首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Changes in hepatopancreas, muscle and gill tissue nitrogen metabolic profiles were studied in a penaeid prawn, Penaeus indicus, following its exposure to sublethal concentrations of methylparathion, carbaryl and aldrin. In all the insecticide exposed prawn tissues, Ammonia levels were significantly increased and a shift in the nitrogen metabolism towards the synthesis of urea and glutamine was observed. Inhibition of glutamate oxidation to ammonia and alpha-ketoglutarate by glutamate dehydrogenase suggests a mechanism whereby hyperammonemia is reduced by minimizing the addition of further ammonia to the already existing elevated ammonia pool. Increased alanine and aspartate aminotransferases demonstrates the onset of gluconeogenesis. Mechanisms to detoxify the ammonia by enhancing the synthesis of urea and glutamine at the cellular level was observed in the selected tissues pave way for the survivability of prawns in insecticide polluted environs.  相似文献   

2.
Changes in oxidative metabolism of hepatopancreas and muscle tissues of penaeid prawn, Metapenaeus monoceros was studied, following its exposure to selected organophosphorous insecticides phosphamidon, dichlorovos and methylparathion. The OPI are found to inhibit the activity levels of acetylcholinesterase, succinate dehydrogenase, isocitrate dehydrogenase, pyruvate dehydrogenase, lactate dehydrogenase and cytochrome-c-oxidase and cause accumulation of acetylcholine in the hepatopancreas and muscle tissues. These changes in the activity levels of selected oxidative enzymes during insecticide exposure in these tissues of prawn indicates the shift in the metabolic emphasis from aerobic to anaerobic conditions and is interpreted as a functional adaptation to insecticide induced metabolic stress. These observed changes at cellular level pave way for successful survival of prawns in insecticide polluted environ.  相似文献   

3.
Activity levels of acid phosphatase (ACPase) in midgut gland and muscle tissues of penaeid prawn, Metapenaeus monoceros were studied after exposure to selected sublethal concentrations of phosphamidon after acute and chronic exposure. Phosphamidon was found to elevate the activity levels of ACPase in the selected tissues. The rate of elevation of ACPase is dose-dependant and is more at higher concentrations. Acute and chronic exposure to phosphamidon creates disturbances in the normal functioning at the cellular level in the tissues of prawn, M. monoceros.  相似文献   

4.
The nervous tissue AChE, BUChE and glutaminase activity levels were significantly inhibited, whereas glutamine synthetase activity, acetylcholine and glutamine contents were increased significantly following the sublethal exposure of prawn, Metapenaeus, monoceros to methylparathion and malathion. During OPI exposure ammoniagenesis was triggered by increased deamination of purines and oxidative deamination of glutamate. This results in the hyperammonemia. As a consequence of hyperammonemia, the OPI exposed prawn tissue have adopted the suitable mechanisms to detoxity the ammonia by enhancing the synthesis of urea and glutamine. From the study, it has been observed that 10 days of reclamation period is not enough but the prawn nervous tissue showed efficient mechanisms for the detoxification or biodegradation of OPI molecules, which will pave way for the successful survival prawns.  相似文献   

5.
Midgut gland carbohydrate metabolism of penaeid prawn, Penaeus indicus was studied on acute and acclimation to sublethal concentration of phosphamidon. The midgut gland tissue of acclimated prawn showed inhibited glycolysis with an onset of gluconeogenesis. In general acclimation to sublethal concentration resulted in the elevation of the synthetic phase of midgut gland carbohydrate metabolism.  相似文献   

6.
The specific activities of acetyl- and butyrylcholinesterase and carboxylesterase were assayed in the digestive gland and in nervous and muscle tissues of the crayfish Procambarus clarkii. Since acetylcholinesterase prevails in nervous tissue and carboxylesterase in digestive gland, they are proposed as biomarkers. Muscle had negligible activities of all esterases, and all tissues had a low butyrylcholinesterase activity. Esterases were mostly cytosolic in digestive gland and muscle, but membrane-bound in nervous tissue; use of Triton X-100 is not recommended due to its widely diverging effects in esterase assays. Phenylmethylsulphonylfluoride inhibited acetyl- and butyrylcholinesterase in extracts from all tissues, and in digestive gland only carboxylesterase. In digestive gland, tetra[monoisopropyl]-pyrophosphorotetramide inhibited all esterases with different sensitivities, while in muscle and nervous tissue it only partially inhibited all esterases. Carbamates inhibited 100-fold more strongly than organophosphates acetyl- and butyrylcholinesterase activities. Carboxylesterase was inhibited by carbaryl and chlorpyrifos, but not by eserine and malathion. In vitro conditions to evaluate recovery from inactivation of esterases by model pesticides were established for acetylcholinesterase and carboxylesterase. The new reactivation protocol could be useful as a biomarker of pesticide exposure to differentiate between dilution-reversible inhibitions, indicating carbamate exposure, from dilution-irreversible effect, attributed to organophosphate exposure.  相似文献   

7.
The aim of this study was to determine whether the decreased muscle and blood lactate during exercise with hyperoxia (60% inspired O2) vs. room air is due to decreased muscle glycogenolysis, leading to decreased pyruvate and lactate production and efflux. We measured pyruvate oxidation via PDH, muscle pyruvate and lactate accumulation, and lactate and pyruvate efflux to estimate total pyruvate and lactate production during exercise. We hypothesized that 60% O2 would decrease muscle glycogenolysis, resulting in decreased pyruvate and lactate contents, leading to decreased muscle pyruvate and lactate release with no change in PDH activity. Seven active male subjects cycled for 40 min at 70% VO2 peak on two occasions when breathing 21 or 60% O2. Arterial and femoral venous blood samples and blood flow measurements were obtained throughout exercise, and muscle biopsies were taken at rest and after 10, 20, and 40 min of exercise. Hyperoxia had no effect on leg O2 delivery, O2 uptake, or RQ during exercise. Muscle glycogenolysis was reduced by 16% with hyperoxia (267 +/- 19 vs. 317 +/- 21 mmol/kg dry wt), translating into a significant, 15% reduction in total pyruvate production over the 40-min exercise period. Decreased pyruvate production during hyperoxia had no effect on PDH activity (pyruvate oxidation) but significantly decreased lactate accumulation (60%: 22.6 +/- 6.4 vs. 21%: 31.3 +/- 8.7 mmol/kg dry wt), lactate efflux, and total lactate production over 40 min of cycling. Decreased glycogenolysis in hyperoxia was related to an approximately 44% lower epinephrine concentration and an attenuated accumulation of potent phosphorylase activators ADPf and AMPf during exercise. Greater phosphorylation potential during hyperoxia was related to a significantly diminished rate of PCr utilization. The tighter metabolic match between pyruvate production and oxidation resulted in a decrease in total lactate production and efflux over 40 min of exercise during hyperoxia.  相似文献   

8.
棉铃虫幼虫加单氧酶活性的组织分布   总被引:6,自引:0,他引:6  
邱星辉  冷欣夫 《生态学报》2000,20(2):299-303
棉铃虫(Helicoverpa armigera)6龄幼虫不同组织的加单氧酶活性的测定结果显示,对-硝基苯甲醚O-脱甲基酶主要分由于外来物质的入口部位,以中肠和脂肪体的活性较高,在前肠、后肠和马氏管等组织中有相对较低的活性,而在体壁和精巢中未检测到O- 甲基作用。体壁表现一定的艾氏剂环氧化作用,但其活性不及中肠的10%,内源性制剂被证明并非体壁低加单氧酶活性的主要原因。不同组织生物量的差异及其动态  相似文献   

9.
The acetylcholinesterase activity in selected tissues of prawn, Metapenaeus monoceros showed a significant inhibition during commercial (CgC) and technical (TgC) grade carbaryl exposure. The rate of inhibition of AChE in nervous and non-nervous tissues is more under CgC over TgC exposure, suggests the involvement of emulsifier system for easy penetration of CgC molecule, which is absent in TgC. A progressive recovery of AChE activity from TgC and CgC induced inhibition was in the tissues within 10 days after the transfer of prawns to toxicant free water i.e., recovery or reclamation period. From the study, it has been observed that the inhibition of AChE activity is still persists evenafter 10 days of reclamation period, gives the idea of carbaryl accumulation at the cellular level or the reclamation period is not sufficient for the restoration of normalcy of AChE activity.  相似文献   

10.
In vivo effects of two sublethal doses of chlorpyrifos and carbaryl were studied in Procambarus clarkii after 2 and 7 days of exposure, and after pesticide removal. Chlorpyrifos inhibited carboxylesterase activity in a concentration-dependent manner, but acetylcholinesterase was less sensitive. Compared with chlorpyrifos, carbaryl had a less marked effect on esterase activity. The effects of selected pesticides on biotransformation or oxidative stress biomarkers were contradictory. Chlorpyrifos lowered ethoxyresorufin-O-deethylase (EROD), catalase and oxidized glutathione (GSSG) levels but raised glutathione-S-transferase activity, while carbaryl raised EROD, catalase and glutathione-S-transferase, but lowered glutathione peroxidase and reduced glutathione (GSH) levels. The effects on protein expression patterns depending on pesticide type and the tissue used for analysis were studied in parallel by 2-DE. In gill and nervous tissue about 2000 spots (pI 4–7) were resolved, with quite different expression patterns. Chlorpyrifos altered 72 proteins, mostly in nervous tissue, and carbaryl 35, distributed evenly between organs. Several specific spots were selected as specific protein expression signatures for chlorpyrifos or carbaryl exposure in gills and nervous tissue, respectively.  相似文献   

11.
Sublethal concentrations (0.04 ppm) of cypermethrin induced significant metabolic changes in brain, liver and gill tissues of fish, T. mossambica. While cypermethrin caused depletion in glycogen and pyruvate levels lactate content was elevated in all the tissues. While phosphorylase 'a' and aldolase activity increased, phosphorylase 'b' activity registered a decrease in the present study. A decrease in lactate dehydrogenase activity with increase in lactate levels suggests reduced mobilization of pyruvate into citric acid cycle. Glucose-6-phosphate dehydrogenase activity was also elevated indicating enhanced oxidation through HMP pathway during cypermethrin toxicity. Inhibition of succinate, malate and isocitrate dehydrogenases and cytochrome c oxidase activity indicates impaired oxidation of carbohydrates through citric acid cycle.  相似文献   

12.
Data furnished here concern with the role of eyestalk hormone in the regulation of carbohydrate metabolism in Parapenaeopsis hardwickii. Bilateral eyestalk ablation has brought about a significant (P < 0.01) fall and rise in the glycogen content in the midgut gland and abdominal muscle respectively. Although eyestalk ablation resulted in a significant (P < 0.01) depletion of fat in midgut gland, n0 significant (P > 0.05) change was observed in the abdominal muscle. Eyestalk extract administration in eyestalk-less prawns has significantly (P < 0.05) restored the glycogen and fat metabolites in the midgut gland. There was an obvious change in the glycogen content of the midgut gland and abdominal muscle of normal prawns when injected with eyestalk extracts from prawns in different molting stages. Eyestalk extract from intermolt prawns caused a significant (P < 0.05) decrease and increase in the glycogen quantity in the midgut gland and abdominal muscle respectively. Eyestalk extract from premolt and postmolt prawns has, although not significantly (P > 0.05), decreased and increased the utilization of glycogen respectively in the midgut gland. The physiological significance of these findings are discussed briefly.Paper forms part IV of the series
  相似文献   

13.
Summary Muscle LDH activities were measured in two anuran amphibians with different behaviour and ecology, Rana perezi and Bufo calamita. Both pyruvate reduction and lactate oxidation were measured at temperatures of 15, 20 and 30°C, and at pH 7.0, 7.4, and 8.0. Pyruvate and lactate muscle concentrations were determined in individuals at rest and after exercise. R. perezi muscle used anaerobic glycolysis during 3 min of exhaustive exercise, with rising pyruvate and lactate concentrations. Enforced walking for 30 min caused high variability in lactate concentration in B. calamita muscle. Temperature and pH changes affected apparent Km values for pyruvate. When these factors varied simultaneously, enzyme affinity tended not to change. Thus, the thermodynamic effect on pyruvate reduction activity is high, especially at physiological substrate concentrations. In contrast, lactate oxidation activity tended to stabilize when temperature and pH varied jointly. Inhibition by substrate, pyruvate or lactate, seemed to have no importance in vivo.During exercise there was a rise in pyruvate concentration, and a probable decrease in pH, which increased pyruvate reduction reaction and decreased lactate oxidation, contributing to lactate accumulation in Rana perezi muscle. B. calamita muscle did not show pyruvate increase after exercise and its LDH was less dependent on pH at physiological concentrations. Pyruvate reduction rate did not therefore increase. R. perezi muscle enzyme had features of anaerobic LDH while B. calamita LDH muscle was more similar to mammalian heart enzyme, with differences in accordance with the different behaviour of these anurans.Abbreviations LDH lactate dehydrogenase  相似文献   

14.
We describe the isotopic exchange of lactate and pyruvate after arm vein infusion of [3-(13)C]lactate in men during rest and exercise. We tested the hypothesis that working muscle (limb net lactate and pyruvate exchange) is the source of the elevated systemic lactate-to-pyruvate concentration ratio (L/P) during exercise. We also hypothesized that the isotopic equilibration between lactate and pyruvate would decrease in arterial blood as glycolytic flux, as determined by relative exercise intensity, increased. Nine men were studied at rest and during exercise before and after 9 wk of endurance training. Although during exercise arterial pyruvate concentration decreased to below rest values (P < 0.05), pyruvate net release from working muscle was as large as lactate net release under all exercise conditions. Exogenous (arterial) lactate was the predominant origin of pyruvate released from working muscle. With no significant effect of exercise intensity or training, arterial isotopic equilibration [(IE(pyruvate)/IE(lactate)).100%, where IE is isotopic enrichment] decreased significantly (P < 0.05) from 60 +/- 3.1% at rest to an average value of 12 +/- 2.7% during exercise, and there were no changes in femoral venous isotopic equilibration. These data show that 1). the isotopic equilibration between lactate and pyruvate in arterial blood decreases significantly during exercise; 2). working muscle is not solely responsible for the decreased arterial isotopic equilibration or elevated arterial L/P occurring during exercise; 3). working muscle releases similar amounts of lactate and pyruvate, the predominant source of the latter being arterial lactate; 4). pyruvate clearance from blood occurs extensively outside of working muscle; and 5). working muscle also releases alanine, but alanine release is an order of magnitude smaller than lactate or pyruvate release. These results portray the complexity of metabolic integration among diverse tissue beds in vivo.  相似文献   

15.
Painted turtles hibernating during winter may endure long-term exposure to low temperature and anoxia. These two conditions may affect the aerobic capacity of a tissue and might be of particular importance to the cardiac muscle normally highly reliant on aerobic energy production. The present study addressed how hibernation affects respiratory characteristics of mitochondria in situ and the metabolic pattern of turtle myocardium. Painted turtles were acclimated to control (25 degrees C), cold (5 degrees C) normoxic and cold anoxic conditions. In saponin-skinned myocardial fibres, cold acclimation increased mitochondrial respiratory capacity and decreased apparent ADP-affinity. Concomitant anoxia did not affect this. Creatine increased the apparent ADP-affinity to similar values in the three acclimation groups, suggesting a functional coupling of creatine kinase to mitochondrial respiration. As to the metabolic pattern, cold acclimation decreased glycolytic capacity in terms of pyruvate kinase activity and increased lactate dehydrogenase (LHD) activity. Concomitant anoxia counteracted the cold-induced decrease in pyruvate kinase activity and increased creatine kinase activity. In conclusion, cold acclimation seems to increase aerobic and decrease anaerobic energy production capacity in painted turtle myocardium. Importantly, anoxia does not affect the mitochondrial functional integrity but seems to increase the capacity for anaerobic energy production and energy buffering.  相似文献   

16.
1. Measurements of arteriovenous differences across mammary glands of normal and starved lactating rats, and lactating rats made short-term insulin-deficient with streptozotocin or prolactin-deficient with bromocryptine, showed that only in the starved animals was there a significant decrease in glucose uptake. This decrease was accompanied by release of lactate and pyruvate from the gland, in contrast with the uptake of these metabolites by glands of normal lactating rats. 2. There were no marked differences in metabolite concentrations in freeze-clamped glands in the four conditions studied, apart from a decrease in [lactate] and [pyruvate] and an increase in [glucose] in the glands of the streptozotocin-treated group. 3. Acini isolated from the glands of starved, insulin or prolactin-deficient rats had a higher production of lactate and pyruvate from glucose than did glands from normal rats; this is in agreement with the reported decrease in the proportion of active pyruvate dehydrogenase in these situations [Field & Coore (1976) Biochem. J.156, 333-337; Kankel & Reinauer (1976) Diabetologia12, 149-154]. 4. Addition of insulin did not increase the uptake of glucose by acini from normal glands, but it caused a significant increase in the utilization of glucose by acini from glands of starved rats. Insulin did not decrease the accumulation of lactate and pyruvate in any of the experiments. 5. It is concluded that isolated acini represent a suitable model for the study of mammary-gland carbohydrate metabolism in that they reflect metabolism of the gland in vivo.  相似文献   

17.
Reaction rates of succinate and lactate dehydrogenase activity in cryostat sections of rat liver, tracheal epithelium and heart muscle were monitored by continuous measurement of formazan formation by cytophotometry at room temperature. Incubation media contained polyvinyl alcohol as tissue protectant and Tetranitro BT as final electron acceptor. Control media lacked either substrate or substrate and coenzyme. Controls were also performed by adding malonate (a competitive inhibitor of succinate dehydrogenase), pyruvate (a non-competitive inhibitor of lactate dehydrogenase), oxalate (a competitive inhibitor of lactate dehydrogenase) or N-ethylmaleimide (a blocker of SH groups). A specific malonate-sensitive linear test minus control response for succinate dehydrogenase activity was obtained in liver (1.6 mumol H2cm-3 min-1) and tracheal epithelium (0.8 mumol H2cm-3 min-1) but not in heart muscle. All variations in the incubation conditions tested did not result in a linear test minus control response in the latter tissue. Because the reaction was sensitive to malonate, it was concluded that the initial reaction rate was the specific rate of succinate dehydrogenase activity in heart muscle (9.1 mumol H2 cm-3 min-1). Test minus control reactions for lactate dehydrogenase activity were distinctly non-linear for all tissues tested. This appeared to be due to product inhibition by pyruvate generated during the reaction and therefore it was concluded that the appropriate control reaction was the test reaction in the presence of 20 mM pyruvate. The initial rate of the test minus this control was the true rate of lactate dehydrogenase activity. The lactate dehydrogenase activity thus found in liver parenchyma was 5.0 mumol of H2 generated per cm3 liver tissue per min.  相似文献   

18.
The effects of the application of nine pesticides used commonly in agriculture (aldrin, lindane, dimetoate, methylparathion, methidation, atrazine, simazine, captan and diflubenzuron) on growth, CO2 production, denitrifying activity [as nitrous oxide (N2O) released] and nitrite accumulation in the culture medium by Xanthobacter autotrophicus strain CECT 7064 (Spanish Type Culture Collection) (a micro-organism isolated from a submerged fixed-film) were studied. The herbicide atrazine and the insecticide dimetoate totally inhibited growth and biological activity of X. autotrophicus at 10 mg l−1, while the rest of the tested pesticides delayed the growth of strain CECT 7064 but did not drastically affect the bacterial growth after 96 h of culture. The denitrifying activity of X. autotrophicus was negatively affected by the pesticides application with the exception of fungicide captan. The release of N2O was strongly inhibited by several pesticides (aldrin, lindane, methylparathion, methidation and diflubenzuron), while dimetoate, atrazine and simazine inhibited totally the denitrifying activity of the strain. The effects of the pesticides on denitrifying submerged fixed-film reactor are discussed.  相似文献   

19.
The activities of selected enzymes in the branched metabolic pathway to succinate or lactate were determined in cytosol and mitochondrial fractions. The enzymes of lowest activity in the cytosol, and thus possibly regulatory, are phosphofructokinase and pyruvate kinase. Malic enzyme activity could scarcely be detected in either compartment; phosphoenolpyruvate carboxykinase and malate dehydrogenase occur in both. The end products of metabolism are succinate and lactate; under anaerobic conditions lactate production increases whereas succinate production shows a small decrease. The presence of glucose in the medium does not influence the change, but causes an increase in total endproduct accumulation. Levels of metabolic intermediates in worms incubated aerobically and anaerobically are presented, and ‘cross-over’ plots and calculations of apparent equilibrium constants identify hexokinase, phosphofructokinase and pyruvate kinase as regulatory. Under aerobic conditions a large increase in the size of the malate pool is observed suggesting that the depression of lactate production is produced by its inhibitory effect on pyruvate kinase. Adenine nucleotide levels are maintained whether or not the worm is incubated under anaerobic conditions.  相似文献   

20.
Acrylonitrile is extensively used in the synthesis of plastics, some of which are used for the packaging of food and beverage. A single dose of AN causes an increase in serum lactate and sorbitol dehydrogenase levels, as well as a decrease of liver cytochrome P-450 content and microsomal aldrin oxide synthetase activity. Those effects are prevented by pretreatments of the animals with either inducers of the mixed function oxidases or L-cysteine; diethylmaleate pretreatment enhances the increase of the soluble enzyme levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号