首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of acute omission of extracellular Na+ on pancreatic B-cell function were studied in mouse islets, using choline and lithium salts as impermeant and permeant substitutes, respectively. In the absence of glucose, choline substitution for Na+ hyperpolarized the B-cell membrane, inhibited 86Rb+ and 45Ca2+ efflux, but did not affect insulin release. In contrast, Li+ substitution for Na+ depolarized the B-cell membrane and caused a Ca2+-independent, transient acceleration of 45Ca2+ efflux and insulin release. Na+ replacement by choline in the presence of 10 mM glucose and 2.5 mM Ca2+ again rapidly hyperpolarized the B-cell membrane. This hyperpolarization was then followed by a phase of depolarization with continuous spike activity, before long slow waves of the membrane potential resumed. Under these conditions, 86Rb+ efflux first decreased before accelerating, concomitantly with marked and parallel increases in 45Ca2+ efflux and insulin release. In the absence of Ca2+, 45Ca2+ and 86Rb+ efflux were inhibited and insulin release was unaffected by choline substitution for Na+. Na+ replacement by Li+ in the presence of 10 mM glucose rapidly depolarized the B-cell membrane, caused an intense continuous spike activity, and accelerated 45Ca2+ efflux, 86Rb+ efflux and insulin release. In the absence of extracellular Ca2+, Li+ still caused a rapid but transient increase in 45Ca2+ and 86Rb+ efflux and in insulin release. Although not indispensable for insulin release, Na+ plays an important regulatory role in stimulus-secretion coupling by modulating, among others, membrane potential and ionic fluxes in B-cells.  相似文献   

2.
Cs+ decreases K+ permeability in nerve and muscle cells. Its effects on the pancreatic B-cell function were studied with mouse islets. In the presence of 3 mM glucose, Cs+ substitution for K+ steadily inhibited 86Rb+ efflux and hyperpolarized the B-cell membrane. Addition of Cs+ to a K+-medium also inhibited 86Rb+ efflux, but depolarized the B-cell membrane. None of these changes altered insulin release. Substitution of Cs+ for K+ in a medium containing 10 mM glucose caused a Ca2+-dependent stimulation of insulin release and 45Ca2+ efflux, produced an initial fall and a secondary rise in 86Rb+ efflux and augmented the electrical activity in B-cells. Reintroduction of K+ to the medium was followed by a marked and transient inhibition of insulin release, that was blocked by ouabain and accompanied by an inhibition of 45Ca2+ and 86Rb+ efflux and by a hyperpolarization of the B-cell membrane. Addition of Cs+ to a K+ medium containing 10 mM glucose stimulated insulin release, 45Ca2+ efflux and 86Rb+ efflux. It also increased the electrical activity in B-cells. In the absence of Ca2+, however, Cs+ addition decreased the rate of 86Rb+ efflux. The effects of Cs+ on the B-cell function may be explained by its ability to decrease K+ permeability of the plasma membrane, by its inability to activate the sodium pump, and by a third unidentified effect likely brought about by the accumulation of intracellular Cs+.  相似文献   

3.
In pancreatic islets of fetal rats the effect of glucose (3 and 16.7 mM), glyceraldehyde (10 mM), leucine (20 mM), b-BCH (20 mM), tolbutamide (100 micrograms/ml), glibenclamide (0.5 and 5.0 micrograms/ml) arginine (20 mM), KCl (20 mM) and theophylline (2.5 mM) on 45Ca2+ net uptake and secretion of insulin was studied. All compounds tested failed to stimulate 45Ca2+ net uptake. However, in contrast to glucose and glyceraldehyde, leucine, b-BCH, tolbutamide, glibenclamide, arginine, KCl and theophylline significantly stimulated release of insulin. This effect could not be inhibited by the calcium antagonist verapamil (20 microM). Elevation of the glucose concentration from 3 to 5.6 mM did not alter 86Rb+ efflux of fetal rat islets but inhibited 86Rb+ efflux of adult rat islets. Stimulation of 86Rb+ efflux with tolbutamide (100 micrograms/ml), leucine (20 mM) or b-BCH (20 mM) in the presence of 3 mM glucose was also ineffective in fetal rat islets. Our data suggest that stimulation of calcium uptake via the voltage dependent calcium channel is not possible in the fetal state. They also provide evidence that stimulators of insulin release which are thought not to act through their metabolism, initiate insulin secretion from fetal islets by a mechanism which is different from stimulation of calcium influx.  相似文献   

4.
The mechanisms whereby activation of the cyclic AMP-dependent protein kinase A or the Ca2+-phospholipid-dependent protein kinase C amplifies insulin release were studied with mouse islets. Forskolin and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) were used to stimulate adenylate cyclase and protein kinase C respectively. The sulphonylurea tolbutamide was used to initiate insulin release in the presence of 3 mM-glucose. Tolbutamide alone inhibited 86Rb+ efflux, depolarized beta-cell membrane, triggered electrical activity, accelerated 45Ca2+ influx and efflux and stimulated insulin release. Forskolin alone only slightly inhibited 86Rb+ efflux, but markedly increased the effects of tolbutamide on electrical activity, 45Ca2+ influx and efflux, and insulin release. In the absence of Ca2+, only the inhibition of 86Rb+ efflux persisted. TPA (100 nM) alone slightly accelerated 45Ca2+ efflux and insulin release without affecting 45Ca2+ influx or beta-cell membrane potential. It increased the effects of tolbutamide on 45Ca2+ efflux and insulin release without changing 86Rb+ efflux, 45Ca2+ influx or electrical activity. Omission of extracellular Ca2+ suppressed all effects due to the combination of TPA and tolbutamide, but not those of TPA alone. Though ineffective alone, 10 nM-TPA amplified the releasing action of tolbutamide without affecting its ionic and electrical effects. In conclusion, the two amplification systems of insulin release involve at least partially distinct mechanisms. The cyclic AMP but not the protein kinase C system initiating signal (Ca2+ influx) triggered by the primary secretagogue.  相似文献   

5.
Muscarinic stimulation of pancreatic B-cells markedly amplifies insulin secretion through complex mechanisms which involve changes in membrane potential and ionic fluxes. In this study, normal mouse islets were used to evaluate the role of Cl- ions in these effects of acetylcholine (ACh). Whatever the concentration of glucose, the rate of 36Cl- efflux from islet cells was unaffected by ACh. Replacement of Cl- by impermeant isethionate in a medium containing 15 mM glucose did not affect, or only slightly decreased, the ability of ACh to depolarize the B-cell membrane and increase electrical activity, to accelerate 45Ca2+ and 86Rb+ efflux from islet cells, and to amplify insulin release. In the absence of extracellular Ca2+, a high concentration of ACh (100 microM) mobilized intracellular Ca2+ and caused a transient release of insulin and a sustained acceleration of 86Rb+ efflux. None of these effects was affected by Cl- omission or by addition of furosemide, a blocker of the Na+, K+, 2Cl- cotransport. Isethionate substitution for Cl- in a medium containing a nonstimulatory concentration of glucose (3 mM) barely reduced the depolarization of B-cells by ACh, but inhibited the concomitant increase in 86Rb+ efflux. We have no explanation for the latter effect that was not mimicked by furosemide. In conclusion, ACh stimulation of pancreatic B-cells, unlike that of exocrine acinar cells, is largely independent of Cl- and is insensitive to furosemide. The acceleration of ionic fluxes produced by ACh does not involve the Na+, K+, 2Cl- cotransport system.  相似文献   

6.
In rat pancreatic islets the effects of cholecystokinin-8 (CCK8) on glucose-mediated insulin release, 45Ca2+ net uptake, 45Ca2+ efflux, 86Rb+ efflux, cAMP- and cGMP levels were studied. In the presence of a substimulatory glucose concentration (3 mM) CCK8 concentrations of up to 1 microM had no effect on insulin release, but CCK8 at 10 nM potentiated the stimulatory effect of glucose (11.1 mM). 10 nM CCK8 enhanced glucose-stimulated 45Ca2+ net uptake but was ineffective at substimulatory glucose levels. CCK8 had no effect on cAMP and cGMP levels in the presence of 11.1 mM glucose, CCK8 increased 86Rb+ (a measure of K+) in the presence of both 3 and 11.1 mM glucose. This effect was abolished when Ca2+ was omitted from the perifusion medium. CCK8 did not alter glucose (11.1 mM)-stimulated 45Ca2+ efflux rate. These data indicate that (1) CCK8 potentiates glucose-stimulated insulin secretion possibly via an effect on Ca2+ uptake, 2) by affecting Ca2+ uptake, CCK8 enhances K+ efflux, and 3) CCK8 does not mediate its effect via cAMP or cGMP. With respect to 86Rb+ efflux the mechanism of CCK8 action appears to be different from that of glucose. When the mechanism of CCK action on islets is compared with that on exocrine pancreas (data from others) there are similarities (importance of Ca2+ uptake and non-importance of cAMP and cGMP).  相似文献   

7.
Addition of pyruvate to rat islets perifused in the presence of 5 mM-glucose elicited an immediate pronounced biphasic stimulation of insulin secretion. At lower concentrations of glucose (2.5 mM), only the initial, transient, phase of secretion was observed. Pyruvate inhibited 45Ca2+ efflux from islets at 2.5 mM-glucose and stimulated efflux at 5 mM-glucose. Pyruvate also decreased the rate of efflux of 86Rb+ from perifused islets. A marked stimulation of insulin secretion and 45Ca2+ efflux rate was observed in response to 3-fluoropyruvate and 3-bromopyruvate, compounds which inhibited oxidative metabolism of [14C]glucose and [14C]pyruvate in islets. The stimulatory effects of 3-fluoro- and 3-bromo-pyruvate were associated with enhanced 86Rb+ efflux. Withdrawal of pyruvate or halogenated analogues from the perfusate resulted in a secondary stimulation of insulin release, 45Ca2+ efflux and, to some extent, 86Rb+ efflux rates. Pyruvate, 3-fluoropyruvate and 3-bromopyruvate were all effective in promoting intracellular acidification and a rise in cytosolic Ca2+ concentration, as judged from fluorescence measurements in HIT-T15 cells loaded with 2',7'-biscarboxyethyl-5'(6')-carboxyfluorescein and Quin 2 respectively. It is proposed that oxidative metabolism of pyruvate is not a prerequisite for its stimulatory actions on pancreatic beta-cells. An alternative mechanism of activation by pyruvate and its halogenated derivatives is proposed, based on the possible electrogenic flux of these anions across the cell membrane.  相似文献   

8.
The effect of tetracaine on 45Ca efflux, cytoplasmic Ca2+ concentration [Ca2+]i, and insulin secretion in isolated pancreatic islets and beta-cells was studied. In the absence of external Ca2+, tetracaine (0.1-2.0 mM) increased the 45Ca efflux from isolated islets in a dose-dependentOFF efflux caused by 50 mM K+ or by the association of carbachol (0.2 mM) and 50 mM K+. Tetracaine permanently increased the [Ca2+]i in isolated beta-cells in Ca2+-free medium enriched with 2.8 mM glucose and 25 microM D-600 (methoxiverapamil). This effect was also observed in the presence of 10 mM caffeine or 1 microM thapsigargin. In the presence of 16.7 mM glucose, tetracaine transiently increased the insulin secretion from islets perfused in the absence and presence of external Ca2+. These data indicate that tetracaine mobilises Ca2+ from a thapsigargin-insensitive store and stimulates insulin secretion in the absence of extracellular Ca2+. The increase in 45Ca efflux caused by high concentrations of K+ and by carbachol indicates that tetracaine did not interfere with a cation or inositol triphosphate sensitive Ca2+ pool in beta-cells.  相似文献   

9.
The interaction between Ba2+, furosemide and D-glucose on 86Rb+ fluxes in ob/ob mouse islets was investigated. Ba2+ (2 mM) significantly reduced the ouabain-resistant 86Rb+ influx, without affecting the ouabain-sensitive influx. D-Glucose (20 mM) reduced the 86Rb+ influx in the absence of Ba2+ (2 mM) but not in the presence of the cation. Furosemide, an inhibitor of Na+, K+, Cl- co-transport, reduced the 86Rb+ influx and the effect was partly additive to the effect of 2 mM Ba2+. When the islets were preincubated with Ba2+ (2 mM) the specific effect of 1 mM furosemide on the 86Rb+ influx was reduced, whereas, in acute experiments, Ba2+ (2 mM) did not affect the specific effect of furosemide on 86Rb+ influx. 86Rb+ efflux from preloaded islets was significantly reduced by 2 mM Ba2+ and during the first 5 min of ion efflux the effect of the combination of 2 mM Ba2+ and 1 mM furosemide was stronger than the effect of Ba2+ alone. The data show that Ba2+ reduces 86Rb+ fluxes in the beta-cells and suggest that this is mainly mediated by inhibition of K+ channels in the beta-cell plasma membrane. Long-term exposure to Ba2+ may also reduce the activity of the Na+, K+, Cl- co-transport system. The effect of Ba2+ on K+ channels may help to explain the stimulatory effect on insulin release in the absence of nutrient secretagogues.  相似文献   

10.
In the presence of 7 mM glucose, dibutyryl cyclic AMP induced electrical activity in otherwise silent mouse pancreatic B cells. This activity was blocked by cobalt or D600, two inhibitors of Ca2+ influx. Under similar conditions, dibutyryl cyclic AMP stimulated 45Ca2+ influx (5-min uptake) in islet cells; this effect was abolished by cobalt and partially inhibited by D600. The nucleotide also accelerated 86Rb+ efflux from preloaded islets, did not modify glucose utilization and markedly increased insulin release. Its effects on release were inhibited by cobalt, but not by D600. These results show that insulin release can occur without electrical activity in B cells and suggest that cyclic AMP not only mobilizes intracellular Ca, but also facilitates Ca2+ influx in insulin secreting cells.  相似文献   

11.
The mechanisms by which arginine-vasopressin (AVP) affects pancreatic B-cell function were studied in normal mouse islets. AVP produced a dose-dependent (0.1-1000 nM; EC50 approximately 1-2 nM) amplification of glucose-induced insulin release. This amplification was of slow onset and reversibility. AVP was ineffective when the concentration of glucose was less than 7 mM, but was still very effective in 30 mM glucose. The increase in insulin release produced by AVP was accompanied by small accelerations of 86Rb and 45Ca efflux from islet cells. Omission of extracellular Ca2+ accentuated the effect of AVP on 86Rb efflux, attenuated that on 45Ca efflux, and abolished that on release. Under no condition did AVP inhibit 86Rb efflux. AVP did not significantly affect cAMP levels, but increased inositol phosphate levels in islet cells, even in the absence of extracellular Ca2+. AVP did not affect the membrane potential in unstimulated B-cells and augmented glucose-induced electrical activity only slightly. This was not due to a direct action on ATP-sensitive K+ channels as revealed by patch-clamp recordings (whole cell and outside-out patches). In conclusion, AVP is not an initiator of insulin release, but it potently amplifies glucose-induced insulin release in normal mouse B-cells. This effect involves a stimulation of phosphoinositide metabolism, and presumably an activation of protein kinase C, rather than a change in cAMP levels or a direct control of the membrane potential.  相似文献   

12.
Maitotoxin (MTX) provoked a dose-dependent increase in both 45Ca efflux and insulin release from rat pancreatic islets perifused in the presence or absence of glucose, provided that Ca2+ was present in the perifusate. The stimulatory effect of MTX on 45Ca outflow was enhanced by CGP 28392. The toxin did not reduce 86Rb outflow and 86Rb inflow. It is suggested that the secretory response to MTX is mediated by direct activation of voltage-dependent Ca2+ channels.  相似文献   

13.
Monensin, a univalent ionophore, is a carboxylic acid produced by Streptomyces cinnamonensis. It will complex various alkali-metal ions, but most readily binds Na+. Because of interest in the possible role of Na+ in the regulation of insulin secretion, we examined its effects on several aspects of the metabolism of isolated rat islets of Langerhans. The ionophore inhibited glucose-stimulated insulin release in a concentration-dependent manner, completely inhibiting secretion evoked by 20 mM-glucose at concentrations as low as 0.1 microM in static incubations. In perifusion experiments, both phases of insulin release were equally affected. Monensin (0.1 microM) had no significant effect on glucose oxidation as measured by the generation of 14CO2 from [14C]glucose. Monensin increased the rate of 22Na+ efflux from preloaded islets and net 22Na+ uptake over 30 min, in the absence of changes in islet volume or extracellular space. The ionophore increased the Rb+/K+ permeability of islet cells, as shown by its inhibition of 86Rb+ retention and stimulation of 86Rb+ efflux. At 0.1 microM, monensin abolished glucose-stimulated 45Ca2+ uptake by islets during 5 min incubations, and stimulated 45Ca2+ efflux from preloaded islets perifused with Ca2+-free medium, even in the complete absence of extracellular Na+. Studies of the uptake of 14C-labelled 5,5-dimethyloxazolidine-2,4-dione showed that 0.1 microM-monensin increased net intracellular pH from 7.05 to 7.13. 7 Monensin has widespread, complex, effects on the secretory responses and ion handling by the B cells, which are difficult to interpret in terms solely of actions as a Na+ ionophore.  相似文献   

14.
A possible interaction between Cd2+ and Ca2+ as a component in Cd2+-induced insulin release was investigated in beta cells isolated from obese hyperglycemic mice. The glucose stimulated Cd2+ uptake was dependent on the concentration of sugar. This uptake was sigmoidal with a Km for glucose of about 5 mM and was suppressed by both 50 microM of the voltage-activated Ca2+ channel blocker D-600 and 12 mM Mg2+. In the presence of 8 mM glucose 5 microM Cd2+ evoked a prompt and sustained stimulatory response, corresponding to about 3-fold of the insulin release obtained in the absence of the ion. Whereas 5 microM Cd2+ was without effect on the glucose-stimulated 45Ca efflux in the presence of extracellular Ca2+, 40 microM inhibited it. At a concentration of 5 microM, Cd2+ had no effect on the resting membrane potential or the depolarization evoked by either glucose or K+. In the absence of extracellular Ca2+ there was only a modest stimulation of 45Ca efflux by 5 microM Cd2+. Studies of the ambient free Ca2+ concentration maintained by permeabilized cells also indicate that 5 microM Cd2+ do not mobilize intracellularly bound Ca2+ to any great extent. On the contrary, at this concentration, Cd2+ even suppressed inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release. The present study suggests that Cd2+ stimulates insulin release by a direct mechanism which does not involve an increase in cytoplasmic free Ca2+ concentration.  相似文献   

15.
The effects of vanadate (Na3VO4) on pancreatic B-cell function were studied in normal mouse islets. Vanadate did not affect basal insulin release but potentiated the effect of 7-30 mM glucose at concentrations of 0.1-1 mM. This effect was progressive and slowly reversible. It was abolished by omission of extracellular Ca2+ but unaffected by blockers of adrenergic or muscarinic receptors. Comparison of the changes in membrane potential, 86Rb efflux and 45Ca efflux that vanadate and ouabain produced in B-cells made it possible to exclude the hypothesis that vanadate increases insulin release by blocking the sodium pump. Vanadate was also without effect on cAMP levels. On the other hand, it markedly changed the characteristics of the Ca(2+)-dependent electrical activity and of the oscillations of cytoplasmic Ca2+ recorded in B-cells stimulated by 15 mM glucose. In the steady state, Ca2+ influx was increased by vanadate, and this resulted in a rise in cytoplasmic Ca2+. The exact mechanisms underlying these changes could not be established but a blockade of K channels was excluded. In the presence of LiCl, vanadate markedly increased inositol phosphate levels in islet cells. This effect was attenuated but not suppressed by omission of Ca2+. A small increase in inositol bisphosphate was still produced by vanadate in the absence of LiCl. These results suggest that vanadate both stimulates phosphoinositide breakdown and inhibits inositol phosphate degradation. In conclusion, vanadate does not induce insulin release, but markedly potentiates the stimulation by glucose. This property is not due to an inhibition of the sodium pump or to a rise in cAMP concentration. It results from a complex interplay between changes in B-cell membrane potential, phosphoinositide metabolism and Ca2+ handling.  相似文献   

16.
The effects of three types of amino acids on 45Ca2+ fluxes in rat pancreatic islets have been compared. Alanine, a non-insulinotropic neutral amino acid, transported with Na+, increased 45Ca2+ efflux in the presence or in the absence of extracellular Ca2+, but not in the absence of Na+. Its effects in Na+-solutions were practically abolished by 7 mM-glucose. Alanine slightly stimulated 45Ca2+ influx (5 min uptake) only when Na+ was present. Two insulinotropic cationic amino acids (arginine and lysine) triggered similar changes in 45Ca2+ efflux. They accelerated the efflux in the presence of Ca2+ and inhibited the efflux in a Ca2+-free medium, whether glucose was present or not. In an Na+-free Ca2+-medium, arginine and lysine markedly accelerated 45Ca2+ efflux, but this effect was suppressed by 7 mM-glucose. Arginine stimulated 45Ca2+ influx irrespective of the presence or absence of glucose and Na+. Leucine, a neutral insulinotropic amino acid well metabolized by islet cells, inhibited 45Ca2+ efflux from the islets in a Ca2+-free medium; this effect was potentiated by glutamine. In the presence of Ca2+ and Na+, leucine was ineffective alone, but triggered a marked increase in 45Ca2+ efflux when combined with glutamine. In an Na+-free Ca2+-medium, leucine accelerated 45Ca2+ efflux to the same extent with or without glutamine. Leucine also stimulated 45Ca2+ influx in the presence or in the absence of Na+, but its effects were potentiated by glutamine only in the presence of Na+. The results show that amino acids of various types cause distinct changes in 45Ca2+ fluxes in pancreatic islets. Certain of these changes involve an Na+-mediated mobilization of cellular Ca2+ from sequestering sites where glucose appears to exert an opposite effect.  相似文献   

17.
La3+ was used to study the involvement of Ca2+ in insulin secretion in beta-cell-rich pancreatic islets micro-dissected from non-inbred ob/ob mice. Ultrastructural studies revealed that the localization of La3+ was entirely restricted to the exterior of the cells. Consistent with a membrane action, exposure to La3+ failed to affect glucose oxidation and either the sucrose space or the general ultrastructure of the islets. In contrast, La3+ had marked effects on insulin release and 45Ca fluxes. Exposure to La3+ resulted in pronounced inhibition of insulin release irrespective of the presence or absence of Ca2+, 3-isobutyl-1-methylxanthine or glucose. Perifusion experiments revealed that the inhibitory action was prompt, sustained and readily reversible. Removal of La3+ was associated with a subsequent prolonged stimulatory phase of insulin release even in medium deficient in Ca2+. This action could not be attributed to an increase in cyclic AMP, but was potentiated by 3-isobutyl-1-methylxanthine and abolished by L-adrenaline. La3+ displaced 45Ca from superficially located binding sites and inhibited the uptake and efflux of 45Ca. The stimulatory and inhibitory actions of glucose on 45Ca efflux were also abolished in the presence of 2 mM-La3+ Removal of La3+ was associated with the preferential mobilization of 45Ca incorporated in response to glucose. The results indicate that binding of La3+ to superficial sites in the plasma membrane leads to inhibition of insulin release by suppression of transmembrane Ca2+ fluxes. It is suggested that accumulation of Ca2+ in the cytoplasm accounts for the stimulation of insulin release seen after removal of La3+ from inhibitory binding sites in the beta-cell plasma membrane.  相似文献   

18.
Rat islets were used to compare the mechanisms whereby adenosine and adrenaline inhibit insulin release. Adenosine (1 microM-2.5 mM) and its analogue N6(-)-phenylisopropyladenosine (L-PIA) (1 nM-10 microM) caused a concentration-dependent but incomplete (45-60%) inhibition of glucose-stimulated release. L-PIA was more potent than D-PIA [the N6(+) analogue], but much less than adrenaline, which caused nearly complete inhibition (85% at 0.1 microM). 8-Phenyltheophylline prevented the inhibitory effect of L-PIA and 50 microM-adenosine, but not that of 500 microM-adenosine or of adrenaline. In contrast, yohimbine selectively prevented the inhibition by adrenaline. Adenosine and L-PIA thus appear to exert their effects by activating membrane A1 receptors, whereas adrenaline acts on alpha 2-adrenergic receptors. Adenosine, L-PIA and adrenaline slightly inhibited 45Ca2+ efflux, 86Rb+ efflux and 45Ca2+ influx in glucose-stimulated islets. The inhibition of insulin release by adenosine or L-PIA was totally prevented by dibutyryl cyclic AMP, but was only attenuated when adenylate cyclase was activated by forskolin or when protein kinase C was stimulated by a phorbol ester. Adrenaline, on the other hand, inhibited release under these conditions. It is concluded that inhibition of adenylate cyclase, rather than direct changes in membrane K+ and Ca2+ permeabilities, underlies the inhibition of insulin release induced by activation of A1-receptors. The more complete inhibition mediated by alpha 2-adrenergic receptors appears to result from a second mechanism not triggered by adenosine.  相似文献   

19.
In isolated rat pancreatic islets maintained at a physiologic glucose concentration (5.6 mM) the effect of glucose on parameters which are known to be involved in the insulin secretion coupling such as NADPH, reduced glutathione (GSH), 86Rb+ efflux, and 45Ca++ net uptake were investigated. The insulinotropic effect of 16.7 mM glucose was decreased with the period of culturing during the first 14 days being significant after 2 days though in control experiments both protein content and ATP levels per islet were not affected and insulin content was only slightly decreased. Both NADPH and GSH decreased with time of culture. 86Rb+ efflux which is decreased by enhancing the glucose concentration from 3 to 5.6 mM in freshly isolated islets was not affected by culturing whatsoever, even not after 14 days of culture when there was no longer any insulin responsiveness to glucose. The 45Ca++ net uptake was decreased during culturing. The data indicate (1) that the diminished glucose-stimulated release of insulin during culturing is not due to cell loss or simple energy disturbances, (2) that more likely it is the result of a diminished 45Ca++ net uptake as a consequence of the inability of islet cells to maintain proper NADPH and GSH levels, and (3) that potassium (86Rb+) efflux may not be related to changes of NADPH and GSH.  相似文献   

20.
The transport of Cd2+ and the effects of this ion on secretory activity and metabolism were investigated in beta cell-rich pancreatic islets isolated from obese-hyperglycemic mice. The endogenous cadmium content was 2.5 mumol/kg dry wt. After 60 min of incubation in a Ca2+-deficient medium containing 2.5 microM Cd2+ the islet cadmium content increased to 0.18 mmol/kg dry wt. This uptake was reduced by approx. 50% in the presence of 1.28 mM Ca2+. The incorporation of Cd2+ was stimulated either by raising the concentration of glucose to 20 mM or K+ to 30.9 mM. Whereas D-600 suppressed the stimulatory effect of glucose by 75%, it completely abolished that obtained with high K+. Only about 40% of the incorporated cadmium was mobilized during 60 min of incubation in a Cd2+-free medium containing 0.5 mM EGTA. It was possible to demonstrate a glucose-induced suppression of Cd2+ efflux into a Ca2+-deficient medium. Concentrations of Cd2+ up to 2.5 microM did not affect glucose oxidation, whereas, there was a progressive inhibition when the Cd2+ concentration was above 10 microM. Basal insulin release was stimulated by 5 microM Cd2+. At a concentration of 160 microM, Cd2+ did not affect basal insulin release but significantly inhibited the secretory response to glucose. It is concluded that the beta cell uptake of Cd2+ is facilitated by the activation of voltage-dependent Ca2+ channels. Apparently, the accumulation of Cd2+ mimics that of Ca2+ also involving a component of intracellular sequestration promoted by glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号