首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
细胞培养是细胞研究的基础, 微系统技术的发展给细胞培养提供了新的方法。在微系统平台上进行细胞研究,能够充分利用微流体和微结构的性质, 对细胞进行操控, 在细胞生物学、组织工程学、药物筛选等领域有广泛应用。介绍了一种利用SU-8负性光刻胶模具制作双层细胞培养微芯片的方法, 该芯片通过狭缝将细胞培养区和微通道区隔离, 既保证细胞培养区域的相对独立, 又可以利用微流体的特性调节细胞外基质的性质, 给基于微芯片进行细胞研究提供了一种新的平台。  相似文献   

2.
基于玻璃基底的细胞培养芯片研究   总被引:2,自引:0,他引:2  
目的:为了对细胞进行长期观察和培养,研究细胞培养芯片的制作以及其与温度控制装置、进样系统、信号检测系统等的整合。方法:以商品化的氧化铟锡(ITO)透明导电玻璃为芯片加工的基质材料,利用光刻胶AZ4620作为玻璃湿法刻蚀的掩模层,并应用玻璃湿法刻蚀过程中的钻蚀效应,快速、低成本地加工细胞培养芯片;将此芯片与聚二甲基硅氧烷(PDMS)薄膜经氧等离子体作用后共价结合,整合温度控制系统、进样系统、信号检测系统等。结果:获得了可用于细胞培养的微系统,实现了对猪髂骨动脉内皮细胞(PIEC)在芯片内至少3d的观察和培养。结论:制备的芯片能够用于细胞的长期观察和培养,为研究细胞迁移特性等提供了有效工具。  相似文献   

3.
用于药物筛选的微流控细胞阵列芯片   总被引:1,自引:0,他引:1  
细胞区域分布培养以及如何有效地对微流体进行操控是微流控阵列芯片在细胞药物研究中的关键技术。本研究介绍了一种利用SU-8负性光刻胶模具和PDMS制作双层结构的微流控细胞阵列芯片的方法,该芯片通过C型的坝结构将进样细胞拦截在芯片的细胞培养的固定区域,键合双层PDMS构成阀控制层,阀网络的开关作用成功实现了芯片通道内微流体的操控,同时芯片设计了药物浓度梯度网络,产生6个不同浓度的药物刺激细胞。通过对芯片3种共培养细胞活性的检测和药物伊立替康(CTP-11)对肝癌细胞的浓度梯度刺激等实验结果验证该芯片在细胞研究和药物筛选等方面的可行性。  相似文献   

4.
基于SPE法的新型DNA提取微芯片的制作和研究   总被引:2,自引:0,他引:2  
在生物医学和临床诊断中,DNA提取是关键的步骤。随着生物分析仪器的小型化和芯片化,有必要制作DNA提取芯片。固相提取法(Solid-Phase Extraction,SPE法)是近年来实验室常用的DNA提取方法,其操作简单,时间消耗少,但是基于SPE法制作的微芯片报道较少,利用硅微加工工艺制作DNA提取芯片,并使用SPE法进行PCR产物中DNA提取实验及大肠菌培养液中DNA的提取实验。此芯片可以在半个小时内完成DNA的提取,易于和别的芯片(如PCR芯片等)整合,具有很好的发展前景。  相似文献   

5.
聚合酶链式反应(PCR)微芯片是基于微机电系统(MEMS)制作,在微芯片上进行PCR反应,实现生物样品扩增的一项新技术.介绍了硅-玻璃PCR微芯片的设计和制作、微反应腔的清洗和表面处理、借助外置温度控制系统进行PCR扩增反应以及扩增产物在琼脂糖凝胶电泳下的检测分析,实现了对β-葡糖苷酸酶(GUS)基因的有效扩增,扩增时间由原来的90 min缩短到现在的37 min.  相似文献   

6.
温度是生物体中重要的参数,准确测量细胞在代谢过程中的温度波动可为更深入地探究细胞的能量产生和扩散过程提供有价值的信息,从而促进癌症和其他疾病的研究.本文基于微机电加工和微流控技术制备一批可在微环境下监测细胞代谢过程中温度波动的微芯片.微芯片由捕获细胞的C形"微坝"结构、供液体流动的"微缝"和监测温度波动的电极结构组成.可将细胞培养、温度监测在微芯片上完成.将有细胞贴壁生长的微芯片放置在37℃恒温环境中,采用恒电流法实时在线连续监测细胞在代谢过程中的温度波动.该芯片共有9个检测单元,每个单元的检测都是完全独立的,可同时检测多个结构上的细胞温度波动情况.微芯片的准确度优于0.013℃,精度为±0.014℃,响应速度约0.1 s,不同厚度Ti/Pt温度传感器的温度-电阻之间的线性拟合参数R2大于0.999.在(37±0.015)℃的恒温环境下监测细胞,发现人肺腺癌细胞系(human lung adenocarcinoma cell,H1975)在代谢过程中温度波动的极差(0.173℃)大于肝星状细胞(hepatic stellate cell,HSC)的极差(0.127℃).癌细胞H1975...  相似文献   

7.
微芯片——生命科学领域的新工具   总被引:11,自引:0,他引:11  
微芯片(有人称其为生物芯片biochip)是用硅、玻璃等材料,经光刻、化学合成等技术微加工而成的、大小1 cm2左右的芯片.它可以用来对生物样品进行分离、制备、预浓缩,还可以作为微反应池进行PCR(polymerase chain reaction)、LCR(ligase chain reaction)等反应.最为吸引人的是,芯片上制成多种不同的DNA阵列,即可用于核酸序列的测定及基因突变检测.对微芯片的制作、作用原理、性能及用途等进行了综述.  相似文献   

8.
细胞微系统技术研究是目前细胞生物学、微系统科学及药物筛选等学科交叉领域的一个研究热点,其综合利用了微系统平台技术,将细胞的培养、观测和分析在微系统平台上完成,丰富了细胞研究方法,为细胞研究提供了一个全新的研究平台。现对目前细胞微系统研究中几种典型的方法,如立体微结构模型、软光刻、微流体、芯片毛细管电泳、微电极等进行综述,并阐述其在细胞生物学、生命科学等领域相关研究中的应用。  相似文献   

9.
微芯片电泳-紫外检测系统分析蛋白质   总被引:6,自引:0,他引:6  
微芯片电泳是基于微机电加工技术(MEMS)工艺,在芯片上的微管道中完成电泳检测过程的新型技术.依据紫外吸光度分析法,对蛋白质样品进行电泳分离与紫外检测.实验采用自控接口模板对进样及分离电压进行了系统的程序化控制,从而准确地控制整个电泳、检测流程,提高了微芯片电泳的分离效率和检测灵敏度.实验结果表明,夹流进样的方法可以有效分离混合蛋白,可用于蛋白质样品的分离检测.  相似文献   

10.
细胞是生物体和生命活动的基本单位,细胞分析对于细胞结构和功能的研究、生命活动规律和本质的探索、疾病的诊断与治疗、药物的筛选与设计等都具有十分重要的意义.自微流控芯片面世以来,以其微型化、集成化、自动化和便携化等优势越来越多地应用在细胞分析领域.现就微流控芯片在细胞操纵、细胞培养和细胞内组分分析三个方面上的应用进行综述.  相似文献   

11.
Negative dielectrophoretic (n-DEP) cell manipulation is an efficient way to pattern human liver cells on micro-electrode arrays. Maintaining cell viability is an important objective for this approach. This study investigates the effect of low conductivity medium and the optimally designed microchip on cell viability and cell adhesion. To explore the influence of conductivity on cell viability and cell adhesion, we have used earlier reported dielectrophoresis (DEP) buffer with a conductivity of 10.2 mS/m and three formulated media with conductivity of 9.02 (M1), 8.14 (M2), 9.55 (M3) mS/m. The earlier reported isotonic sucrose/dextrose buffer (DEP buffer) used for DEP manipulation has the drawback of poor cell adhesion and cell viability. A microchip prototype with well-defined positioning of titanium electrode arrays was designed and fabricated on a glass substrate. The gap between the radial electrodes was accurately determined to achieve good cell patterning performance. Parameters such as dimension of positioning electrode, amplitude, and frequency of voltage signal were investigated to optimize the performance of the microchip.  相似文献   

12.
Current developments in tissue engineering and microtechnology fields have allowed the proposal of pertinent tools, microchips, to investigate in vitro toxicity. In the framework of the proposed REACH European directive and the 3R recommendations, the purpose of these microtools is to mimic organs in vitro to refine in vitro culture models and to ultimately reduce animal testing. The microchip consists of functional living cell microchambers interconnected by a microfluidic network that allows continuous cell feeding and waste removal controls by fluid microflow. To validate this approach, Madin Darby Canine Kidney (MDCK) cells were cultivated inside a polydimethylsiloxane microchip. To assess the cell proliferation and feeding, the number of inoculated cells varied from 5 to 10 x 10(5) cells/microchip (corresponding roughly to 2.5 to 5 x 10(5) cells/cm2) and from four flow rates 0, 10, 25, and 50 microL/min were tested. Morphological observations have shown successful cell attachment and proliferation inside the microchips. The best flow rate appears to be 10 microL/min with which the cell population was multiplied by about 2.2 +/- 0.1 after 4 days of culture, including 3 days of perfusion (in comparison to 1.7 +/- 0.2 at 25 microL/min). At 10 microL/min flow rate, maximal cell population reached about 2.1 +/- 0.2 x 10(6) (corresponding to 7 +/- 0.7 x 10(7) cells/cm(3)). The viability, assessed by trypan blue and lactate deshydrogenase measurements, was found to be above 90% in all experiments. At 10 microL/min, glucose monitoring indicated a cell consumption of 16 +/- 2 microg/h/10(6) cells, whereas the glutamine metabolism was demonstrated with the production of NH3 by the cells about 0.8 +/- 0.4 micromol/day/10(6) cells. Augmentation of the flow rate appeared to increase the glucose consumption and the NH3 production by about 1.5- to 2-fold, in agreement with the tendencies reported in the literature. As a basic chronic toxicity assessment in the microchips, 5 mM and 10 mM ammonium chloride loadings, supplemented in the culture media, at 0, 10, and 25 micaroL/min flow rates were performed. At 10 microL/min, a reduction of 35% of the growth ratio with 5 mM and of 50% at 10 mM was found, whereas at 25 microL/min, a reduction of 10% with 5 mM and of 30% at 10 mM was obtained. Ammonium chloride contributed to increase the glucose consumption and to reduce the NH3 production. The microchip advantages, high surface/volume ratio, and dynamic loadings, coupled with the concordance between the present and literature results dealing with ammonia/ammonium effects on MDCK illustrate the potential of our microchip for wider in vitro chronic toxicity investigations.  相似文献   

13.
Liu D  Wang L  Zhong R  Li B  Ye N  Liu X  Lin B 《Journal of biotechnology》2007,131(3):286-292
A microfluidic chip featuring parallel gradient-generating networks etched on glass plate was designed and fabricated. The dam and weir structures were fabricated to facilitate cell positioning and seeding, respectively. The microchip contains five gradient generators and 30 cell chambers where the resulted concentration gradients of drugs are delivered to stimulate the on-chip cultured cells. This microfluidics exploits the advantage of lab-on-a-chip technology by integrating the generation of drug concentration gradients and a series of cell operations including seeding, culture, stimulation and staining into a chip. Steady parallel concentration gradients were generated by flowing two fluids in each network. The microchip described above was applied in studying the role of reduced glutathione (GSH) in MCF-7 cells' chemotherapy sensitivity. The parental breast cancer cell line, MCF-7 and the derived adriamycin resistant cell line MCF-7(adm) were treated with concentration gradients of arsenic trioxide (ATO) and N-acetyl cysteine (NAC) for GSH modulation, followed by exposure to adriamycin. The intracellular GSH level and cell viability were assessed by fluorescence image analysis. GSH levels of both cell lines were down-regulated upon ATO treatment and up-regulated upon NAC treatment. For both cell lines, suppression of intracellular GSH by treatment with ATO has been shown to increase chemotherapy sensitivity; conversely, elevation of intracellular GSH by treatment with NAC leads to increased drug resistance. The results indicated that high intracellular GSH level has negative effect on chemotherapy sensitivity, while depletion of cellular GSH may serve as an effective way to improve chemotherapy sensitivity. The integrated microfluidic chip is able to perform multiparametric pharmacological profiling with easy operation, thus, holds great potential for extrapolation to the high-content drug screening.  相似文献   

14.
In nuclear transfer procedures, in addition to nuclei, donor cell mitochondria are routinely transferred into recipient oocytes, and mitochondrial heteroplasmy has been reported. However, various protocols have resulted in either homoplasmy for recipient oocyte mitochondria or varying heteroplasmic levels in cloned animals. In nuclear transfer protocols, donor cells are subjected to serum-starvation prior to electroporation. Therefore, the relationship between culture conditions and mitochondrial activity was explored. Fibroblast cell lines were propagated from bovine ear epithelium, skin, skeletal muscle, or cumulus cells. In vitro mitochondrial viability was assessed in proliferative and confluent cells, cultured under serum-starvation or supplemented conditions. Cells were stained with MitoTracker Red CMXRos and comparative fluorescence intensities were assessed. The mitochondrial activity per cell was highest under proliferation, significantly lower at confluency (p < 0.001), and remained depressed after serum starvation for within a week (p < 0.001). Serum starvation induced an increase in mitochondrial viability in confluent cells. These results demonstrate that mitochondrial viability is dramatically affected by cell culture conditions. Consequently, specific cell culture parameters provide one explanation for the varying incidence of heteroplasmy identified in cloned animals. Future research should reveal whether specific cell culture parameters represent one of the factors for the varying incidence of heteroplasmy identified in cloned animals.  相似文献   

15.
李夏  滑慧娟  郝捷  王柳  刘忠华 《遗传》2018,40(12):1120-1128
随着干细胞研究的不断深入,干细胞功能分化研究和临床应用转化的需求日益提升。人脐带间充质干细胞(human umbilical cord mesenchymal stem cells, hUCMSCs)来源广泛,不仅自我更新能力强、能够分化成多种类型的成体细胞,而且其自身具有免疫调节能力,不易引发免疫排斥反应,在干细胞功能分化研究和临床应用中具有巨大应用前景和应用潜力。目前,传统的细胞培养方式培养效率低、细胞活性较差,不能满足日益增长的研究和应用需求。本研究利用微载体结合旋转瓶的悬浮培养方法,通过优化细胞接种量及转速等影响因素,快速获得大量高质量的人脐带间充质干细胞。经悬浮培养总细胞量可高达到7×10 8个细胞/L,而且细胞活性较高,MSC 特异性标记物表达良好,在恢复平面培养后仍能维持MSC的正常细胞形态和增殖能力。高效脐带间充质干细胞悬浮培养体系的初步建立,为未来的干细胞功能分化研究和临床应用奠定了基础。  相似文献   

16.
Hodge G  Hodge S  Han P 《Cytokine》2000,12(12):1763-1768
Most of the investigatory studies of cytokine production by cells have been performed on purified cells or cell lines by measuring the secreted cytokine levels in the bulk culture supernatant. However, results of cytokine production from isolated peripheral blood mononuclear cells (PBMCs) cultivated in synthetic media, have been reported to be inaccurate and of low reproducibility. Isolation procedures have been shown to be toxic to certain cells. We hypothesised that purified cell culture techniques may result in increased levels of apoptosis of cells compared with whole blood culture techniques. To compare the effects on cell viability between PBMCs and whole blood techniques, an Annexin V binding assay was utilised. The effect of different cell concentration and serum/plasma concentrations on apoptosis levels in the various leukocyte subsets in PBMC and whole blood cultures following stimulation was investigated. There were significantly increased levels of apoptosis of cells in PBMC compared to whole culture at similar plasma concentrations, suggesting that cell viability was plasma concentration-dependent. There were significantly increased levels of apoptosis in PBMC cultures at the same cell concentration to whole blood techniques, suggesting that interaction between all cellular elements (as in whole blood techniques) is important in maintaining cell viability. These results suggest that whole blood culture techniques provide the best conditions for study of leukocyte cytokine production. If PBMC culture is performed, similar plasma and cell concentration to whole blood will best preserve cell viability.  相似文献   

17.
A novel tissue culture system was established for modeling the non-neoplastic human prostate in vitro. Precision-cut prostate slices were cultivated in culture plates with a gas-permeable base in a novel serum-free mixture. Cultivated specimens was evaluated by an immunohistochemical analysis of cytokeratins 18 and 14, androgen receptor (AR), prostate specific antigen (PSA), prostate acid phosphatase (PAP), and the endothelial cell marker von Willebrand factor. Epithelial viability in the presence and absence of dihydrotestosterone (DHT) was also assessed. Satisfactory maintenance of glandular cytoarchitecture was observed in the presence of DHT with approximately half of the glands displaying a columnar or cuboidal phenotype and an intact layer of basal cells. In the absence of DHT, the corresponding percentage was significantly lower. The occurrence of involutive changes and epithelial cell death was significantly higher in the absence of DHT. Glandular and stromal cells maintained their capacity to express AR. PSA and PAP were expressed throughout the culture period, albeit at a lower level than in uncultured tissue. The viability of endothelial cells differed markedly between individual samples. During culture, the tissue slices became covered with epithelial cells originating from glands that were cut open during tissue slicing. This cell layer consisted of a stratified basal compartment overlaid by cells with a luminal phenotype. The present culture system provides a novel in vitro setting in which to study normal human prostate biology and pathobiology and may help to obviate problems related to the use of established cancer cell lines and animal models. This study was supported by grants from competitive research funding of the Pirkanmaa Hospital District, TEKES Drug 2000, and the Juliana von Wendt Fund.  相似文献   

18.
Primary myeloma (PM) cells are short-lived in conventional culture, which limited their usefulness as a study model. Here, we evaluated if three-dimensional (3D) culture can significantly prolong the longevity of PM cells in-vitro. We employed a previously established 3D model for culture of bone marrow mononuclear cells isolated from 15 patients. We assessed the proportion of PM cells, viability and proliferation using CD38 staining, trypan blue exclusion assays and carboxy fluorescein succinimidyl ester (CFSE) staining, respectively. We observed significantly more CD38+ viable cells in 3D than in conventional culture (65% vs. 25%, p = 0.006) on day 3. CFSE staining showed no significant difference in cell proliferation between the two culture systems. Moreover, we found that PM cells in 3D culture are more STAT3 active by measure of pSTAT3 staining (66% vs. 10%, p = 0.008). Treatment of IL6, a STAT3 activator significantly increased CD38+ cell viability (41% to 68%, p = 0.021). In comparison, inhibition of STAT3 with Stattic significantly decreased PM cell viability in 3D culture (38% to 17% p = 0.010). Neither IL6 nor Stattic affected the PM cell viability in conventional culture. This study suggests that 3D culture can significantly improve the longevity of PM cells in-vitro, and STAT3 activation can further improve their viability.  相似文献   

19.
Summary This study provides information relevant to future research aimed at producing Limulus Amebocyte Lysate (LAL) in vitro, which would potentially reduce the need to harvest and bleed horseshoe crabs as in the current methods of LAL production. To address the need for primary culture of horseshoe crab amebocytes, this study tested the effects of a variety of standard insect cell culture media on amebocyte morphology and viability after 7 d of maintenance. Amerbocyte morphology was least altered from in vivo form in Grace’s Modified Insect Medium, with no observed degranulation of cells, as compared to the other media tested. There were significant differences in amebocyte viability among the six insect cell culture media tested. Grace’s Modified Insect Medium sustained viability of 77.2±5.1% (mean ± standard deviation) of amebocytes, followed distantly by Grace’s Insect Medium with 35.1±8.7% amebocyte viability. Results indicate that Grace’s Modified Insect Medium with horseshoe crab serum supplementation was the best candidate of the six media tested for future medium optimization for Limulus amebocyte requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号