage of chlorocatechols is suppressed. When WR211 utilizes 3-chlorobenzoate (3CB), the expression of catechol 2,3-dioxygenase (C23O) and the catabolic activities for chloroaromatics via the ortho pathway coexist as a consequence of inactivation of the meta cleavage activity by 3-chlorocatechol. Utilization of 4-chlorobenzoate (4CB) by WR216 presupposes the suppression of C23O by a spontaneous mutation in the structural gene, so that 4-chlorocatechol is not misrouted into the meta pathway. Such C23O- mutants were also selected when WR211 was grown continuously on 3CB. Our data explain why the phenotypic characters 3CB+ and Mtol+ (m-toluate) are compatible, whereas 4CB+ and Mtol+ are incompatible.  相似文献   

13.
A total of 39 phenol- and p-cresol-degraders isolated from the river water continuously polluted with phenolic compounds of oil shale leachate were studied. Species identification by BIOLOG GN analysis revealed 21 strains of Pseudomonas fluorescens (4, 8 and 9 of biotypes A, C and G, respectively), 12 of Pseudomonas mendocina, four of Pseudomonas putida biotype A1, one of Pseudomonas corrugata and one of Acinetobacter genospecies 15. Computer-assisted analysis of rep-PCR fingerprints clustered the strains into groups with good concordance with the BIOLOG GN data. Three main catabolic types of degradation of phenol and p-cresol were revealed. Type I, or meta-meta type (15 strains), was characterized by meta cleavage of catechol by catechol 2,3-dioxygenase (C23O) during the growth on phenol and p-cresol. These strains carried C23O genes which gave PCR products with specific xylE-gene primers. Type II, or ortho-ortho type (13 strains), was characterized by the degradation of phenol through ortho fission of catechol by catechol 1,2-dioxygenase (C12O) and p-cresol via ortho cleavage of protocatechuic acid by protocatechuate 3,4-dioxygenase (PC34O). These strains carried phenol monooxygenase gene which gave PCR products with pheA-gene primers. Type III, or meta-ortho type (11 strains), was characterized by the degradation of phenol by C23O and p-cresol via the protocatechuate ortho pathway by the induction of PC34O and this carried C23O genes which gave PCR products with C23O-gene primers, but not with specific xylE-gene primers. In type III strains phenol also induced the p-cresol protocatechuate pathway, as revealed by the induction of p-cresol methylhydroxylase. These results demonstrate multiplicity of catabolic types of degradation of phenol and p-cresol and the existence of characteristic assemblages of species and specific genotypes among the strains isolated from the polluted river water.  相似文献   

14.
Catechol 2,3-dioxygenase (C23O), a key enzyme in the meta-cleavage pathway of catechol metabolism, was purified from cell extract of recombinant Escherichia coli JM109 harboring the C23O gene (atdB) cloned from an aniline-degrading bacterium Acinetobacter sp. YAA. SDS-polyacrylamide gel electrophoresis and gel filtration chromatography analysis suggested that the enzyme (AtdB) has a molecular mass of 35 kDa as a monomer and forms a tetrameric structure. It showed relative meta-cleavage activities for the following catechols tested: catechol (100%), 3-methylcatechol (19%), 4-methylcatechol (57%), 4-chlorocatechol (46%), and 2,3-dihydroxybiphenyl (5%). To elevate the activity, a DNA self-shuffling experiment was carried out using the atdB gene. One mutant enzyme, named AtdBE286K, was obtained. It had one amino acid substitution, E286K, and showed 2.4-fold higher C23O activity than the wild-type enzyme at 100 microM. Kinetic analysis of these enzymes revealed that the wild-type enzyme suffered from substrate inhibition at >2 microM, while the mutant enzyme loosened substrate inhibition.  相似文献   

15.
Pseudomonas sp. S-47 is capable of degrading catechol and 4-chlorocatechol via the meta-cleavage pathway. XylTE products catalyze the dioxygenation of the aromatics. The xylT of the strain S-47 is located just upstream of the xylE gene. XylT is a typical chloroplast-type ferredoxin, which is characterized by 4 cystein residues that are located at positions 41, 46, 49, and 81. The chloroplast-type ferredoxin of Pseudomonas sp. S-47 exhibited a 98% identity with that of P. putida mt-2 (TOL plasmid) in the amino acid sequence, but only about a 40 to 60% identity with the corresponding enzymes from other organisms. We constructed two recombinant plasmids (pRES1 containing xylTE and pRES101 containing xylE without xylT) in order to examine the function of XylT for the reactivation of the catechol 2,3-dioxygenase (XylE) that is oxidized with hydrogen peroxide. The pRES1 that was treated with hydrogen peroxide was recovered in the catechol 2,3-dioxygenase (C23O) activity about 4 minutes after incubation, but the pRES101 showed no recovery. That means that the typical chloroplast-type ferredoxin (XylT) of Pseudomonas sp. S-47 is involved in the reactivation of the oxidized C23O in the dioxygenolytic cleavage of aromatic compounds.  相似文献   

16.
Catechol 2,3-dioxygenase from the meta-cleavage pathway encoded on the TOL plasmid of Pseudomonas putida (pWWO) was investigated by electron microscopy. Negatively stained samples of the purified catechol 2,3-dioxygenase revealed that the enzyme consists of four subunits arranged in a tetrahedral conformation. Monoclonal antibodies raised against catechol 2,3-dioxygenase showed highly specific reactions and were used to localize the enzyme in Escherichia coli (pAW31) and P. putida (pWWO), using the protein A-gold technique carried out as a post-embedding immunoelectron microscopy procedure. Our in situ labeling studies revealed a cytoplasmic location of the catechol 2,3-dioxygenase in both cell types.Abbreviations C23O Catechol 2,3-dioxygenase - 3MB 3 Methylbenzoate - AK1 Anti-C23O-IgG-antibody - G Gold particle  相似文献   

17.
The enzymes involved in the degradation of phenol by a new soil bacterium referred as Pseudomonas sp. strain phDV1 were characterized. The key enzyme catalyzing the second step in the phenol degradation meta-cleavage pathway, catechol 2,3-dioxygenase (C23O), was isolated using sucrose density centrifugation and anion exchange chromatography. The purified C23O was detected and identified by absorption spectroscopy and peptide mapping. Further, the Pseudomonas sp. strain phDV1 proteome was monitored under different growth substrate conditions, using glucose or phenol as sole carbon and energy source. Sucrose density centrifugation was used to collect and concentrate the cell fraction exhibiting C23O activity and to reduce the complexity of the total protein mixture. 1-DE Tricine PAGE electrophoresis separation in combination with MALDI-TOF MS was attempted for the identification of the proteins involved in the metabolic pathway. We found a different expression of 19 proteins depending on the growth substrate (phenol or glucose) and 10 were identified as enzymes involved in the phenol degradation.  相似文献   

18.
Pseudomonas sp. strain JS6 grows on a wide range of chloro- and methylaromatic substrates. The simultaneous degradation of these compounds is prevented in most previously studied isolates because the catabolic pathways are incompatible. The purpose of this study was to determine whether strain JS6 could degrade mixtures of chloro- and methyl-substituted aromatic compounds. Strain JS6 was maintained in a chemostat on a minimal medium with toluene or chlorobenzene as the sole carbon source, supplied via a syringe pump. Strain JS6 contained an active catechol 2,3-dioxygenase when grown in the presence of chloroaromatic compounds; however, in cell extracts, this enzyme was strongly inhibited by 3-chlorocatechol. When cells grown to steady state on toluene were exposed to 50% toluene-50% chlorobenzene, 3-chlorocatechol and 3-methylcatechol accumulated in the medium and the cell density decreased. After 3 h, the enzyme activities of the modified ortho ring fission pathway were induced, the metabolites disappeared, and the cell density returned to previous levels. In cell extracts, 3-methylcatechol was degraded by both catechol 1,2- and catechol 2,3-dioxygenase. Strain JS62, a catechol 2,3-dioxygenase mutant of JS6, grew on toluene, and ring cleavage of 3-methylcatechol was catalyzed by catechol 1,2-dioxygenase. The transient metabolite 2-methyllactone was identified in chlorobenzene-grown JS6 cultures exposed to toluene. These results indicate that strain JS6 can degrade mixtures of chloro- and methylaromatic compounds by means of a modified ortho ring fission pathway.  相似文献   

19.
Liu Y  Zhang J  Zhang Z 《Biodegradation》2004,15(3):205-212
A bacterial strain ZL5, capable of growing on phenanthrene as a sole carbon and energy source but not naphthalene, was isolated by selective enrichment from crude-oil-contaminated soil of Liaohe Oil Field in China. The isolate was identified as a Sphingomonas sp. strain on the basis of 16S ribosomal DNA analysis. Strain ZL5 grown on phenanthrene exhibited catechol 2,3-dioxygenase (C23O) activity but no catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, protocatechuate 3,4-dioxygenase and protocatechuate 4,5-dioxygenase activities. This suggests that the mode of cleavage of phenanthrene by strain ZL5 could be meta via the intermediate catechol, which is different from the protocatechuate way of other two bacteria, Alcaligenes faecelis AFK2 and Nocardioides sp. strain KP7, also capable of growing on phenanthrene but not naphthalene. A resident plasmid (approximately 60 kb in size), designated as pZL, was detected from strain ZL5. Curing the plasmid with mitomycin C and transferring the plasmid to E. coli revealed that pZL was responsible for polycyclic aromatic hydrocarbons degradation. The C23O gene located on plasmid pZL was cloned and overexpressed in E. coli JM109(DE3). The ring-fission activity of the purified C23O from the recombinant E. coli on dihydroxylated aromatics was in order of catechol > 4-methylcatechol > 3-methylcatechol > 4-chlorocatechol > 3,4-dihydroxyphenanthrene > 3-chlorocatechol.  相似文献   

20.
Pseudomonas sp. strain JS6 grows on a wide range of chloro- and methylaromatic substrates. The simultaneous degradation of these compounds is prevented in most previously studied isolates because the catabolic pathways are incompatible. The purpose of this study was to determine whether strain JS6 could degrade mixtures of chloro- and methyl-substituted aromatic compounds. Strain JS6 was maintained in a chemostat on a minimal medium with toluene or chlorobenzene as the sole carbon source, supplied via a syringe pump. Strain JS6 contained an active catechol 2,3-dioxygenase when grown in the presence of chloroaromatic compounds; however, in cell extracts, this enzyme was strongly inhibited by 3-chlorocatechol. When cells grown to steady state on toluene were exposed to 50% toluene-50% chlorobenzene, 3-chlorocatechol and 3-methylcatechol accumulated in the medium and the cell density decreased. After 3 h, the enzyme activities of the modified ortho ring fission pathway were induced, the metabolites disappeared, and the cell density returned to previous levels. In cell extracts, 3-methylcatechol was degraded by both catechol 1,2- and catechol 2,3-dioxygenase. Strain JS62, a catechol 2,3-dioxygenase mutant of JS6, grew on toluene, and ring cleavage of 3-methylcatechol was catalyzed by catechol 1,2-dioxygenase. The transient metabolite 2-methyllactone was identified in chlorobenzene-grown JS6 cultures exposed to toluene. These results indicate that strain JS6 can degrade mixtures of chloro- and methylaromatic compounds by means of a modified ortho ring fission pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号