首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Cytosolic acyl-CoA-binding proteins (ACBPs) are small proteins (ca. 10 kDa) that bind long-chain acyl-CoAs and are involved in the storage and intracellular transport of acyl-CoAs. Previously, we have characterized an Arabidopsis thaliana cDNA encoding a novel membrane-associated ACBP, designated ACBP1, demonstrating the existence of a new form of ACBP in plants (M.-L. Chye, Plant Mol. Biol. 38 (1998) 827–838). ACBP1 likely participates in intermembrane lipid transport from the ER to the plasma membrane, where it could maintain a membrane-associated acyl pool (Chye et al., Plant J. 18 (1999) 205–214). Here we report the isolation of cDNAs encoding ACBP2 (M r 38 479) that shows conservation in the acyl-CoA-binding domain to previously reported ACBPs, and contains ankyrin repeats at its carboxy terminus. These repeats, which likely mediate protein-protein interactions, could constitute a potential docking site in ACBP2 for an enzyme that uses acyl-CoAs as substrate. In vitro binding assays on recombinant (His)6-ACBP2 expressed in Escherichia coli show that it binds 14[C]palmitoyl-CoA preferentially to 14[C]oleoyl-CoA. Analysis of the acyl-CoA-binding domain in ACBP2 was carried out by in vitro mutagenesis. Mutant forms of recombinant (His)6-ACBP2 with single amino acid substitutions at conserved residues within the acyl-CoA-binding domain were less effective in binding 14[C]palmitoyl-CoA. Northern blot analysis showed that the 1.6 kb ACBP2 mRNA, like that of ACBP1, is expressed in all plant organs. Analysis of the ACBP2 promoter revealed that, like the ACBP1 promoter, it lacks a TATA box suggesting the possibility of a housekeeping function for ACBP2 in plant lipid metabolism.  相似文献   

3.
In Arabidopsis thaliana, six genes encode acyl-CoA-binding proteins (ACBPs) that show conservation of an acyl-CoA-binding domain. These ACBPs display varying affinities for acyl-CoA esters, suggesting of different cellular roles. We have recently reported that three members (ACBP4, ACBP5 and ACBP6) are subcellularly localized to the cytosol by biochemical fractionation, confocal microscopy of transgenic Arabidopsis expressing autofluorescence-tagged fusions and immuno-electron microscopy using ACBP-specific antibodies. In this study, we observed by Northern blot analysis that ACBP4 and ACBP5 mRNAs in rosettes were up-regulated by light and dampened-off in darkness, mimicking FAD7 which encodes omega-3-fatty acid desaturase, an enzyme involved in plastidial lipid metabolism. Results from in vitro binding assays indicate that recombinant ACBP4 and ACBP5 proteins bind [14C]oleoyl-CoA esters better than recombinant ACBP6, suggesting that light-regulated ACBP4 and ACBP5 encode cytosolic ACBPs that are potential candidates for the intracellular transport of oleoyl-CoA ester exported from the chloroplast to the endoplasmic reticulum for the biosynthesis of non-plastidial membrane lipids. Nonetheless, His-tagged ACBP4 and ACBP5 resemble ACBP6 in their ability to bind phosphatidylcholine suggesting that all three ACBPs are available for the intracellular transfer of phosphatidylcholine.  相似文献   

4.
Acyl-CoA binding proteins (ACBPs) are small (ca. 10 kDa) highly-conserved cytosolic proteins that bind long-chain acyl-CoAs. A novel cDNA encoding ACBP1, a predicted membrane protein of 24.1 kDa with an acyl-CoA binding protein domain at its carboxy terminus, was cloned from Arabidopsis thaliana. At this domain, ACBP1 showed 47% amino acid identity to Brassica ACBP and 35% to 40% amino acid identity to yeast, Drosophila, bovine and human ACBPs. Recombinant (His)6-ACBP1 fusion protein was expressed in Escherichia coli and was shown to bind 14[C]oleoyl-CoA. A hydrophobic domain, absent in the 10 kDa ACBPs, was located at the amino terminus of ACBP1. Using antipeptide polyclonal antibodies in western blot analysis, ACBP1 was shown to be a membrane-associated glycosylated protein with an apparent molecular mass of 33 kDa. The ACBP1 protein was also shown to accumulate predominantly in siliques and was localized to the seed within the silique. These results suggest that the biological role of ACBP1 is related to lipid metabolism in the seed, presumably in which acyl-CoA esters are involved. Northern blot analysis showed that the 1.4 kb ACBP1 mRNA was expressed in silique, root, stem, leaf and flower. Results from Southern blot analysis of genomic DNA suggest the presence of at least two genes encoding ACBPs in Arabidopsis.  相似文献   

5.
6.
7.
8.
In Arabidopsis thaliana, acyl-CoA-binding proteins (ACBPs) are encoded by six genes, and they display varying affinities for acyl-CoA esters. Recombinant ACBP4 and ACBP5 have been shown to bind oleoyl-CoA esters in vitro. In this study, the subcellular localizations of ACBP4 and ACBP5 were determined by biochemical fractionation followed by western blot analyses using anti-ACBP4 and anti-ACBP5 antibodies and immuno-electron microscopy. Confocal microscopy of autofluorescence-tagged ACBP4 and ACBP5, expressed transiently in onion epidermal cells and in transgenic Arabidopsis, confirmed their expression in the cytosol. Taken together, ACBP4 and ACBP5 are available in the cytosol to bind and transfer cytosolic oleoyl-CoA esters. Lipid profile analysis further revealed that an acbp4 knockout mutant showed decreases in membrane lipids (digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol) while acbp4-complemented lines attained levels similar to wild type, suggesting that ACBP4 plays a role in the biosynthesis of membrane lipids including galactolipids and phospholipids.  相似文献   

9.
In our recent paper in Plant Physiology and Biochemistry, we reported that the mRNAs encoding Arabidopsis thaliana cytosolic acyl-CoA-binding proteins, ACBP4 and ACBP5, but not ACBP6, are modulated by light/dark cycling. The pattern of circadian-regulated expression in ACBP4 and ACBP5 mRNAs resembles that of FAD7 which encodes omega-3-fatty acid desaturase, an enzyme involved in plastidial fatty acid biosynthesis. Recombinant ACBP4 and ACBP5 proteins were observed to bind oleoyl-CoA ester comparably better than recombinant ACBP6, suggesting that ACBP4 and ACBP5 are promising candidates in the trafficking of oleoyl-CoA from the plastids to the endoplasmic reticulum (ER) for the biosynthesis of non-plastidial membrane lipids. By western blot analyses using the ACBP4 and ACBP5-specific antibodies, we show herein that the levels of ACBP4 and ACBP5 proteins peak at the end of the light period, further demonstrating that they, like their corresponding mRNAs, are tightly controlled by light to satisfy demands of lipids in plant cells.Key words: acyl-CoA-binding protein, ACBP4, ACBP5, lipid trafficking, phosphatidylcholine-binding  相似文献   

10.
Cytosolic acyl-CoA-binding proteins (ACBP) bind long-chain acyl-CoAs and act as intracellular acyl-CoA transporters and maintain acyl-CoA pools. Arabidopsis thaliana ACBP2 shows conservation at the acyl-CoA-binding domain to cytosolic ACBPs but is distinct by the presence of an N-terminal transmembrane domain and C-terminal ankyrin repeats. The function of the acyl-CoA-binding domain in ACBP2 has been confirmed by site-directed mutagenesis and four conserved residues crucial for palmitoyl-CoA binding have been identified. Results from ACBP2:GFP fusions transiently expressed in onion epidermal cells have demonstrated that the transmembrane domain functions in plasma membrane targeting, suggesting that ACBP2 transfers acyl-CoA esters to this membrane. In this study, we investigated the significance of its ankyrin repeats in mediating protein-protein interactions by yeast two-hybrid analysis and in vitro protein-binding assays; we showed that ACBP2 interacts with the A. thaliana ethylene-responsive element-binding protein AtEBP via its ankyrin repeats. This interaction was lacking in yeast two-hybrid analysis upon removal of the ankyrin repeats. When the subcellular localizations of ACBP2 and AtEBP were further investigated using autofluorescent protein fusions in transient expression by agroinfiltration of tobacco leaves, the DsRed:ACBP2 fusion protein was localized to the plasma membrane while the GFP:AtEBP fusion protein was targeted to the nucleus and plasma membrane. Co-expression of DsRed:ACBP2 and GFP:AtEBP showed a common localization of both proteins at the plasma membrane, suggesting that ACBP2 likely interacts with AtEBP at the plasma membrane.  相似文献   

11.
Plant lipoxygenases (LOXs) oxygenate linoleic and linolenic acids, creating hydroperoxy derivatives, and from these, jasmonates and other oxylipins are derived. Despite the importance of oxylipin signaling, its activation mechanism remains largely unknown. Here, we show that soybean ACYL-COA-BINDING PROTEIN3 (ACBP3) and ACBP4, two Class II acyl-CoA-binding proteins, suppressed activity of the vegetative LOX homolog VLXB by sequestering it at the endoplasmic reticulum. The ACBP4–VLXB interaction was facilitated by linoleoyl-CoA and linolenoyl-CoA, which competed with phosphatidic acid (PA) for ACBP4 binding. In salt-stressed roots, alternative splicing produced ACBP variants incapable of VLXB interaction. Overexpression of the variants enhanced LOX activity and salt tolerance in Arabidopsis and soybean hairy roots, whereas overexpressors of the native forms exhibited reciprocal phenotypes. Consistently, the differential alternative splicing pattern in two soybean genotypes coincided with their difference in salt-induced lipid peroxidation. Salt-treated soybean roots were enriched in C32:0-PA species that showed high affinity to Class II ACBPs. We conclude that PA signaling and alternative splicing suppress ligand-dependent interaction of Class II ACBPs with VLXB, thereby triggering lipid peroxidation during salt stress. Hence, our findings unveil a dual mechanism that initiates the onset of oxylipin signaling in the salinity response.

Phosphatidic acid signaling and alternative splicing inhibit ligand-dependent interaction of Class II acyl-CoA-binding proteins with lipoxygenase, triggering oxylipin signaling in salt-stressed soybean.  相似文献   

12.
ACBPs are implicated in acyl-CoA trafficking in many eukaryotes and some prokaryotes. Six genes encode proteins designated as AtACBP1-AtACBP6 in the Arabidopsis thaliana ACBP family. These ACBPs are conserved in the acyl-CoA-binding domain, but vary in size from 92 amino acids (10.4 kDa) to 668 amino acids (73.1 kDa), and are subcellularly localised to different compartments in plant cells. Results from in vitro binding assays show that their corresponding recombinant proteins exhibit differential binding affinities to acyl-CoA esters and phospholipids, implying that these ACBPs may have non-redundant biological functions in vivo. By using knockout/downregulated and overexpression lines of Arabidopsis ACBPs, recent investigations have revealed that in addition to their proposed roles in phospholipid metabolism, these ACBPs can influence plant development including early embryogenesis and leaf senescence, as well as plant stress responses including heavy metal resistance, oxidative stress, freezing tolerance and pathogen resistance. In this review, recent progress on the biochemical and functional analyses of Arabidopsis ACBPs, their links to metabolic/signalling pathways, and their potential applications in development of stress tolerance are discussed.  相似文献   

13.
 Two acyl-CoA-binding-protein (ACBP) isoforms were isolated from proembryogenic masses of Digitalis lanata Ehrh. by column chromatography and preparative HPLC. The ACBPs had molecular masses of 9926 and 9997 Da, respectively. Partial sequence data indicated high similarity to each other and to ACBPs of other plant species such as Ricinus communis, Brassica napus and Arabidopsis thaliana. The isolated ACBPs bound palmitoyl-CoA with high affinity as determined by isoelectric-point shift. Received: 29 May 1999 / Accepted: 28 August 1999  相似文献   

14.
Acyl-CoA binding protein (ACBP) and fatty acid binding protein (FABP) are intracellular transporters of activated and free fatty acids, respectively. Unlike other tissues with active lipid metabolism, armadillo Harderian gland contains much more ACBP than FABP. To characterize armadillo ACBP structure and binding properties, we produced it in Escherichia coli and carried out detailed fluorescence and circular dichroism spectroscopy studies. The K(D) for palmitoyl-CoA, measured directly by fluorescence and rotatory power, was 34+/-12 and 75+/-39 nM, respectively. The structure of armadillo ACBP appears to be very similar to that of bovine and rat liver ACBPs.  相似文献   

15.
In Arabidopsis thaliana , a family of six genes encodes acyl-CoA-binding proteins (ACBPs) that show conservation at the acyl-CoA-binding domain. They are the membrane-associated ACBP1 and ACBP2, extracellularly targeted ACBP3, kelch-motif-containing ACBP4 and ACBP5, and 10-kDa ACBP6. The acyl-CoA domain in each of ACBP1 to ACBP6 binds long-chain acyl-CoA esters in vitro , suggestive of possible roles in plant lipid metabolism. We addressed here the use of Arabidopsis ACBPs in conferring lead [Pb(II)] tolerance in transgenic plants because the 10-kDa human ACBP has been identified as a molecular target for Pb(II) in vivo . We investigated the effect of Pb(II) stress on the expression of genes encoding Arabidopsis ACBP1, ACBP2 and ACBP6. We showed that the expression of ACBP1 and ACBP2 , but not ACBP6 , in root is induced by Pb(II) nitrate treatment. In vitro Pb(II)-binding assays indicated that ACBP1 binds Pb(II) comparatively better, and ACBP1 was therefore selected for further investigations. When grown on Pb(II)-containing medium, transgenic Arabidopsis lines overexpressing ACBP1 were more tolerant to Pb(II)-induced stress than the wild type. Accumulation of Pb(II) in shoots of the ACBP1 -overepxressing plants was significantly higher than wild type. The acbp1 mutant showed enhanced sensitivity to Pb(II) when germinated and grown in the presence of Pb(II) nitrate and tolerance was restored upon complementation using an ACBP1 cDNA. Our results suggest that ACBP1 is involved in mediating Pb(II) tolerance in Arabidopsis with accumulation of Pb(II) in shoots. Such observations of Pb(II) accumulation, rather than Pb(II) extrusion, in the ACBP1 -overexpressing plants implicate possible use of ACBP1 in Pb(II) phytoremediation.  相似文献   

16.
17.
In our recent paper in the Plant Journal, we reported that Arabidopsis thaliana lysophospholipase 2 (lysoPL2) binds acyl-CoA-binding protein 2 (ACBP2) to mediate cadmium [Cd(II)] tolerance in transgenic Arabidopsis. ACBP2 contains ankyrin repeats that have been previously shown to mediate protein-protein interactions with an ethylene-responsive element binding protein (AtEBP) and a farnesylated protein 6 (AtFP6). Transgenic Arabidopsis ACBP2-overexpressors, lysoPL2-overexpressors and AtFP6-overexpressors all display enhanced Cd(II) tolerance, in comparison to wild type, suggesting that ACBP2 and its protein partners work together to mediate Cd(II) tolerance. Given that recombinant ACBP2 and AtFP6 can independently bind Cd(II) in vitro, they may be able to participate in Cd(II) translocation. The binding of recombinant ACBP2 to [14C]linoleoyl-CoA and [14C]linolenoyl-CoA implies its role in phospholipid repair. In conclusion, ACBP2 can mediate tolerance to Cd(II)-induced oxidative stress by interacting with two protein partners, AtFP6 and lysoPL2. Observations that ACBP2 also binds lysophosphatidylcholine (lysoPC) in vitro and that recombinant lysoPL2 degrades lysoPC, further confirm an interactive role for ACBP2 and lysoPL2 in overcoming Cd(II)-induced stress.Key words: acyl-CoA-binding protein, cadmium, hydrogen peroxide, lysophospholipase, oxidative stressAcyl-CoA-binding proteins (ACBP1 to ACBP6) are encoded by a multigene family in Arabidopsis thaliana.1 These ACBP proteins are well studied in Arabidopsis in comparison to other organisms,14 and are located in various subcellular compartments.1 Plasma membranelocalized ACBP1 and ACBP2 contain ankyrin repeats that have been shown to function in protein-protein interactions.5,6 ACBP1 and ACBP2 which share 76.9% amino acid identity also confer tolerance in transgenic Arabidopsis to lead [Pb(II)] and Cd(II), respectively.1,5,7 Since recombinant ACBP1 and ACBP2 bind linolenoyl-CoA and linoleoyl-CoA in vitro, they may possibly be involved in phospholipid repair in response to heavy metal stress at the plasma membrane.5,7 In contrast, ACBP3 is an extracellularly-localized protein8 while ACBP4, ACBP5 and ACBP6 are localized to cytosol.9,10 ACBP1 and ACBP6 have recently been shown to be involved in freezing stress.9,11 ACBP4 and ACBP5 bind oleoyl-CoA ester and their mRNA expressions are lightregulated.12,13 Besides acyl-CoA esters, some ACBPs also bind phospholipids.9,11,13 To investigate the biological function of ACBP2, we have proceeded to establish its interactors at the ankyrin repeats, including AtFP6,5 AtEBP6 and now lysoPL2 in the Plant Journal paper. While the significance in the interaction of ACBP2 with AtEBP awaits further investigations, some parallels can be drawn between those of ACBP2 with AtFP6 and with lysoPL2.  相似文献   

18.
19.
Lysophospholipids are intermediates of phospholipid metabolism resulting from stress and lysophospholipases detoxify lysophosphatidylcholine (lysoPC). Many lysophospholipases have been characterized in mammals and bacteria, but few have been reported from plants. Arabidopsis thaliana lysophospholipase 2 (lysoPL2) (At1g52760) was identified as a protein interactor of acyl‐CoA‐binding protein 2 (ACBP2) in yeast two‐hybrid analysis and co‐immunoprecipitation assays. BLASTP analysis indicated that lysoPL2 showed ~35% amino acid identity to the lysoPL1 family. Co‐localization of autofluorescence‐tagged lysoPL2 and ACBP2 by confocal microscopy in agroinfiltrated tobacco suggests the plasma membrane as a site for their subcellular interaction. LysoPL2 mRNA was induced by zinc (Zn) and hydrogen peroxide (H2O2), and lysoPL2 knockout mutants showed enhanced sensitivity to Zn and H2O2 in comparison to wild type. LysoPL2‐overexpressing Arabidopsis was more tolerant to H2O2 and cadmium (Cd) than wild type, suggesting involvement of lysoPL2 in phospholipid repair following lipid peroxidation arising from metal‐induced stress. Lipid hydroperoxide (LOOH) contents in ACBP2‐overexpressors and lysoPL2‐overexpressors after Cd‐treatment were lower than wild type, indicating that ACBP2 and lysoPL2 confer protection during oxidative stress. A role for lysoPL2 in lysoPC detoxification was demonstrated when recombinant lysoPL2 was observed to degrade lysoPC in vitro. Filter‐binding assays and Lipidex competition assays showed that (His)6‐ACBP2 binds lysoPC in vitro. Binding was disrupted in a (His)6‐ACBP2 derivative lacking the acyl‐CoA‐binding domain, confirming that this domain confers lysoPC binding. These results suggest that ACBP2 can bind both lysoPC and lysoPL2 to promote the degradation of lysoPC in response to Cd‐induced oxidative stress.  相似文献   

20.
Acyl-CoA esters inhibit the plastidial glucose 6-phosphate (Glc-6-P) transporter and the adenylate transporter; the IC(50) values for the inhibition by oleoyl-CoA (18:1-CoA) are 200-400 nM and 1-2 microM respectively. The inhibition of either of these processes significantly reduces the flux of carbon from Glc-6-P or from acetate into long-chain fatty acids. The effect is dependent on the acyl chain length, e.g. lauryl-CoA is less inhibitory than oleoyl-CoA, causing 34 and 68% inhibition respectively of Glc-6-P uptake after 30 s. The inhibition of Glc-6-P and ATP transport is alleviated by addition of an equivalent concentration of acyl-CoA-binding protein (ACBP) or BSA. Acyl-CoAs do not inhibit pyruvate or glucose transporters. The endogenous concentrations of acyl-CoAs and ACBP are similar during embryo maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号