首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

Glucan phosphorylase, branching enzyme, and 4-α-glucanotransferase were employed to produce glucose polymers with controlled molecular size and structures. Linear or branched glucan was produced from glucose-1-phosphate by glucan phosphorylase alone or together with bracnhing enzyme, where the molecular weight of linear glucan was strictly controlled by the glucose-1-phosphate/primer molar ratio, and the branching pattern by the relative branching enzyme/glucan phosphorylase activity ratio. Cyclic glucans were produced by the cyclization reaction of 5-αglucanotransferases and branching enzyme on amylose and amylopectin. Molecular size and structure of cyclic glucan was controlled by the type of enyzyme and substrate chosen and by the reaction conditions. This in vitro approach can be used to manufacture novel glucose polymers with applicable value.  相似文献   

3.
S Ebisu  K Kato  S Kotani    A Misaki 《Journal of bacteriology》1975,124(3):1489-1501
Studies were made on the physical and chemical properties of polysaccharides synthesized by cell-free extracts of Streptococcus mutans, Streptococcus sanguis, and Streptococcus sp. and their susceptibilities to dextranases. Among the polysaccharides examined, insoluble glucans were rather resistant to available dextranase preparations, and the insoluble, sticky glucan produced by S. mutans OMZ 176, which could be important in formation of dental plaques, was the most resistant. By enrichment culture of soil specimens, using OMZ 176 glucans as the sole carbon source, an organism was isolated that produced colonies surrounded by a clear lytic zone on opaque agar plates containing the OMZ 176 glucan. The organism was identified as a strain of Flavobacterium and named the Ek-14 bacterium. EK-14 bacterium was grown in Trypticase soy broth, and an enzyme capable of hydrolyzing the OMZ 176 glucan was concentrated from the culture supernatant and purified by negative adsorption on a diethylaminoethyl-cellulose (DE-32) column and gradient elution chromatography with a carboxymethyl-cellulose (CM-32) column. The enzyme was a basic protein with an isoelectric point of pH 8.5 and molecular weight of 65,000. Its optimum pH was 6.3 and its optimal temperature was 42 C. The purified enzyme released 11% of the total glucose residues of the OMZ 176 glucan as reducing sugars and solubilized about half of the substrate glucan. The products were found to be isomaltose, nigerose, and nigerotriose, with some oligosaccharides. The purified enzyme split the alpha-1,3-glucan endolytically and was inactive toward glucans containing alpha-1,6, alpha-1,4, beta-1,3, beta-1,4, and/or beta-1,6 bonds as the main linkages.  相似文献   

4.
Two highly purified cellulases [EC 3.2.1.4], II-A, and II-B, were obtained from the cellulase system of Trichoderma viride. Both cellulases split cellopentaose retaining the beta-configuration of the anomeric carbon atoms in the hydrolysis products at both pH 3.5 and 5.0. The Km values of cellulases II-A and II-B for cellotetraose were different, but their Vmax values were similar and those for cellooligosaccharides increased in parallel with chain length. Both cellulases produced predominantly cellobiose and glucose from various cellulosic substrates as well as from higher cellooligosaccharides. Cellulase II-A preferentially attacked the holoside linkage of rho-nitrophenyl beta-D-cellobioside, whereas cellulase II-B attacked mainly the aglycone linkage of this cellobioside. Both cellulases were found to catalyze the synthesis of cellotriose from rho-nitrophenyl beta-D-cellobioside by transfer of a glucosyl residue, possibly to cellobiose produced in the reaction mixture. They were also found to catalyze the rapid synthesis of cellotetraose from cellobiose, with accompanying formation of cellotriose and glucose, which seemed to be produced by secondary random hydrolysis of the cellotetraose produced. The capacity to synthesize cellotetraose from cellobiose appeared to be greater with cellulase II-B than with cellulase II-A.  相似文献   

5.
Erwinia chrysanthemi produces a battery of hydrolases and lyases which are very effective in the maceration of plant cell walls. Although two endoglucanases (CelZ and CelY; formerly EGZ and EGY) are produced, CelZ represents approximately 95% of the total carboxymethyl cellulase activity. In this study, we have examined the effectiveness of CelY and CelZ alone and of combinations of both enzymes using carboxymethyl cellulose (CMC) and amorphous cellulose (acid-swollen cellulose) as substrates. Synergy was observed with both substrates. Maximal synergy (1.8-fold) was observed for combinations containing primarily CelZ; the ratio of enzyme activities produced was similar to those produced by cultures of E. chrysanthemi. CelY and CelZ were quite different in substrate preference. CelY was unable to hydrolyze soluble cellooligosaccharides (cellotetraose and cellopentaose) but hydrolyzed CMC to fragments averaging 10.7 glucosyl units. In contrast, CelZ readily hydrolyzed cellotetraose, cellopentaose, and amorphous cellulose to produce cellobiose and cellotriose as dominant products. CelZ hydrolyzed CMC to fragments averaging 3.6 glucosyl units. In combination, CelZ and CelY hydrolyzed CMC to products averaging 2.3 glucosyl units. Synergy did not require the simultaneous presence of both enzymes. Enzymatic modification of the substrate by CelY increased the rate and extent of hydrolysis by CelZ. Full synergy was retained by the sequential hydrolysis of CMC, provided CelY was used as the first enzyme. A general mechanism is proposed to explain the synergy between these two enzymes based primarily on differences in substrate preference.  相似文献   

6.
A beta-1,6-glucanase was purified to apparent homogeneity from a commercial yeast digestive enzyme prepared from Streptomyces rochei by a series of column chromatographies. The molecular mass of the purified enzyme was 60 kDa by SDS-PAGE. The purified enzyme had an optimum pH range from 4.0 to 6.0 and was stable in the same pH range. The enzyme was stable under 50 degrees C but lost almost all activity at 60 degrees C. The enzyme was specific to beta-1,6-glucan and had little activity towards beta-1,3-glucan and beta-1,4-glucan. When the beta-1,6-glucan was hydrolyzed with the purified enzyme for 5 h, the reaction products contained 20% glucose, 36% gentiobiose, and 44% other oligosaccharides, suggesting that the enzyme is an endo-type glucanase. When the purified enzyme was used for the digestion of the cell wall of Saccharomyces cerevisiae, cell-wall proteins covalently bound to the cell-wall glucan were recovered as soluble forms, suggesting that this enzyme is useful for analysis of yeast-cell wall proteins.  相似文献   

7.
A strain of Erwinia aroideae produced an extracellular pectolytic enzyme under growth conditions with pectin or pectic acid as the inducer. This strain also produced a pectin lyase when nalidixic acid is added to a culture medium. The pectolytic enzyme produced under the growth conditions was purified approximately 40-fold from the culture fluid by carboxy- methyl cellulose and Sephadex G-75 gel column chromatographies. The purified enzyme was almost homogeneous on sodium dodecyl sulfate polyacrylamide gel electrophoresis, having a molecular weight of about 36,000 to 38,000. This enzyme, with optimal activity at pH 9.0 to 9.2, produced reaction products which had a strong absorption at 230 nm indicating a lyase type of the reaction. The enzyme activity was markedly stimulated by calcium ion and completely inhibited by cobalt and mercuric ions and by ethylenediaminetetraacetate. Pectic acid or pectin with lower methoxyl content was a good substrate for this enzyme, while no significant activity was observed when pectin with higher methoxyl content was used as a substrate. It was concluded that the enzyme produced under the normal growth conditions is an endo-pectate lyase and differs from the pectin lyase induced by nalidixic acid.  相似文献   

8.
A strain of Erwinia aroideae produces a remarkable amount of pectolytic enzyme when the organism was induced by nalidixic acid for the bacteriocin production. This pectolytic enzyme was purified approximately 60-fold from the induced medium by carboxymethyl-cellulose and Sephadex G–75 gel column chromatographies after batchwise treatment with carboxymethyl- and diethylaminoethyl-celluloses. The purified enzyme was almost homogeneous on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, a molecular weight of about 28,000 to 32,000 was determined for this enzyme. The optimum pH of the enzyme activity was about 8.0 to 8.2. The purified enzyme produced reaction products from pectin and methoxylated pectic acid which had a strong absorption at 235 nm indicating a trans-eliminase reaction. Pectin or pectic acid with higher methoxyl content was a good substrate for this enzyme, while no significant activity was observed when pectic acid was a substrate. The limit of degradation of pectin and pectic acid with higher methoxyl content (90% esterified) by the enzyme were 6.5% and 43%, respectively. It was concluded that the enzyme is a new endo-pectin trans-eliminase from bacterial origin.  相似文献   

9.
Summary A 1,4--d-glucan glucohydrolase (EC 3.2.1.74) was isolated from culture filtrates of Penicillum funiculosum and purified by isoelectric focussing. The purified enzyme was homogeneous as indicated by electrophoresis on sodium dodecyl sulphate-polyacrylamide gels. The enzyme had a molecular weight of 20 000 and the pI was 4.45. The hydrolysis of Avicel by the purified enzyme and culture broth using equal amounts of Walseth units were comparable. The glucohydrolase did not act in synergism with endoglucanase or cellobiohydrolase from the same culture. The enzyme had little ability to attack carboxymethyl cellulose. It showed activity towards Avicel, Walseth cellulose and cellooligosaccharides (G3-G5), producing glucose as the end product, indicating that the enzyme is a -1–4 glucan glucohydrolase. The enzyme exhibited transglucosidase activity, producing higher oligosaccharides from cellobiose.NCL Communication no. 3899  相似文献   

10.
A cellulase [EC 3.2.1.4] component was purified from a crude cellulase preparation of Trichoderma viride (Meicelase) by consecutive column chromatography procedures, and was designated as cellulase III. The enzyme was homogeneous on polyacrylamide gel disc electrophoresis. The molecular weight of the enzyme was estimated to be about 45,000 by gel filtration. The optimum pH and temperature of the enzyme were pH 4.5-5.0 and 50 degrees, respectively. The enzyme was stable over the range of pH 4.5-7.5 at 4 degrees for 24 hr, and retained 40% of the original carboxymethylcellulose-saccharifying activity after heating at 100 degrees for 10 min. The enzyme was completely inactivated by 1 mM Hg2+, and partially by 1 mM Ag+ and Cu2+. The enzyme was characterized as a less-random type cellulase on the basis of its action on carboxymethylcellulose. The enzyme split cellohexaose, retaining the beta-configuration of the anomeric carbon atoms in the hydrolysis products. The Km values of cellulase III for cellooligosaccharides decreased in parallel with increase of the chain length of the substrates, while Vmax values showed a tendency to increase. The enzyme produced predominantly cellobiose and glucose from various cellulosic substrates as well as from higher cellooligosaccharides. Cellulase III preferentially attacked the aglycone linkage of p-nitrophenyl beta-D-cellobioside. The enzyme was found to catalyze the rapid synthesis of cellotetraose from cellobiose (condensation action).  相似文献   

11.
1. A morphological mutant of Neurospora crassa, smco 9, (R2508) that exhibits colonial morphology when grown on sucrose or on maltose, showed a partial reversal of this morphology toward that of the wild type when it was grown on potato starch or on isomaltose. 2. A common feature of both potato starch and isomaltose is the presence of alpha-1, 6 glucosidic linkages. This suggested that these morphological effects might be due to differences in alpha-1,4 glucan: alpha-1,4 glucan 6 glycosyltransferase, (EC 2.4.1.18) commonly known as "the branching enzyme". 3. The branching enzyme was purified from wild type, Neurospora crassa, and from the semicolonial mutant, R2508, both grown on sucrose or on potato starch. It has a molecular weight of 140,000 as estimated by gel filtration on a Bio Gel A 1.5 m column. This enzyme plus phosphorylase a in an unprimed reaction catalyzes the synthesis of a branched polysaccharide in vitro. 4. No branching enzyme activity was apparent in extracts of the mutant R2508, grown on potato starch until a thermolabile inhibitor was removed by fractionation on a DEAE column. 5. This inhibitor has a molecular weight greater than 100,000 as estimated on a P-100 polyacrylamide gel column. The specificity of the inhibitor is not absolute in that it inhibits glycogen synthetase in addition to the branching enzyme in Neurospora.  相似文献   

12.
Streptococcus mutans strain AHT (serotype g) secretes at least two glucosyltransferases with different pI values. A novel glucosyltransferase with a pI of 5.8 was purified 244-fold from the ammonium sulphate fraction by DEAE-cellulose chromatography, FPLC (Mono Q column, Pharmacia) and hydrophobic chromatography. The enzyme preparation gave a single protein band on analysis by both PAGE and SDS-PAGE, and did not form multiple protein bands detectable by IEF. The Mr was estimated to be about 130,000 by SDS-PAGE and about 135,000 by ultracentrifugal analysis. The apparent Km value and pH optimum of the enzyme were 3.9 +/- 0.2 mM (mean +/- SD) and about 4.7, respectively. The enzyme synthesized water-soluble glucan from sucrose, and the glucan consisted of over 90 mol% 1,6-alpha-D-glucosidic linkages. The enzyme activity was not stimulated by primer dextran. Anti-enzyme serum produced a single precipitin band with the purified enzyme preparation, whereas it did not react with either of the other two known glucosyltransferases.  相似文献   

13.
Cellodextrin phosphorylase [EC 2.4.1.49] was purified 129-fold, with a yield of 22.9%, to electrophoretic and column chromatographic homogeneity from a cell extract of Clostridium thermocellum ATCC 27405 by a procedure which included streptomycin treatment, ammonium sulfate precipitation, DEAE-Toyopearl 650 M, and Toyopearl HW-55F column chromatography. The molecular weight of the enzyme was estimated to be 200,000 by gel filtration and 105,000 by SDS-PAGE, suggesting that it consisted of two identical subunits. It was suggested by spectrophotometric and chemical analysis that the enzyme contained no pyridoxal 5′-phosphate. The enzyme was inactivated by N-ethylmaleimide and activated by dithiothreitol, indicating that the exposed thiol group(s) was important for the enzymatic activity. The enzyme could synthesize at least cellotriose, cellotetraose, and cellopentaose as detectable cellodextrins, showing that it might possibly be a good tool for the synthesis of cellodextrins.  相似文献   

14.
A thiol oxidase was purified from porcine kidney cortex by chromatography of detergent-solubilized plasma membranes on cysteinylsuccinamidopropyl-glass beads, hydroxyapatite, and Sephacryl S-200. The oxidase was purified 2600-fold; 28% recovery of activity was obtained. With glutathione as substrate, the apparent Km was 0.73 mM and the V max was a 4.4 U/mg protein. The reaction catalyzed was 2 RSH + O2----RSSR + H2O2, and superoxide production was not detected during the reaction. Other low molecular weight thiols, including cysteine, dithiothreitol, N-acetylcysteine, and cysteamine, were substrates for the oxidase; 2-mercaptoethanol, reductively denatured ribonuclease A, and chymotrypsinogen A were not substrates. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed one band corresponding to 70 kDa; gel filtration on a Sephacryl column produced a single elution of activity with a protein corresponding to 120 kDa, indicating that the functional form is a dimer. On a high-pressure gel permeation column the protein eluted at 70 kDa under dilute conditions but at greater than 200 kDa at high concentrations, indicating that the protein also aggregates into larger multimers. Activity was inhibited by copper chelators, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin), H2O2, and N-ethylmaleimide, suggesting the presence of copper and a sulfhydryl group at the active site. Following treatment with metal chelators, enzyme activity was reconstituted with CuSO4, but not with FeSO4. The purified enzyme contained 1 mol copper per subunit which was undetectable by electron paramagnetic resonance, suggesting that the copper is in a binuclear complex.  相似文献   

15.
Five endoglucanases (1,4-beta-D-glucan-glucanohydrolase, EC 3.2.1.4) were isolated from Fusarium lini. Endo I and II were purified by preparative gel electrophoresis and Endo III, IV, and V were purified in a single-step procedure involving preparative flat-bed isoelectric focusing. All the endoglucanases were homogenous on disk gel electrophoresis and analytical isoelectric focusing in polyacrylamide gel. The pi values were between 6 and 6.6 for Endo III, IV, and V; for Endo I, the pi value was 8. The molecular weights of the enzymes were between 4 x 10(4) and 6.5 x 10(4). The K(m) values for endoglucanases using carboxymethyl cellulose (CM-cellulose) as the substrate were 2-12 mg/mL. The specificity of the enzymes was restricted to beta-1, 4-linkages. All the enzymes showed activity towards D-xylan. The endoglucanases had high viscosity reducing activity with CM-cellulose. Striking synergism was observed for the hydrolysis of CM-cellulose by endoglucanases. Endo II, IV, and V attacked cellopentaose and cellotetraose more readily than cellotriose. Endo II and V hydrolyzed cellotriose, cellotetraose, and cellopentaose, yielding a mixture of cellobiose with a trace amount of glucose; endo IV produced only cellobiose.  相似文献   

16.
Chitinase B was purified from a culture medium of Ralstonia sp. A-471 by precipitation with (NH4)2SO4 and column chromatography with DEAE-Toyopearl 650 M and Sephacryl S-200. The purified enzyme was homogeneous on SDS-PAGE. The molecular weight was 45,000 by SDS-PAGE. The optimum pH was 5.0 and stable pH was from 5.0 to 10.0. In the early stage of the reaction, chitinase B produced beta-anomer of (GlcNAc)2 from the substrate (GlcNAc)6, whereas (GlcNAc)4 produced almost at equilibrium, indicating that the enzyme predominantly hydrolyzes the second glycosidic linkage from the nonreducing end of (GlcNAc)6.  相似文献   

17.
The crystal structures of a carbohydrate-binding module (CBM) family 28 domain of endoglucanase Cel5A from Clostridium josui have been determined in ligand-free and complex forms with cellobiose, cellotetraose, and cellopentaose as the first complex structures of this family. In the cleft of a β-sandwich fold, the ligands are recognized by stacking interactions and hydrogen bonds. Conformations of the bound cellooligosaccharides are similar to those in crystals and solution but clearly different from the cellulose structure. Interestingly, the glucan chain bound on CBM28 is in the opposite direction of that bound to CBM17, although these families share significant structural similarity.  相似文献   

18.
Poly(A) polymerase [EC 2.7.7.19] was highly purified from beef liver nuclei by the use of column chromatographies on heparin-Sepharose 4B and Blue Dextran-Sepharose 4B. The purified enzyme showed one major protein band of the molecular weight of 57,000 in SDS polyacrylamide gel electrophoresis, which agreed with the molecular weight estimated from glycerol gradient centrifugation. The enzyme required the presence of Mn2+ for its activity but was almost completely inactive with Mg2+. It incorporated specifically ATP into polynucleotide as a sole substrate. The enzyme activity dependend entirely on the addition of exogenous polynucleotide primer. It showed certain selectivity for the primers. The most effective among the tested polynucleotides was a short poly(A), for which the Km of the enzyme was shown to be 7 microM. Poly(G, U) and short poly(U) also primed the reaction, but tRNA, phage RNA, poly(G), and poly(C) were inactive. Based on observed specificity for the primer, the role of this enzyme in the cell nuclei was discussed. Digestion of the reaction product of this enzyme by two specific exonucleases, snake venom and spleen phosphodiesterases, suggested that this enzyme catalyzed the covalent bonding of the substrate to the 3' terminus of the primer as in the manner expected for in vivo polyadenylation.  相似文献   

19.
The nucleotide sequence containing the complete structural information for a glucan branching enzyme was isolated from a Neisseria denitrificans genomic library. The gene was expressed in Escherichia coli and the active recombinant protein was purified. The deduced protein of 762 amino acids with a calculated molecular weight of 86313 Da shows similarity to the primary protein sequences of other known glucan branching enzymes. Amino acid sequencing of the isolated protein by Edman degradation confirmed the deduced start codon of the structural gene of the glucan branching enzyme. The purified glucan branching enzyme has a stimulating effect on the Neisseria amylosucrase activity.  相似文献   

20.
For the enzymatic production of chitosan oligosaccharides from chitosan, a chitosanase-producing bacterium, Bacillus sp. strain KCTC 0377BP, was isolated from soil. The bacterium constitutively produced chitosanase in a culture medium without chitosan as an inducer. The production of chitosanase was increased from 1.2 U/ml in a minimal chitosan medium to 100 U/ml by optimizing the culture conditions. The chitosanase was purified from a culture supernatant by using CM-Toyopearl column chromatography and a Superose 12HR column for fast-performance liquid chromatography and was characterized according to its enzyme properties. The molecular mass of the enzyme was estimated to be 45 kDa by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme demonstrated bifunctional chitosanase-glucanase activities, although it showed very low glucanase activity, with less than 3% of the chitosanase activity. Activity of the enzyme increased with an increase of the degrees of deacetylation (DDA) of the chitosan substrate. However, the enzyme still retained 72% of its relative activity toward the 39% DDA of chitosan, compared with the activity of the 94% DDA of chitosan. The enzyme produced chitosan oligosaccharides from chitosan, ranging mainly from chitotriose to chitooctaose. By controlling the reaction time and by monitoring the reaction products with gel filtration high-performance liquid chromatography, chitosan oligosaccharides with a desired oligosaccharide content and composition were obtained. In addition, the enzyme was efficiently used for the production of low-molecular-weight chitosan and highly acetylated chitosan oligosaccharides. A gene (csn45) encoding chitosanase was cloned, sequenced, and compared with other functionally related genes. The deduced amino acid sequence of csn45 was dissimilar to those of the classical chitosanase belonging to glycoside hydrolase family 46 but was similar to glucanases classified with glycoside hydrolase family 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号