首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the species diversity and substrate utilization patterns of culturable thermophilic bacterial communities in hot aerobic poultry and cattle manure composts by coupling 16S rDNA analysis with Biolog data. Based on the phylogenetic relationships of 16S rDNA sequences, 34 thermophilic (grown at 60 degrees C) bacteria isolated during aerobic composting of poultry manure and cattle manure were classified as Bacillus licheniformis, B. atrophaeus, Geobacillus stearothermophilus, G. thermodenitrificans, Brevibacillus thermoruber, Ureibacillus terrenus, U. thermosphaericus, and Paenibacillus cookii. In this study, B. atrophaeus, Br. thermoruber, and P. cookii were recorded for the first time in hot compost. Physiological profiles of these bacteria, obtained from the Biolog Gram-positive (GP) microplate system, were subjected to principal component analysis (PCA). All isolates were categorized into eight different PCA groups based on their substrate utilization patterns. The bacterial community from poultry manure compost comprised more divergent species (21 isolates, seven species) and utilized more diverse substrates (eight PCA groups) than that from cattle manure compost (13 isolates, five species, and four PCA groups). Many thermophilic bacteria isolated in this study could use a variety of carboxylic acids. Isolate B110 (from poultry manure compost), which is 97.6% similar to U. terrenus in its 16S rDNA sequence, possesses particularly high activity in utilizing a broad spectrum of substrates. This isolate may have potential applications in industry.  相似文献   

2.
The inner part of Tokyo Bay, Japan, is highly eutrophicated as shown by the frequent occurrence of red tide. The bottom water is anoxic during warm seasons especially at artificially dredged sites. In the sediment slurries prepared from surface sediment samples collected from the dredged sites, substrate addition stimulated the consumption of sulfate during anaerobic incubation. Of the substrates added, the seston composed mainly of diatom stimulated consumption more than lactate and acetate. Its effect was nearly equal to that of casamino acids. Casamino acids and some amino acids also accelerated the rate of sulfate reduction measured by the tracer method in sediment samples more than lactate or acetate. Anaerobic incubation of the sediment slurry amended with casamino acids showed that the consumption of amino acids was retarded by the addition of molybdate (final concentration; 20 mM). In the slurry amended with only molybdate, glutamate was accumulated distinctively and linearly with time. Its accumulation rate in molar base was comparable to the rate of sulfate reduction. These results suggested that amino acids were the main substrates for sulfate-reducing bacteria (SRB) in the sediment. The MPN values of SRB in these sediment samples were often higher with the enumeration medium containing casamino acids instead of lactate. Furthermore, during a week incubation of sediment slurries amended with substrates, casamino acids and seston more greatly stimulated the growth of SRB enumerated by both media than lactate.  相似文献   

3.
Different samples from a reactor system for the cleaning of an emulsified waste oil containing approximately 1% of different polycyclic aromatic hydrocarbons (PAH) were studied for the diversity of phenanthrene, anthracene, and acenaphthene-metabolizing bacteria. From more than 28 different taxa found in the airlift-suspension reactor, nine were able to mineralize at least one of the PAH, belonging to the genera Bacillus, Mycobacterium, Nocardia, Sphingomonas, Alcaligenes, Pseudomonas, and the Flavobacterium/Cytophaga group. In the sludge from the thickener of the reactor system, a reduced number of metabolically active groups could be detected. The impact of different precultivation substrates on the degradation capability was investigated with five PAH-degrading bacterial strains. Four isolates were influenced by the precultivation substrates, however, one isolate (Alcaligenes-like) as well as the mixture of the five strains showed no changes in their degradation capability. The results indicated a strong impact of the precultivation methods on the composition of bacterial communities and the activity and the degradation characteristics of bacteria with respect to different PAH.  相似文献   

4.
Bacteria are very important degraders of organic substances in aquatic environments. Despite their influential role in the carbon (and many other element) cycle(s), the specific genetic identity of active bacteria is mostly unknown, although contributing phylogenetic groups had been investigated. Moreover, the degree to which phenotypic potential (i.e., utilization of environmentally relevant carbon substrates) is related to the genomic identity of bacteria or bacterial groups is unclear. The present study compared the genomic fingerprints of 27 bacterial isolates from the humic River Warnow with their ability to utilize 14 environmentally relevant substrates. Acetate was the only substrate utilized by all bacterial strains. Only 60% of the strains respired glucose, but this substrate always stimulated the highest bacterial activity (respiration and growth). Two isolates, both closely related to the same Pseudomonas sp., also had very similar substrate utilization patterns. However, similar substrate utilization profiles commonly belonged to genetically different strains (e.g., the substrate profile of Janthinobacterium lividum OW6/RT-3 and Flavobacterium sp. OW3/15-5 differed by only three substrates). Substrate consumption was sometimes totally different for genetically related isolates. Thus, the genomic profiles of bacterial strains were not congruent with their different substrate utilization profiles. Additionally, changes in pre-incubation conditions strongly influenced substrate utilization. Therefore, it is problematic to infer substrate utilization and especially microbial dissolved organic matter transformation in aquatic systems from bacterial molecular taxonomy.  相似文献   

5.
Information on the structure of bacterioplankton communities is continuously increasing, while knowledge of their metabolic capabilities remains limited. In this study, the metabolic capacity of bacterioplankton was investigated, as such information is necessary to fully understand carbon cycling and other biogeochemical processes. The diversity of dominant culturable chemoorganotrophic bacteria from one estuarine and three marine environments was analyzed by random isolation of colony-forming units on solid media, taxonomical identification by partial 16S rRNA gene sequence analysis, and functional characterization of the isolates. A total of 76 16S rRNA gene sequences, representing 19 different genotypes, were obtained from the four sampling localities, including Bacillus, Pseudomonas, Pseudoalteromonas, Vibrio, and Erythrobacter as the most frequently isolated genera. The range of metabolic functions possessed by the cultured bacterial assemblages differed significantly between sites. Similarly, the percentage at each sampling station of bacteria capable of performing a specific function was significantly different for 18 of the 25 investigated metabolic functions. At two localities, the bacterial assemblages were dominated by a single genus (Pseudoalteromonas or Erythrobacter) and appeared to be functionally specialized. More than 95% of the isolates were capable of utilizing dissolved free amino acids and protein as their sole nitrogen sources, and all isolates of the specialized assemblages expressed beta-glucosidase. Furthermore, only some of the isolates were able to utilize NH4+, while up to two thirds of the isolates of the two marine sites were able to grow on NO3-.  相似文献   

6.
Polyhydroxyalkanoates (PHAs) accumulating bacteria were isolated under various selective conditions such as pH, salt concentrations and types of heavy metal. Fifty strains of bacterial isolates were found to belong to Bacillus, Proteus, Pseudomonas, Aeromonas, Alcaligenes and Chromobacterium, based on phenotypical features and genotypic investigation. Only twenty five bacterial isolates were selected and observed for the production of PHAs. Interestingly, bacteria belonging to Firmucutes Bacillus sp. produced a high amount of PHAs. The maximum PHAs were accumulated by B. licheniformis PHA 007 at 68.80% of dry cell weight (DCW). Pseudomonas sp., Aeromonas sp., Alcaligenes sp. and Chromobacterium sp. were recorded to produce a moderate amount of PHAs, varying from 10.00-44.32% of DCW. The enzymatic activity was preliminarily analyzed by the ratio of the clear zone diameter to colony diameter. Bacillus gave the highest ratio of hydrolysis zone which corresponds to the highest hydrolytic enzyme activities. Bacillus licheniformis PHA 007 had the highest lipase and protease activity at 2.1 and 5.1, respectively. However, the highest amylase activity was observed in Bacillus sp. PHA 023 at 1.4. Determination of metabolic characteristics was also investigated to check for their ability to consume a wide range of substrates. Bacillus, Aeromonas sp. and Alcaligenes sp. had great ability to utilize a variety of substrates. To decrease high PHA cost, different sources of cheap substrates were tested for the production of PHAs. Bacillus cereus PHA 008 gave the maximal yield of PHA production (64.09% of DCW) when cultivated in anaerobically treated POME. In addition, the accumulation of PHA copolymers such as 3-hydroxyvalerate and 3-hydroxyhexanoate was also observed in Bacillus and Pseudomomas sp. strain 012 and 045, respectively. Eight of the nine isolates accumulated a significant amount of PHAs when inexpensive carbon sources were used as substrates. Here it varied from 1.69% of DCW by B. licheniformis PHA 007 to 64.09% of DCW by B. cereus PHA 008.  相似文献   

7.
Ethanol, propanol, ethylene glycol, 1,2-propanediol, 1,2-butanediol, acetoin, diacetyl, and 2,3-pentanedione were used as substrates for enrichment and isolation of alcohol-oxidizing fermentative bacteria. Diacetyl and 2,3-pentanedione proved to be highly toxic. With the other substrates, various kinds of bacteria could be isolated which were assigned to three different metabolic groups: (i) homoacetogenic bacteria, and (ii) bacteria forming propionate as reduced end product were isolated from freshwater sources; (iii) bacteria disproportionating acetoin and 1,2-diols to acids and primary alcohols were isolated from marine sediments. The latter oxidized primary alcohols to fatty acids in the presence of hydrogen-oxidizing partners. Syntrophically ethanol-oxidizing cocultures enriched with primary alcohols could be separated with 1,2-diols as substrates into an alcohol-oxidizing organism and a hydrogen-oxidizing homoacetogen. The pathways of alcohol conversion in the disproportionating isolates were studied in detail. Growth experiments as well as enzymological studies demonstrated that acetoin and 1,2-diols were degraded via acetaldehyde which was also an intermediate in syntrophic oxidation of primary alcohols. The environmental importance of the various metabolic types isolated was assessed by most-probable-number enumerations.  相似文献   

8.
A selective procedure was used to isolate pectinolytic intestinal bacteria from human subjects. The three isolates with the greatest pectinolytic activity utilized pectin and a few related compounds as fermentable substrates for growth but did not utilize any other compound tested. Thus, their substrate utilization pattern was markedly different from that of previously described intestinal pectinolytic isolates. The three isolates are representatives of a nutritionally defined group of bacteria for which the term pectinophilic is proposed.  相似文献   

9.
A selective procedure was used to isolate pectinolytic intestinal bacteria from human subjects. The three isolates with the greatest pectinolytic activity utilized pectin and a few related compounds as fermentable substrates for growth but did not utilize any other compound tested. Thus, their substrate utilization pattern was markedly different from that of previously described intestinal pectinolytic isolates. The three isolates are representatives of a nutritionally defined group of bacteria for which the term pectinophilic is proposed.  相似文献   

10.
During the summer and fall of 1984, elevated total coliform counts were observed in the distribution system of a public water supply serving 350,000 people in south central Connecticut. As part of an investigation of possible health risks associated with the presence of bacteria in the water supply, bacterial isolates from the distribution system were compared with bacterial isolates of the same species obtained from a large regional teaching hospital and from a national compendium of clinical isolates. Characteristics analyzed included phenotypic metabolic activity, antimicrobial susceptibilities to clinically utilized antibiotics, temperature tolerance at 44.5 degrees C, and beta-glucuronidase activity in single-test form and on a selective medium. Environmental isolates lacked known plasmid-mediated characteristics, with the exception of one Escherichia coli isolate which showed some antibiotic resistance. Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Enterobacter agglomerans from all sources were temperature tolerant and yielded positive fecal coliform tests. Only E. coli showed beta-glucuronidase activity (both in a single biochemical test and on a selective medium). No single characteristic analyzed was sufficient to establish an organism as either environmental or clinical in origin.  相似文献   

11.
During the summer and fall of 1984, elevated total coliform counts were observed in the distribution system of a public water supply serving 350,000 people in south central Connecticut. As part of an investigation of possible health risks associated with the presence of bacteria in the water supply, bacterial isolates from the distribution system were compared with bacterial isolates of the same species obtained from a large regional teaching hospital and from a national compendium of clinical isolates. Characteristics analyzed included phenotypic metabolic activity, antimicrobial susceptibilities to clinically utilized antibiotics, temperature tolerance at 44.5 degrees C, and beta-glucuronidase activity in single-test form and on a selective medium. Environmental isolates lacked known plasmid-mediated characteristics, with the exception of one Escherichia coli isolate which showed some antibiotic resistance. Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Enterobacter agglomerans from all sources were temperature tolerant and yielded positive fecal coliform tests. Only E. coli showed beta-glucuronidase activity (both in a single biochemical test and on a selective medium). No single characteristic analyzed was sufficient to establish an organism as either environmental or clinical in origin.  相似文献   

12.
Nowadays, much of what we know regarding the isolated cellulolytic bacteria comes from the conventional plate separation techniques. However, the culturability of many bacterial species is controlled by resuscitation‐promoting factors (Rpfs) due to entering a viable but non‐culturable (VBNC) state. Therefore, in this study, Rpf from Micrococcus luteus was added in the culture medium to evaluate its role in bacterial isolation and enhanced effects on cellulose‐degrading capability of bacterial community in the compost. It was found that Proteobacteria and Actinobacteria were two main phyla in the compost sample. The introduction of Rpf could isolate some unique bacterial species. The cellulase activity of enrichment cultures with and without Rpf treatment revealed that Rpf treatment significantly enhanced cellulase activity. Ten isolates unique in Rpf addition displayed carboxymethyl‐cellulase (CMCase) activity, while six isolates possessed filter paper cellulase (FPCase) activity. This study provides new insights into broader cellulose degraders, which could be utilized for enhancing cellulosic waste treatment.  相似文献   

13.
Summary The production of organic acids has been tested with bacterial flora selected from a municipal sludge digestor. In order to elucidate the basic mechanisms by which glucose is converted to volatile fatty acids, the examination of non-methanogenic bacteria was attempted. Both lactate-producers and lactate-utilizers were found among these bacteria. When mixed isolates were used as the inoculum, the accumulation of lactic acid and its further conversion to propionic and butyric acids was demonstrated at a carbon conversion rate of about 0.75. It is therefore suggested that this metabolic sequence may occur as a normal process in acidogenic fermentation, which is the first step in anaerobic digestion.  相似文献   

14.
Marine snow aggregates are microbial hotspots that support high bacterial abundance and activities. We conducted laboratory experiments to compare cell-specific bacterial protein production (BPP) and protease activity between free-living and attached bacteria. Natural bacterial assemblages attached to model aggregates (agar spheres) had threefold higher BPP and two orders of magnitude higher protease activity than their free-living counterpart. These observations could be explained by preferential colonization of the agar spheres by bacteria with inherently higher metabolic activity and/or individual bacteria increasing their metabolism upon attachment to surfaces. In subsequent experiments, we used four strains of marine snow bacteria isolates to test the hypothesis that bacteria could up- and down-regulate their metabolism while on and off an aggregate. The protease activity of attached bacteria was 10-20 times higher than that of free-living bacteria, indicating that the individual strains could increase their protease activity within a short time (2 h) upon attachment to surfaces. Agar spheres with embedded diatom cells were colonized faster than plain agar spheres and the attached bacteria were clustered around the agar-embedded diatom cells, indicating a chemosensing response. Increased protease activity and BPP allow attached bacteria to quickly exploit aggregate resources upon attachment, which may accelerate remineralization of marine snow and reduce the downward carbon fluxes.  相似文献   

15.
Comparison of a “smooth” and a “rough” isolate of Pseudomonas syringae pv. phaseolicola The “smooth” (S) wild strain of Pseudomonas syringae pv. phaseolicola was compared with a “rough” (R) variant of low virulence. Both strains grew nearly equally well on a sucrose containing medium with yeast extract and casamino acids, and the strains did not differ markedly in the quantity of produced EPS (= extracellular polysaccharides). Principally the same results were obtained for high and medium concentrations of sucrose, or when sucrose was replaced by glucose or fructose. However, on glucose and fructose considerably lower quantities of EPS were produced. The biological activity of S-EPS was higher than that of R-EPS. This difference between the EPS preparations was not as marked as leaf inoculation with both bacterial isolates. After prolonged bacterial culture the EPS-production increased further, so that the differences between both strains decreased. A different EPS type was produced on the glycerol containing medium of KING B. Variations in the composition of this medium resulted in different morphology of the agar grown cultures, and the relative differences between S and R bacteria changed. When 62 different physiological tests for both bacterial strains were compared, the “rough” bacteria revealed a lowered range of positive reactions, with a few exceptions. However, it appeared unlikely that the reduced virulence of the “rough” bacteria was due to these differences. Obviously, defects in the extracellular products, but not in levan, were responsible for the reduction of virulence.  相似文献   

16.
Five gram-negative bacteria, all of which were Enterobacteriaceae, were isolated from the phyllosphere of green or senescing leaves of Rosa rugosa, and their phenotypic and physiological characteristics were examined. Partial 16S rDNA sequences led to identification of these isolates as Pantoea agglomerans, Klebsiella terrigena, Erwinia rhapontici, and two strains of Rahnella aquatilis. Interestingly, these phyllosphere bacteria had certain phenotypic and physiological convergences, while they showed their own metabolic properties toward phenolic compounds of plant origin. In particular, the two Ra. aquatilis isolates from the green leaves had a substrate-inducible gallate decarboxylase activity in the resting cells that had been cultured in 1 mM gallic acid- or protocatechuic acid-containing medium. The other three isolates from the senescing leaves did not have this enzyme activity. Simple phenolics that the Ra. aquatilis decarboxylatively produced from benzoic acid derivatives had better antimicrobial activities than those of the substrates.  相似文献   

17.
Abstract The influence of a seed-dressing with rhizosphere bacteria on the infection of sugarbeet by fungi of the genus Pythium I. Antagonistic effect of different bacterial isolates towards Pythium spp.
Seed treatment with selectively isolated rhizosphere bacteria from the fluorescent pseudomonad group can protect sugar beet seedlings from damping-off caused by species of Pythium. The antagonistic rhizobacteria were equally effective in different soil substrates, both unsterilized and steam-sterilized. Antagonistic activity of an isolate was similar within seeds of a sugarbeet cultivar but different when different cultivars were compared. The number of bacteria adhering to the seed of eachcultivar which influenced the level of antagonism to Pythium infection, varied with seed morphology. A mixture of the three different isolates did not increase antagonistic activity when compared to the activity of the isolates individually.  相似文献   

18.

Sedimentary environments in the Arctic are known to harbor diverse microbial communities playing a crucial role in the remineralization of organic matter and associated biogeochemical cycles. In this study, we used a combination of culture-dependent and culture-independent approaches to understanding the bacterial community composition associated with the sediments of a terrestrial versus fjord system in the Svalbard Arctic. Community-level metabolic profiling and growth response of retrieved bacterial isolates towards different carbon substrates at varying temperatures were also studied to assess the metabolic response of communities and isolates in the system. Bacterial species belonging to Cryobacterium and Psychrobacter dominated the terrestrial and fjord sediment retrievable fraction. Amplicon sequencing analysis revealed higher bacterial diversity in the terrestrial sediments (Shannon index; 8.135 and 7.935) as compared to the fjord sediments (4.5–5.37). Phylum Proteobacteria and Bacteroidetes dominated both terrestrial and fjord sediments. Phylum Verrucomicrobia and Cyanobacteria were abundant in terrestrial sediments while Epsilonbacteraeota and Fusobacteriia dominated the fjord sediments. Significant differences were observed in the carbon substrate utilization profiles between the terrestrial and fjord sediments at both 4 °C and 20 °C incubations (p?<?0.005). Utilization of N-acetyl-D-glucosamine, D-mannitol and Tween-80 by the sediment communities and bacterial isolates from both systems, irrespective of their temperature incubations implies the affinity of bacteria for such substrates as energy sources and for their survival in cold environments. Our results suggest the ability of sediment bacterial communities to adjust their substrate utilization profiles according to condition changes in the ecosystems and are found to be less influenced by their phylogenetic relatedness.

  相似文献   

19.
The abilities of seven bifidobacterial isolates ( Bifidobacterium adolescentis , B. bifidum (two strains), B. catenulatum , B. infantis , B. longum , B. pseudolongum ) to utilize 15 different carbohydrate sources (eight oligosaccharide products, and a variety of monosaccharides and disaccharides) were studied, with regard to maximum specific growth rates and production of bacterial cell mass. Results showed that substrate utilization was highly variable and that considerable interspecies and interstrain differences existed. Galactooligosaccharides and oligofructose, with a low degree of polymerization, supported best growth of the test micro-organisms. In contrast, xylooligosaccharides and pyrodextrins were almost invariably poor bifidobacterial substrates. In many species, maximum specific growth rates and bacterial cell yields were higher on oligosaccharides compared to their monosaccharide constituents, particularly with respect to fructooligosaccharides. Bifidobacterium pseudolongum , B. longum and B. catenulatum were the most nutritionally versatile isolates studied in relation to the range of oligosaccharide products utilized, and the extent to which bacteria could grow on these substrates.  相似文献   

20.
Hydantoin cleaving bacterial isolates were recovered from terrestrial soil samples originating from different geographic sources (Antarctica, South Africa and China) using culture-based screening methods (selective agar plates and shake flask cultures supplemented with hydantoins). Thirty-two bacterial isolates possessing the capability to transform the model substrates benzylhydantoin and dihydrouracil to the corresponding N-carbamoyl-amino acids were successfully cultured. Amplification and sequencing of the 16S rDNA revealed that the isolates belonged to the genera Arthrobacter, Burkholderia, Bacillus, Delftia, Enterobacter, Flavobacterium, Ochrobactrum, Pseudomonas and Stenotrophomonas, with one isolate assigned to the family Microbacteriacae. We have shown that microorganisms with hydantoinase activity are: (i) distributed in various geographically distinct environmental habitats, (ii) distributed worldwide and (iii) found in certain bacterial genera. Furthermore, we have demonstrated the presence of hydantoinase activity in genera in which hydantoinase activity has not previously been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号